Nijenhuis algebras, NS algebras, and N-dendriform algebras

Størrelse: px
Begynne med side:

Download "Nijenhuis algebras, NS algebras, and N-dendriform algebras"

Transkript

1 Front. Math. Chna 2012, 7(5): DOI /s Njenhus algebras, NS algebras, and N-dendrform algebras Peng LEI 1, L GUO 1,2 1 Department of Mathematcs, Lanzhou Unversty, Lanzhou , Chna 2 Department of Mathematcs and Computer Scence, Rutgers Unversty, Newark, NJ 07102, USA c Hgher Educaton Press and Sprnger-Verlag Berln Hedelberg 2012 Abstract In ths paper, we study (assocatve) Njenhus algebras, wth emphass on the relatonshp between the category of Njenhus algebras and the categores of NS algebras and related algebras. Ths s n analogy to the well-known theory of the adjont functor from the category of Le algebras to that of assocatve algebras, and the more recent results on the adjont functor from the categores of dendrform and trdendrform algebras to that of Rota- Baxter algebras. We frst gve an explct constructon of free Njenhus algebras and then apply t to obtan the unversal envelopng Njenhus algebra of an NS algebra. We further apply the constructon to determne the bnary quadratc nonsymmetrc algebra, called the N-dendrform algebra, that s compatble wth the Njenhus algebra. As t turns out, the N-dendrform algebra has more relatons than the NS algebra. Keywords Njenhus algebras, Rota-Baxter algebras, dendrform algebras, NS algebras, N-dendrform algebras MSC 16W99 1 Introducton Through the antsymmetry bracket [x, y] :=xy yx, an assocatve algebra A defnes a Le algebra structure on A. The resultng functor from the category of assocatve algebras to that of Le algebras and ts adjont functor have played a fundamental role n the study of these algebrac structures. A smlar relatonshp holds for Rota-Baxter algebras and dendrform algebras. Receved February 4, 2012; accepted June 7, 2012 Correspondng author: L GUO, E-mal: lguo@rutgers.edu

2 828 Peng LEI, L GUO Ths paper studes a smlar relatonshp between (assocatve) Njenhus algebras and NS algebras. A Njenhus algebra s a nonuntary assocatve algebra N wth a lnear endomorphsm P satsfyng the Njenhus equaton: P (x)p (y) =P (P (x)y)+p (xp (y)) P 2 (xy), x, y N. (1) The concept of a Njenhus operator on a Le algebra orgnated from the mportant concept of a Njenhus tensor that was ntroduced by Njenhus [25] n the study of pseudo-complex manfolds n the 1950s and was related to the well-known concepts of Schouten-Njenhus bracket, the Frölcher-Njenhus bracket [13], and the Njenhus-Rchardson bracket. Njenhus operators on a Le algebra appeared n [20] n a more general study of Posson-Njenhus manfolds and then more recently n [14,15] n the context of the classcal Yang- Baxter equaton. The Njenhus operator on an assocatve algebra was ntroduced by Carnena and coauthors [4] to study quantum b-hamltonan systems. In [26], Njenhus operators are constructed by analogy wth Posson-Njenhus geometry, from relatve Rota-Baxter operators. Note the close analogue of the Njenhus operator wth the more famlar Rota-Baxter operator of weght λ (where λ s a constant), defned to be a lnear endomorphsm P on an assocatve algebra R satsfyng P (x)p (y) =P (P (x)y)+p (xp (y)) + λp (xy), x, y R. The latter orgnated from the probablty study of Baxter [2], was studed by Carter and Rota and s closely related to the operator form of the classcal Yang-Baxter equaton. Its study has experenced a qute remarkable renascence n the last decade wth many applcatons n mathematcs and physcs, most notably the work of Connes and Kremer on renormalzaton of quantum feld theory [5,10,11]. See [16] for further detals and references. The recent theoretc developments of Njenhus algebras have largely followed those of Rota-Baxter algebras. Commutatve Njenhus algebras were constructed n [7,12] followng the constructon of free commutatve Rota-Baxter algebras [17]. Another development followed the relatonshp between Rota-Baxter algebras and dendrform algebras. Recall that a dendrform algebra, defned by Loday [22], s a vector space D wth two bnary operatons and such that (x y) z = x (y z), (x y) z = x (y z), x, y, z D, (x y) z = x (y z), where := +.

3 Njenhus algebras, NS algebras, and N-dendrform algebras 829 Smlarly, a trdendrform algebra, defned by Loday and Ronco [23], s a vector space T wth three bnary operatons,, and that satsfy seven relatons. Aguar [1] showed that, for a Rota-Baxter algebra (R, P ) of weght 0, the bnary operatons x P y := xp (y), x P y := P (x)y, x, y R, defne a dendrform algebra on R. Smlarly, Ebrahm-Fard [6] showed that, for a Rota-Baxter algebra (R, P ) of non-zero weght, the bnary operatons x P y := xp (y), x P y := P (x)y, x P y := λxy, x, y R, defne a trdendrform algebra on R. As an analogue of the trdendrform algebra, the concept of an NS algebra was ntroduced by Leroux [21], to be a vector space M wth three bnary operatons,, and that satsfy four relatons (see Eq. (16) below). As an analogue of the Rota-Baxter algebra case, t was shown [21] that, for a Njenhus algebra (N,P), the bnary operatons x P y := xp (y), x P y := P (x)y, x P y := P (xy), x, y R, defne an NS algebra on R. Consderng the adjont functor of the functor nduced by the above mentoned map from Rota-Baxter algebras to (tr-)dendrform algebras, the Rota-Baxter unversal envelopng algebra of a (tr-)dendrform algebra was constructed n [8]. For ths purpose, free Rota-Baxter algebras were frst constructed. In ths paper, we gve a smlar approach for Njenhus algebras, but we go beyond the case of Rota-Baxter algebras. Our frst goal s to gve an explct constructon of free Njenhus algebras n Secton 2. We consder both the cases when the free Njenhus algebra s generated by a set and by another algebra. Other than ts role n the theoretcal study of Njenhus algebras, ths constructon allows us to construct the unversal envelopng algebra of an NS algebra. We acheve ths n Secton 3. Knowng that a Njenhus algebra gves an NS algebra, t s natural to ask what other dendrform type algebras that Njenhus algebras can gve n a smlar way. As a second applcaton of our constructon of free Njenhus algebras, we determne all quadratc nonsymmetrc relatons that can be derved from Njenhus algebras and fnd that one can actually derve more relatons than gven by the NS algebra. Ths dscusson s presented n Secton 4. Notaton In ths paper, k s taken to be a feld. A k-algebra s taken to be nonuntary assocatve unless otherwse stated.

