Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions

Størrelse: px
Begynne med side:

Download "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions"

Transkript

1 ournal of multvarate analyss 57, (1996) artcle no Multvarate Dstrbutons from Mxtures of Max-Infntely Dvsble Dstrbutons Harry Joe Unversty of Brtsh Columba, Vancouver, Canada and Tazhong Hu Unversty of Scence and Technology of Chna, Hefe, Anhu, People's Republc of Chna A class of multvarate dstrbutons that are mxtures of the postve powers of a max-nfntely dvsble dstrbuton are studed. A subclass has the property that all weghted mnma or maxma belong to a gven locaton or scale famly. By choosng approprate parametrc famles for the mxng dstrbuton and the dstrbuton beng mxed, famles of multvarate copulas wth a flexble dependence structure and wth closed form cumulatve dstrbuton functons are obtaned. Some dependence propertes of the class, as well as some characterzatons, are gven. Condtons for max-nfnte dvsblty of multvarate dstrbutons are obtaned Academc Press, Inc. 1. Introducton. We consder a class of multvarate dstrbutons that are mxtures of the postve powers of a max-nfntely dvsble dstrbuton. (A max-nfntely dvsble multvarate dstrbuton s one for whch all postve powers of t are also proper dstrbuton functons.) Wth approprate parametrzatons of the mxng dstrbuton and the dstrbuton beng mxed, many parametrc famles of multvarate copulas (dstrbutons wth unvarate unform margns) wth flexble dependence structure can be obtaned. The class s a generalzaton of the famles n Marshall and Olkn [15] and Joe [8]. The new dstrbutons have dependence and other propertes that should make them sutable for multvarate models. Receved December 8, 1994; revsed October AMS 1990 subect classfcatons: 62H99, 62H05. Key words and phrases: Max-stable, max-nfntely dvsble, multvarate extreme value dstrbuton, copula, postve dependence, Laplace transform X Copyrght 1996 by Academc Press, Inc. All rghts of reproducton n any form reserved. 240

2 MULTIVARIATE DISTRIBUTIONS 241 Specal cases of multvarate max-nfntely dvsble dstrbutons are multvarate extreme value dstrbutons for maxma, snce these are maxstable (F(x 1,..., x m ) s max-stable, f for each t>0, F t (x 1,..., x m )= F(a 1t +b 1t x 1,..., a mt +b mt x m ) for some vectors (a 1t,..., a mt ), (b 1t,..., b mt ).) If all of the unvarate margns of the multvarate extreme value dstrbuton are the same, then the dstrbuton F resultng from a mxture has the property of closure under weghted mnma or maxma. If (X 1,..., X m )tf, ths means that (a) for all (c 1,..., c m )#R m +, max[c 1X 1,..., c m X m ] (or mn[c 1 X 1,..., c m X m ]) leads to a random varable n the same scale famly as the X 's, f the support of the X 's s n [0, ); or (b) for all (c 1,..., c m )#R m, max[x 1 &c 1,..., X m &c m ] (or mn[x 1 &c 1,..., X m &c m ]) leads to a random varable n the same locaton famly as the X 