4 830 Peng LEI, L GUO 2 Free Njenhus algebra on an algebra We start wth the defnton of free Njenhus algebras. Defnton 1 Let A be a k-algebra. A free Njenhus algebra over A s a Njenhus algebra F N (A) wth a Njenhus operator P A and an algebra homomorphsm j A : A F N (A) such that, for any Njenhus algebra N and any algebra homomorphsm f : A N, there s a unque Njenhus algebra homomorphsm f : F N (A) N such that f j A = f : j A A F N (A) f f N For the constructon of free Njenhus algebras, we follow the constructon of free Rota-Baxter algebras [8,16] by bracketed words. Alternatvely, one can follow [9] to gve the constructon by rooted trees that s more n the sprt of operads [24]. One can also follow the approach of Gröbner-Shrshov bases [3]. Because of the lack of a unform approach (see [18,19] for some recent attempts n ths drecton) and to be notatonally self contaned, we gve some detals. We frst dsplay a k-bass of the free Njenhus algebra n terms of bracketed words n 2.1. The product on the free Njenhus algebra s gven n 2.2 and the unversal property of the free Njenhus algebra s proved n A bass of free Njenhus algebra Let A be a k-algebra wth a k-bass X. We frst dsplay a k-bass X of F N (A) n terms of bracketed words from the alphabet set X. Let and be symbols, called brackets, and let X = X {, }. Let M(X ) denote the free semgroup generated by X. Defnton 2 [8,16] Let Y,Z be two subsets of M(X ). Defne the alternatng product of Y and Z to be ( ( Λ(Y,Z)= Z ) r 1(Y r) r 0 ( r 1( Z Y ) r) ( r 0 ) (Y Z ) r Y ) ( Z Y ) r Z. (2) We construct a sequence X n of subsets of M(X ) by the followng recurson. Let X 0 = X and, for n 0, defne X n+1 =Λ(X, X n ). Furthermore, defne X = n 0 X n = lm X n. (3)

5 Njenhus algebras, NS algebras, and N-dendrform algebras 831 Here, the second equaton n Eq. (3) follows snce X 1 X n X n 1, we have X 0 and, assumng X n+1 =Λ(X, X n ) Λ(X, X n 1 ) X n. By [8,16], we have the dsjont unon ( X = ) r 1(X X r) ( r 0 ( ) (X X ) r X ( X) r 1( X r) r 0 Furthermore, every x X has a unque decomposton ) ( X X) r X. (4) x = x 1 x b, (5) where x, 1 b, s alternatvely n X or n X. Ths decomposton wll be called the standard decomposton of x. For x n X wth standard decomposton x 1 x b, we defne b to be the breadth b(x) ofx, and defne the head h(x) ofx to be 0 (resp. 1) f x 1 s n X (resp. n X ). Smlarly, defne the tal t(x) ofx to be 0 (resp. 1) f x b s n X (resp. n X ). 2.2 Product n a free Njenhus algebra Let F N (A) = x X kx. We now defne a product on F N (A) by defnng x x F N (A) forx, x X and then extendng blnearly. Roughly speakng, the product of x and x s defned to be the concatenaton whenever t(x) h(x ). When t(x) =h(x ), the product s defned by the product n A or by the Njenhus relaton n Equaton (1). To be precse, we use nducton on the sum n := d(x)+d(x ) of the depths of x and x. Then n 0. If n =0, then x, x are n X and so are n A and we defne x x = x x A F N (A). Here, s the product n A. Suppose that x x have been defned for all x, x X wth 0 n k and let x, x X wth n = k +1. Frst, assume the breadth b(x) =b(x )=1. Then x and x are n X or X. Snce n = k + 1 s at least one, x and x cannot be both n X. We accordngly defne xx, x (resp. x ) X, x (resp. x) X, x x = x x + x x x x, (6) x = x, x = x X.

6 832 Peng LEI, L GUO Here, the product n the frst case s by concatenaton and n the second case s by the nducton hypothess snce for the three products on the rght-hand sde, we have d( x )+d(x )=d( x )+d( x ) 1=d(x)+d(x ) 1, d(x)+d( x )=d( x )+d( x ) 1=d(x)+d(x ) 1, d(x)+d(x )=d( x ) 1+d( x ) 1=d(x)+d(x ) 2, whcharealllessthanorequaltok. Now, assume b(x) > 1orb(x ) > 1. Let x = x 1 x b, x = x 1 x b be the standard decompostons from Eq. (5). We then defne x x = x 1 x b 1 (x b x 1 )x 2 x b, (7) where x b x 1 s defned by Eq. (6) and the rest s gven by concatenaton. The concatenaton s well defned snce by Eq. (6), we have Therefore, h(x b )=h(x b x 1), t(x 1)=t(x b x 1). t(x b 1 ) h(x b x 1), h(x 2) t(x b x 1). We have the followng smple propertes of. Lemma 1 Let x, x X. Then we have the followng statements. () h(x) =h(x x ) and t(x )=t(x x ). () If t(x) h(x ), then x x = xx (concatenaton). () If t(x) h(x ), then for any x X, : (xx ) x = x(x x ), x (xx )=(x x)x. Extendng blnearly, we obtan a bnary operaton that we stll denote by For x X, defne F N (A) F N (A) F N (A). N A (x) = x. (8) Obvously, x s agan n X. Thus, N A extends to a lnear operator N A on F N (A). Let j X : X X F N (A) be the natural njecton whch extends to an algebra njecton j A : A F N (A). (9)

7 Njenhus algebras, NS algebras, and N-dendrform algebras 833 The followng s our frst man result whch wll be proved n the next subsecton. Theorem 1 Let A be a k-algebra wth a k-bass X. () The par (F N (A), ) s an algebra. () The trple (F N (A),,N A ) s a Njenhus algebra. () The quadruple (F N (A),,N A,j A ) s the free Njenhus algebra on the algebra A. The followng corollary of Theorem 1 wll be used later n the paper. Corollary 1 Let M be a k-module, and let T (M) = n 1 M n be the reduced tensor algebra over M. Then F N (T (M)), together wth the natural njecton M : M T (M) j T (M) F N (T (M)), s a free Njenhus algebra over M, n the sense that, for any Njenhus algebra N and k-module map f : M N, there s a unque Njenhus algebra homomorphsm ˆf : F N (T (M)) N such that ˆf k M = f. Proof Ths follows mmedately from Theorem 1 and the fact that the constructon of the free algebra on a module (resp. free Njenhus algebra on an algebra; free Njenhus on a module) s the left adjont functor of the forgetful functor from algebras to modules (resp. from Njenhus algebras to algebras; from Njenhus algebras to modules), and the fact that the composton of two left adjont functors s the left adjont functor of the composton. 2.3 Proof of Theorem 1 Proof of Theorem 1 () We just need to verfy the assocatvty. For ths we only need to verfy (x x ) x = x (x x ) (10) for x, x, x X. We wll do ths by nducton on the sum of the depths n := d(x )+d(x )+d(x ). If n =0, then all of x, x, x have depth zero and so are n X. In ths case, the product s gven by the product n A and so s assocatve. Assume that the assocatvty holds for n k and assume that x, x, x X have n = d(x )+d(x )+d(x )=k +1. If t(x ) h(x ), then by Lemma 1, we have (x x ) x =(x x ) x = x (x x )=x (x x ).

8 834 Peng LEI, L GUO A smlar argument holds when t(x ) h(x ). Thus, we only need to verfy the assocatvty when t(x )=h(x ), t(x )=h(x ). We next reduce the breadths of the words. Lemma 2 If the assocatvty (x x ) x = x (x x ) holds for all x, x, and x n X of breadth one, then t holds for all x, x, and x n X. Proof We use nducton on the sum of breadths m := b(x )+b(x )+b(x ). Then m 3. The case when m = 3 s the assumpton of the lemma. Assume the assocatvty holds for 3 m j and take x, x, x X wth m = j +1. Then j Therefore, at least one of x, x, x have breadth greater than or equal to 2. Frst, assume b(x ) 2. Then x = x 1 x 2 wth x 1, x 2 X and t(x 1 ) h(x 2 ). Thus, by Lemma 1, we obtan (x x ) x =((x 1x 2) x ) x =(x 1(x 2 x )) x = x 1((x 2 x ) x ). Smlarly, we have Thus, whenever x (x x )=(x 1x 2) (x x )=x 1(x 2 (x x )). (x x ) x = x (x x ) (x 2 x ) x = x 2 (x x ). The latter follows from the nducton hypothess. A smlar proof works f b(x ) 2. Fnally, f b(x ) 2, then x = x 1 x 2 wth x 1, x 2 X and t(x 1 ) h(x 2 ). By applyng Lemma 1 repeatedly, we obtan (x x ) x =(x (x 1x 2)) x =((x x 1)x 2) x =(x x 1)(x 2 x ). Inthesameway,wehave (x x 1)(x 2 x )=x (x x ). Ths agan proves the assocatvty.

9 Njenhus algebras, NS algebras, and N-dendrform algebras 835 To summarze, our proof of the assocatvty has been reduced to the specal case when x, x, x X are chosen so that (a) n := d(x )+d(x )+d(x )=k +1 1 wth the assumpton that the assocatvty holds when n k; (b) the elements have breadth one and (c) t(x )=h(x )andt(x )=h(x ). By (b), the head and tal of each of the elements are the same. Therefore, by (c), ether all the three elements are n X or they are all n X. If all of x, x, x are n X, then as already shown, the assocatvty follows from the assocatvty n A. Therefore, t remans to consder the case when x, x, x are all n X. Then x = x, x = x, x = x wth x, x, x X. Usng Eq. (6) and blnearty of the product, we have (x x ) x =( x x + x x x x ) x = x x x + x x x x x x = x x x + ( x x ) x ( x x ) x + x x x + (x x ) x (x x ) x x x x x x x + x x x =: I I 9. Applyng the nducton hypothess n n to I 5 and I 8, and then use Eq. (6) agan, we obtan (x x ) x = x x x + ( x x ) x ( x x ) x + x x x + x x x + x x x x x x (x x ) x x x x x x x (x x ) x + (x x ) x + x x x = x x x + ( x x ) x ( x x ) x + x x x + x x x + x x x x x x (x x ) x x x x (x x ) x + (x x ) x. By a smlar computaton, we obtan x (x x ) = x x x + x x x x x x + x x x x ( x x ) + x (x x )

10 836 Peng LEI, L GUO + x x x x (x x ) x (x x ) + x (x x ) x x x. Now, by nducton, the -th term n the expanson of (x x ) x matches wth the σ()-th term n the expanson of x (x x ). Here, the permutaton σ Σ 11 s gven by ( σ = ). (11) Ths completes the proof of Theorem 1 (). () The proof follows from the defnton N A (x) = x and Equaton (6). () Let (N,,P) be a Njenhus algebra wth multplcaton. Let f : A N be a k-algebra homomorphsm. We wll construct a k-lnear map f : F N (A) N by defnng f(x) forx X. We acheve ths by defnng f(x) forx X n, n 0, nductvely on n. For x X 0 := X, defne f(x) =f(x). Suppose that f(x) has been defned for x X n and consder x n X n+1 whch s, by defnton and Eq. (4), ( ) Λ(X, X n )= (X X n ) r X n ) r 1(X X r) ( r 0 ( r 0 X n (X X n ) r) ( r 0 ) X n (X X n ) r X. Let x be n the frst unon component r 1 (X X n ) r above. Then x = r (x 2 1 x 2 ) =1 for x 2 1 X and x 2 X n, 1 r. By the constructon of the multplcaton and the Njenhus operator N A, we have Defne x = r =1(x 2 1 x 2 )= r =1(x 2 1 N A (x 2 )). f(x) = r =1(f(x 2 1 ) N(f(x 2 ))), (12) where the rght-hand sde s well defned by the nducton hypothess. Smlarly, defne f(x) fx s n the other unon components. For any x X, we have P A (x) = x X, and by the defnton of f n (Eq. (12)), we have f( x ) =P (f(x)). (13)

11 Njenhus algebras, NS algebras, and N-dendrform algebras 837 Therefore, f commutes wth the Njenhus operators. Combnng ths equaton wth Eq. (12), we see that f x = x 1 x b s the standard decomposton of x, then f(x) =f(x 1 ) f(x b ). (14) Note that ths s the only possble way to defne f(x) norderforf to be a Njenhus algebra homomorphsm extendng f. It remans to prove that the map f defned n Eq. (12) s ndeed an algebra homomorphsm. For ths, we only need to check the multplcty f(x x )=f(x) f(x ) (15) for all x, x X. For ths, we use nducton on the sum of depths n := d(x)+d(x ). Then n 0. When n =0, we have x, x X. Then Eq. (15) follows from the multplcty of f. Assume the multplcty holds for x, x X wth n k and take x, x X wth n = k +1. Let x = x 1 x b and x = x 1 x b be the standard decompostons. Snce n = k +1 1, at least one of x b and x b s n X. Then, by Eq. (6), we have f(x b x 1 ), x b (resp. x 1 ) X, x 1 (resp. x b) X, f(x b x 1)= f( x b x 1 + x b x 1 x b x 1 ), x b = x b, x 1 = x 1 X. In the frst case, the rght-hand sde s f(x b ) f(x 1 ) by the defnton of f. In the second case, by Eq. (13), the nducton hypothess, and the Njenhus relaton of the operator P on N, we have f( x b x 1 + x b x 1 x b x 1 ) = f( x b x 1 )+f( x b x 1 ) f( x b x 1 ) = P (f( x b x 1 )) + P (f(x b x 1 )) P (f( x b x 1 )) = P (f( x b ) f(x 1 )) + P (f(x b) f( x 1 )) P (P (f(x b) f(x 1 ))) = P (P (f(x b )) f(x 1)) + P (f(x b ) P (f(x 1))) P (P ((f(x b ) f(x 1))) = P (f(x b )) P (f(x 1)) = f( x b ) f( x 1 ) = f(x b ) f(x 1). Therefore, f(x b x 1)=f(x b ) f(x 1).

12 838 Peng LEI, L GUO Then f(x x )=f(x 1 x b 1 (x b x 1 )x 2 x b ) = f(x 1 ) f(x b 1 ) f(x b x 1 ) f(x 2 ) f(x b ) = f(x 1 ) f(x b 1 ) f(x b ) f(x 1) f(x 2) f(x b ) = f(x) f(x ). Ths s what we need. 3 NS algebras and ther unversal envelopng algebras The concept of an NS algebra was ntroduced by Leroux [21] as an analogue of the dendrform algebra of Loday [22] and the trdendrform algebra of Loday and Ronco [23]. Defnton 3 An NS algebra s a module M wth three bnary operatons,, and that satsfy the followng four relatons: (x y) z = x (y z), (x y) z = x (y z), (x y) z = x (y z), (x y) z +(x y) z = x (y z)+x (y z) (16) for x, y, z M. Here, denotes + +. NS algebras share smlar propertes as dendrform algebras. For example, the operaton defnes an assocatve operaton. Another smlarty s the followng theorem whch s an analogue of the results of Aguar [1] and Ebrahm- Fard [6] that a Rota-Baxter algebra gves a dendrform algebra or a trdendrform algebra. Theorem 2 [21] A Njenhus algebra (N,P) defnes an NS algebra (N, P, P, P ), where x P y = xp (y), x P y = P (x)y, x P y = P (xy). (17) Let NA denote the category of Njenhus algebras, and let NS denote the category of NS algebras. It s easy to see that the map from NA to NS n Theorem 2 s compatble wth the morphsms n the two categores. Thus, we obtan a functor E : NA NS. (18) We wll study ts left adjont functor. Motvated by the envelopng algebra of a Le algebra and the Rota-Baxter envelopng algebra of a trdendrform algebra [8], we are naturally led to the followng defnton.

13 Njenhus algebras, NS algebras, and N-dendrform algebras 839 Defnton 4 Let M be an NS-algebra. A unversal envelopng Njenhus algebra of M s a Njenhus algebra U N (M) NA wth a homomorphsm ρ: M U N (M)nNS such that for any N NA and homomorphsm f : M N n NS, there s a unque ˇf : U N (M) N n NA such that ˇf ρ = f. Let M := (M,,, ) NS. Let T (M) = M n n 1 be the tensor algebra. Then T (M) s the free algebra generated by the k-module M. By Corollary 1, F N (T (M)), wth the natural njecton M : M T (M) F N (T (M)), s the free Njenhus algebra over the vector space M. Let J M be the Njenhus deal of F N (T (M)) generated by the set {x y xp (y), x y P (x)y, x y P (x y) x, y M}. (19) Let π : F N (T (M)) F N (T (M))/J M be the quotent map. Theorem 3 Let (M,,, ) be an NS algebra. The quotent Njenhus algebra F N (T (M))/J M, together wth ρ := π M, s the unversal envelopng Njenhus algebra of M. Proof The proof s smlar to the case of trdendrform algebras and Rota- Baxter algebras [8]. Therefore, we skp some of the detals. Let (N,P) be a Njenhus algebra, and let f : M N be a homomorphsm n NS. More precsely, we have f :(M,,, ) (N, P, P, P ). We wll complete the followng commutatve dagram, usng notatons from Corollary 1: T (M) (20) k M j T (M) M M F N (T (M)) f f ˆf π N ˇf F N (T (M))/J M By the unversal property of the free algebra T (M)overM, there s a unque homomorphsm f : T (M) N such that f k M = f. Therefore, f(x 1 x n )=f(x 1 ) f(x n ).

14 840 Peng LEI, L GUO Here, s the product n N. Then by the unversal property of the free Njenhus algebra F N (T (M)) over T (M), there s a unque morphsm f : F N (T (M)) N n NA such that f j T (M) = f. By Corollary 1, f = ˆf. Then ˆf M = ˆf j T (M) k M = f k M = f. (21) Therefore, for any x, y M, we check that ˆf(x y xp (y)) = 0, ˆf(x y P (x)y) =0, ˆf(x y P (x y)) = 0. Thus, J M s n ker( ˆf) and there s a morphsm ˇf : F N (T (M))/J M N n NA such that ˆf = ˇf π. Then by the defnton of ρ = π M n the theorem and Eq. (21), we have ˇf ρ = ˇf π M = ˆf M = f. Ths proves the exstence of ˇf. Suppose that ˇf : F N (T (M))/J M N s also a homomorphsm n NA such that ˇf ρ = f. Then ( ˇf π) M = f =(ˇf π) M. By Corollary 1, the free Njenhus algebra F N (T (M)) over the algebra T (M) s also the free Njenhus algebra over the vector space M wth respect to the natural njecton M. Therefore, we have ˇf π = ˇf π n NA. Snce π s surjectve, we have ˇf = ˇf. Ths proves the unqueness of ˇf. 4 From Njenhus algebras to N-dendrform algebras In ths secton, we consder an nverse of Theorem 2 n the followng sense. Suppose that (N,P) s a Njenhus algebra and defne bnary operatons x P y = xp (y), x P y = P (x)y, x P y = P (xy). By Theorem 2, the three operatons satsfy the NS relatons n Eq. (16). Our nverse queston s, what other quadratc nonsymmetrc relatons could (N, P, P, P ) satsfy? We recall some background on bnary quadratc nonsymmetrc operads n order to make the queston precse. We then determne all the quadratc nonsymmetrc relatons that are consstent wth the Njenhus operator. 4.1 Background and statement of Theorem 4 For detals on bnary quadratc nonsymmetrc operads, see [16,24]. Defnton 5 Let k be a feld. ) A graded vector space s a sequence P := {P n } n 0 of k-vector spaces P n, n 0.

15 Njenhus algebras, NS algebras, and N-dendrform algebras 841 ) A nonsymmetrc (ns) operad s a graded vector space P = {P n } n 0 equpped wth partal compostons: := m,n, : P m P n P m+n 1, 1 m, (22) such that, for λ P l, μ P m, and ν P n, the followng relatons hold: () (λ μ) 1+j ν = λ (μ j ν), 1 l, 1 j m; () (λ μ) k 1+m ν =(λ k ν) μ, 1 <k l; () there s an element d P 1 such that d μ = μ and μ d = μ for μ P n, n 0. An ns operad P = {P n } s called bnary f P 1 = k.d and P n,n 3, are nduced from P 2 by composton. Then, n partcular, for the free operad, we have P 3 =(P 2 1 P 2 ) (P 2 2 P 2 ), (23) whch can be dentfed wth P2 2 P2 2. AbnarynsoperadP s called quadratc f all relatons among the bnary operatons n P 2 are derved from P 3. Thus, a bnary, quadratc, ns operad s determned by a par (V,R), where V = P 2, called the space of generators, andr s a subspace of V 2 V 2, called the space of relatons. Therefore, we can denote P = P(V )/(R). Note that a typcal element of V 2 s of the form k =1 (1) (2), (1), (2) V, 1 k. Thus, a typcal element of V 2 V 2 s of the form ( k =1 (1) (2), m j=1 ) (3) j (4) j, (1), (2), (3) j, (4) j V, 1 k, 1 j m. For a gven bnary quadratc ns operad P = P(V )/(R), a k-vector space A s called a P-algebra f A has bnary operatons (ndexed by) V and f, for ( k =1 (1) (2), m j=1 ) (3) j (4) j R V 2 V 2 wth (1), (2), (3) j, (4) j V, 1 k, 1 j m, we have k m (x (1) y) (2) z = x (3) j (y (4) j z), x, y, z A. (24) =1 j=1

16 842 Peng LEI, L GUO For example, from Eq. (16), the NS algebras are precsely the P-algebras, where P = P(V )/(R) wthr beng the subspace of V 2 V 2 spanned by the four elements where = + +. (, ), (, ), (, ), ( +, + ), Theorem 4 Let V = k{,, } be the vector space wth bass {,, }, and let P = P(V )/(R) be a bnary quadratc ns operad. The followng statements are equvalent. () For every Njenhus algebra (N,P), the quadruple (N, P, P, P ) s a P-algebra. () The relaton space R of P s contaned n the subspace of V 2 V 2 spanned by (, ), (, ), (, ), (, ), ( + +, + + ), (25) where = + +. More precsely, any P-algebra A satsfes the followng relatons: (x y) z = x (y z), (x y) z = x (y z), (x y) z = x (y z), (x y) z = x (y z), (x y) z +(x y) z +(x y) z = x (y z)+x (y z)+x (y z), x, y, z A. (26) Note that the relatons of the NS algebra n Eq. (16) are contaned n the space spanned by the relatons n Eq. (25). We call P defned by the relatons n Eq. (25) the N-dendrform operad and call a quadruple (A,,, ) satsfyng Eq. (26) an N-dendrform algebra. LetND denote the category of N-dendrform algebras. Then we have the followng mmedate corollary of Theorem 4. Corollary 2 () There s a natural functor F : NA ND, (N,P) (N, P, P, P ). (27) () There s a natural (ncluson) functor G : ND NS, (M,,, ) (M,,, ). (28)

17 Njenhus algebras, NS algebras, and N-dendrform algebras 843 () The functors F and G gve a refnement of the functor E : NA NS n Eq. (16) n the sense that the followng dagram commutes: F NA ND E G NS (29) 4.2 Proof of Theorem 4 Proof of Theorem 4 Wth V = k{,, }, we have V 2 V 2 = k( 1 2, 3 4 ). 1, 2, 3, 4 {,, } Thus, any element r of V 2 V 2 s of the form r := a 1 (, 0) + a 2 (, 0) + a 3 (, 0) + b 1 (, 0) + b 2 (, 0) + b 3 (, 0) + c 1 (, 0) + c 2 (, 0) + c 3 (, 0) + d 1 (0, )+d 2 (0, )+d 3 (0, ) + e 1 (0, )+e 3 (0, )+e 3 (0, ) + f 1 (0, )+f 2 (0, )+f 3 (0, ), where the coeffcents are n k. () () Let P = P(V )/(R) be an operad satsfyng the condton n (). Let r be n R expressed n the above form. Then for any Njenhus algebra (N,P), the quadruple (N, P, P, P )sap-algebra. Thus, x, y, z N, we have a 1 (x P y) P z + a 2 (x P y) P z + a 3 (x P y) P z + b 1 (x P y) P z + b 2 (x P y) P z + b 3 (x P y) P z + c 1 (x P y) P z + c 2 (x P y) P z + c 3 (x P y) P z + d 1 x P (y P z)+d 2 x P (y P z)+d 3 x P (y P z) + e 1 x P (y P z)+e 2 x P (y P z)+e 3 x P (y P z) + f 1 x P (y P z)+f 2 x P (y P z)+f 3 x P (y P z)=0, By the defntons of P, P, and P n Eq. (17), we have a 1 xp (y)p (z)+a 2 P (xp (y))z a 3 P (xp (y)z)+b 1 P (x)yp(z) + b 2 P (P (x)y)z b 3 P (P (x)yz) c 1 P (xy)p (z) c 2 P (P (xy))z + c 3 P (P (xy)z)+d 1 P (x)p (y)z + d 2 P (x)yp(z) d 3 P (x)p (yz) + e 1 xp (P (y)z)+e 2 xp (yp(z)) e 3 xp (P (yz)) f 1 P (xp (y)z) f 2 P (xyp (z)) + f 3 P (xp (yz)) = 0.

18 844 Peng LEI, L GUO Snce P s a Njenhus operator, we further have a 1 xp (yp(z)) + a 1 xp (P (y)z) a 1 xp 2 (yz)+a 2 P (xp (y))z a 3 P (xp (y)z)+b 1 P (x)yp(z)+b 2 P (P (x)y)z b 3 P (P (x)yz) c 1 P (xyp (z)) c 1 P (P (xy)z)+c 1 P 2 (xyz) c 2 P (P (xy))z + c 3 P (P (xy)z)+d 1 P (x)p (y)z + d 2 P (x)yp(z) d 3 P (xp (yz)) d 3 P (P (x)yz)) + d 3 P 2 (xyz)+e 1 xp (P (y)z)+e 2 xp (yp(z)) e 3 xp (P (yz)) f 1 P (xp (y)z) f 2 P (xyp (z)) + f 3 P (xp (yz)) = 0. Collectng the smlar terms, we obtan (a 1 + e 2 )xp (yp(z)) + (a 1 + e 1 )xp (P (y)z) (a 1 + e 3 )xp (P (yz) +(a 2 + d 1 )P (xp (y))z (a 3 + f 1 )P (xp (y)z)+(b 1 + d 2 )P (x)yp(z) +(b 2 + d 1 )P (P (x)y)z (b 3 + d 3 )P (P (x)yz) (c 1 + f 2 )P (xyp (z)) +(c 3 c 1 )P (P (xy)z)+(c 1 + d 3 )P 2 (xyz) (c 2 + d 1 )P (P (xy))z +(f 3 d 3 )P (xp (yz)) = 0. Now, we take the specal case when (N,P) s the free Njenhus algebra (F N (T (M)),P T (M) ) defned n Corollary 1 for our choce of M = k{x, y, z} and P T (M) (u) = u. Then the above equaton s just (a 1 + e 2 )x y z +(a 1 + e 1 )x y z (a 1 + e 3 )x yz +(a 2 + d 1 ) x y z (a 3 + f 1 ) x y z +(b 1 + d 2 ) x y z +(b 2 + d 1 ) x y z (b 3 + d 3 ) x yz (c 1 + f 2 ) xy z +(c 3 c 1 ) xy z +(c 1 + d 3 ) xyz (c 2 + d 1 ) xy z +(f 3 d 3 ) x yz =0. Note that the set of elements x y z, x y z, x yz, x y z, x y z, x y z, x y z, x yz, xy z, xy z, xyz, xy z, x yz s a subset of the bass X of the free Njenhus algebra F N (T (M)), and hence, s lnearly ndependent. Thus, the coeffcents must be zero, that s, a 1 = e 1 = e 2 = e 3, a 2 = b 2 = c 2 = d 1, a 3 = f 1, b 1 = d 2, b 3 = c 1 = c 3 = f 2 = f 3 = d 3. Substtutng these equatons nto the general relaton r, we fnd that the any relaton r that can be satsfed by P, P, and P for all Njenhus algebras (N,P) softheform r = a 1 ((x y) z x (y z) x (y z) x (y z)) + b 1 ((x y) z x (y z)) + d 1 (x (y z) (x y) z (x y) z (x y) z)+a 3 ((x y) z x (y z)) + b 3 ((x y) z +(x y) z +(x y) z x (y z) x (y z) x (y z)),

19 Njenhus algebras, NS algebras, and N-dendrform algebras 845 where a 1,b 1,d 1,a 3,b 3 k can be arbtrary. Thus, r s n the subspace prescrbed n (), as needed. () () We check drectly that all the relatons n Eq. (26) are satsfed by (N, P, P, P ) for every Njenhus algebra (N,P). Frst of all, (x P y) P z = xp (y)p (z) = xp (yp(z)) + xp (P (y)z) xp 2 (yz) = x P (y P z)+x P (y P z)+x P (y P z), provng the frst equaton n Eq. (26). The proofs of the second and thrd equatons are smlar. For the fourth equaton, we have (x P y) P z = P ((xp (y))z) = P (x(p (y)z)) = x P (y P z). Fnally, for the last equaton, we verfy and (x P y) P z +(x P y) P z +(x P y) P z = P ((P (x)y)z) P (xy)p (z)+p(p(xy)z) = P (P (x)yz) P (xyp (z)) P (P (xy)z)+p 2 (xyz)+p(p(xy)z) = P (P (x)yz) P (xyp (z)) + P 2 (xyz), x P (y P z)+x P (y P z)+x P (y P z) = P (x)p (yz) P (x(yp(z))) + P (xp (yz)) = P (xp (yz)) P (P (x)yz)+p 2 (xyz) P (xyp (z)) + P (xp (yz)) = P (P (x)yz)+p 2 (xyz) P (xyp (z)). Therefore, the two sdes of the last equaton agree. Thus, f the relaton space R of an operad P = P(V )/(R) scontaned n the subspace spanned by the vectors n Eq. (25), then the correspondng relatons are lnear combnatons of the equatons n Eq. (26), and hence, are satsfed by (N, P, P, P ) for each Njenhus algebra (N,P). Therefore, (N, P, P, P )sap-algebra. Ths completes the proof of Theorem 4. Acknowledgements The authors thank the referee for helpful comments. L. Guo thanks NSF grant DMS for support. References 1. Aguar M. On the assocatve analog of Le balgebras. J Algebra, 2001, 244: Baxter G. An analytc problem whose soluton follows from a smple algebrac dentty. Pacfc J Math, 1960, 10:

20 846 Peng LEI, L GUO 3. Bokut L A, Chen Y, Qu J. Gröbner-Shrshov bases for assocatve algebras wth multple operators and free Rota-Baxter algebras. J Pure Appl Algebra, 2010, 214: Carñena J, Grabowsk J, Marmo G. Quantum b-hamltonan systems. Internat J Modern Phys A, 2000, 15: Connes A, Kremer D. Renormalzaton n quantum feld theory and the Remann- Hlbert problem. I. The Hopf algebra structure of graphs and the man theorem. Comm Math Phys, 2000, 210: Ebrahm-Fard K. Loday-type algebras and the Rota-Baxter relaton. Lett Math Phys, 2002, 61: Ebrahm-Fard K. On the assocatve Njenhus relaton. Electron J Combn, 2004, 11(1): R38 8. Ebramh-Fard K, Guo L. Rota-Baxter algebras and dendrform algebras. J Pure Appl Algebra, 2008, 212: Ebramh-Fard K, Guo L. Free Rota-Baxter algebras and rooted trees. J Algebra Appl, 2008, 7: Ebrahm-Fard K, Guo L, Kremer D. Sptzer s dentty and the algebrac Brkhoff decomposton n pqft. J Phys A: Math Gen, 2004, 37: Ebrahm-Fard K, Guo L, Manchon D. Brkhoff type decompostons and the Baker- Campbell-Hausdorff recurson. Comm Math Phys, 2006, 267: Ebrahm-Fard K, Leroux P. Generalzed shuffles related to Njenhus and TD-algebras. Comm Algebra, 2009, 37: Frölcher A, Njenhus A. Theory of vector valued dfferental forms. Part I. Indag Math, 1956, 18: Golubchk I Z, Sokolov V V. One more type of classcal Yang-Baxter equaton. Funct Anal Appl, 2000, 34: Golubchk I Z, Sokolov V V. Generalzed operator Yang-Baxter equatons, ntegrable ODEs and nonassocatve algebras. J Nonlnear Math Phys, 2000, 7: Guo L. An Introducton to Rota-Baxter Algebras. Bejng: Hgher Educaton Press and Boston: Internatonal Press, Guo L, Kegher W. Baxter algebras and shuffle products. Adv Math, 2000, 150: Guo L, St W, Zhang R. On Rota s problem for lnear operators n assocatve algebras. Proc ISSAC, 2011, Guo L, St W, Zhang R. Dfferental type operators and Gröbner-Shrshov bases. J Symbolc Comput (to appear) 20. Kosmann-Schwarzbach Y, Magr F. Posson-Njenhus structures. Ann Inst Henr Poncaré, 1990, 53: Leroux P. Constructon of Njenhus operators and dendrform tralgebras. Int J Math Math Sc, 2004, 40-52: Loday J -L. Dalgebras. In: Dalgebras and Related Operads. Lecture Notes n Math, Vol , Loday J -L, Ronco M. Tralgebras and famles of polytopes. In: Homotopy Theory: Relatons wth Algebrac Geometry, Group Cohomology, and Algebrac K-theory. Contemp Math, , Loday J L, Vallette B. Algebrac Operads. Grundlehren Math Wss, 346. Hedelberg: Sprnger, Njenhus A. X n 1-formng sets of egenvectors. Indag Math, 1951, 13: Uchno K. Twstng on assocatve algebras and Rota-Baxter type operators. J Noncommut Geom, 2010, 4:

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4- Chapter 4 Reflecton and Transmsson of Waves Dr. Stuart Long 4- Boundary Condtons ^ n H H 3 H 4 w H l y (fg. 4.) 4-3 Boundary Condtons n ^ H H 3 H4 w H l y Tae ˆ component of H J+ jω D (fg. 4.) H y H

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions

Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions ournal of multvarate analyss 57, 240265 (1996) artcle no. 0032 Multvarate Dstrbutons from Mxtures of Max-Infntely Dvsble Dstrbutons Harry Joe Unversty of Brtsh Columba, Vancouver, Canada and Tazhong Hu

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Lie 2-Groups, Lie 2-Algebras, and Loop Groups Lie 2-Groups, Lie 2-Algebras, and Loop Groups Alissa S. Crans Joint work with: John Baez Urs Schreiber & Danny Stevenson in memory of Saunders Mac Lane April 8, 2006 Internalization Often a useful first

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF234 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer

A Nonparametric Test of Serial Independence for Time Series and Residuals

A Nonparametric Test of Serial Independence for Time Series and Residuals Journal of Multvarate Analyss 79, 191218 (2001) do10.1006jmva.2000.1967, avalable onlne at httpwww.dealbrary.com on A Nonparametrc Test of Seral Independence for Tme Seres and Resduals Klan Ghoud Unverste

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

IN2010: Algoritmer og Datastrukturer Series 2

IN2010: Algoritmer og Datastrukturer Series 2 Universitetet i Oslo Institutt for Informatikk S.M. Storleer, S. Kittilsen IN2010: Algoritmer og Datastrukturer Series 2 Tema: Grafteori 1 Publisert: 02. 09. 2019 Utvalgte løsningsforslag Oppgave 1 (Fra

Detaljer

Emnedesign for læring: Et systemperspektiv

Emnedesign for læring: Et systemperspektiv 1 Emnedesign for læring: Et systemperspektiv v. professor, dr. philos. Vidar Gynnild Om du ønsker, kan du sette inn navn, tittel på foredraget, o.l. her. 2 In its briefest form, the paradigm that has governed

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis) Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis) 1. Gå til print i dokumentet deres (Det anbefales å bruke InDesign til forberedning for print) 2. Velg deretter print

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Fagevalueringsrapport FYS Diffraksjonsmetoder og elektronmikroskopi

Fagevalueringsrapport FYS Diffraksjonsmetoder og elektronmikroskopi Fagevalueringsrapport FYS4340 - Diffraksjonsmetoder og elektronmikroskopi Fall 08 Lecturer:Arne Olsen and Anette Eleonora Gunnæs Fysisk Fagutvalg 4. november 2008 Fagutvalgets kommentar: Fysisk fagutvalg

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår Kurskategori 2: Læring og undervisning i et IKT-miljø vår Kurs i denne kategorien skal gi pedagogisk og didaktisk kompetanse for å arbeide kritisk og konstruktivt med IKT-baserte, spesielt nettbaserte,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

The Bargmann Transform and Windowed Fourier Localization

The Bargmann Transform and Windowed Fourier Localization Integr. equ. oper. theory 57 (007, 397 4 c 006 Brhäuser Verlag Basel/Swtzerland 0378-60X/030397-6, publshed onlne December 6, 006 DOI 0.007/s0000-006-46-0 Integral Equatons and Operator Theory The Bargmann

Detaljer

Dialogkveld 03. mars 2016. Mobbing i barnehagen

Dialogkveld 03. mars 2016. Mobbing i barnehagen Dialogkveld 03. mars 2016 Mobbing i barnehagen Discussion evening March 3rd 2016 Bullying at kindergarten Mobbing i barnehagen Kan vi si at det eksisterer mobbing i barnehagen? Er barnehagebarn i stand

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte

Detaljer

Eksamensoppgave i FY8104 / FY3105 Symmetrigrupper i fysikken

Eksamensoppgave i FY8104 / FY3105 Symmetrigrupper i fysikken Insttutt for fyskk Eksamensoppgave FY8104 / FY3105 Symmetrgrupper fyskken Faglg kontakt under eksamen: Jan Myrhem Tlf.: 73593653 / 90075172 Eksamensdato: 9. desember 2013 Eksamenstd: 9 13 Tllatte hjelpemdler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Kartleggingsskjema / Survey

Kartleggingsskjema / Survey Kartleggingsskjema / Survey 1. Informasjon om opphold i Norge / Information on resident permit in Norway Hvilken oppholdstillatelse har du i Norge? / What residence permit do you have in Norway? YES No

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum )

INSTALLATION GUIDE FTR Cargo Rack Regular Ford Transit 130 Wheelbase ( Aluminum ) INSTALLATION GUIDE 1505-FTR Cargo Rack Regular Ford Transit 130" Wheelbase ( Aluminum ) QUICK START GUIDE Phase 1 - Assembly q 1.1 Setup... q 1.2 Cargo Rack Assembly... 3-4 5-6 Phase 2 - Installation q

Detaljer

BIBSYS Brukermøte 2011 Live Rasmussen og Andreas Christensen. Alt på et brett? -om pensum på ipad og lesebrett

BIBSYS Brukermøte 2011 Live Rasmussen og Andreas Christensen. Alt på et brett? -om pensum på ipad og lesebrett BIBSYS Brukermøte 2011 Live Rasmussen og Andreas Christensen Alt på et brett? -om pensum på ipad og lesebrett Prosjektet epensum på lesebrett Vi ønsker å: Studere bruk av digitalt pensum i studiesituasjonen.

Detaljer

Start Here USB *CC * *CC * USB USB

Start Here USB *CC * *CC * USB USB 1 USB Start Here USB 11 USB WARNING: To ensure that the software is installed correctly, do not connect the USB cable until step 11. 11 USB 2 a. b. Lower both the paper tray and the print cartridge door.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: KJB 492 Bioinformatikk Eksamensdag: Fredag 14. desember 2001 Tid for eksamen: Kl.: 9.00 13.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Start MATLAB Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Prompt >> will appear in the command window Today: MATLAB overview In-class HW: Chapter 1, Problems

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Appendix B, not for publication, with screenshots for Fairness and family background

Appendix B, not for publication, with screenshots for Fairness and family background Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots

Detaljer

klassisk angoragenser classic angora sweater

klassisk angoragenser classic angora sweater klassisk angoragenser classic angora sweater www.pickles.no / shop.pickles.no NORSK Størrelser XS (S) M (L) XL (XXL) Garn Pickles Angora 150 (175) 200 (225) 250 (275) g Pinner 80 og 40 cm rundpinne og

Detaljer

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti

Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scoti Resolvable Mendelsohn Triple Systems with Equal Sized Holes F. E. Bennett Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia, Canada B3M 2J6 R. Wei Department of Mathematics

Detaljer

Fault Tolerant K-Center Problems

Fault Tolerant K-Center Problems Fault Tolerant K-Center Problems Samir Khuller Dept. of Computer Science and UMIACS University of Maryland College Park, MD 20742 Robert Pless y Dept. of Computer Science University of Maryland College

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Gol Statlige Mottak. Modul 7. Ekteskapsloven

Gol Statlige Mottak. Modul 7. Ekteskapsloven Gol Statlige Mottak Modul 7 Ekteskapsloven Paragraphs in Norwegian marriage law 1.Kjønn To personer av motsatt eller samme kjønn kan inngå ekteskap. Two persons of opposite or same sex can marry 1 a. Ekteskapsalder.

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

buildingsmart Norge seminar Gardermoen 2. september 2010 IFD sett i sammenheng med BIM og varedata

buildingsmart Norge seminar Gardermoen 2. september 2010 IFD sett i sammenheng med BIM og varedata buildingsmart Norge seminar Gardermoen 2. september 2010 IFD sett i sammenheng med BIM og varedata IFD International Framework for Dictionaries Hvordan bygges en BIM? Hva kan hentes ut av BIM? Hvordan

Detaljer

Mannen min heter Ingar. Han er også lege. Han er privatpraktiserende lege og har et kontor på Grünerløkka sammen med en kollega.

Mannen min heter Ingar. Han er også lege. Han er privatpraktiserende lege og har et kontor på Grünerløkka sammen med en kollega. Kapittel 2 2.1.1 Familien min Hei, jeg heter Martine Hansen. Nå bor jeg i Åsenveien 14 i Oslo, men jeg kommer fra Bø i Telemark. Jeg bor i ei leilighet i ei blokk sammen med familien min. For tiden jobber

Detaljer

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 1 The law The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 2. 3 Make your self familiar with: Evacuation routes Manual fire alarms Location of fire extinguishers

Detaljer

msjmeeting-2017sep-02i002 . Dehn Sommerville, . Gorenstein., ( ) 2 8, f 0 ( ) = 6, f 1 ( ) = 12, f 2 ( ) = 8 3 ( : )

msjmeeting-2017sep-02i002 . Dehn Sommerville, . Gorenstein., ( ) 2 8, f 0 ( ) = 6, f 1 ( ) = 12, f 2 ( ) = 8 3 ( : ) 07 : msjmeeting-07sep-0i00 () Dehn Sommerville. Gorenstein.,... V ( ), V (i),(ii) : (i) F, G F G, (ii) v V {v}., F dim F = F, dim = max{dim F : F }, X X. f i ( ) i,,. d, f i ( ) = {F : F = i } f( ) = (f

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

P(ersonal) C(omputer) Gunnar Misund. Høgskolen i Østfold. Avdeling for Informasjonsteknologi

P(ersonal) C(omputer) Gunnar Misund. Høgskolen i Østfold. Avdeling for Informasjonsteknologi ? Høgskolen i Østfold Avdeling for Informasjonsteknologi Mobile Applications Group (MAG), HiØ Har holdt på siden 2004 4-5 fagansatte (inkludert professor og stipendiat) Tverrfaglig: Brukergrensesnitt Sosiale

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Permutative Semigroups Whose Congruences Form a Chain

Permutative Semigroups Whose Congruences Form a Chain Semigroup Forum OF1 OF11 c 2004 Springer-Verlag New York, LLC DOI: 10.1007/s00233-004-0131-3 RESEARCH ARTICLE Permutative Semigroups Whose Congruences Form a Chain A. Nagy and Peter R. Jones Communicated

Detaljer

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES.

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES. AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES KEVIN JAMES Abstrct In ths pper we derve estmtes or weghted verges o the specl vlues o Drchlet L-seres whch generlze smlr estmtes o Dvd nd Ppplrd [] Introducton

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

Advanced Quantum Field Theory (Version of November 2015) Jorge Crispim Romão

Advanced Quantum Field Theory (Version of November 2015) Jorge Crispim Romão Advanced Quantum Feld Teory (Verson of November 015) Jorge Crsm Romão Pyscs Deartment 015 Aendx D Feynman Rules for te Standard Model D.1 Introducton To do actual calculatons t s very mortant to ave all

Detaljer

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for

Detaljer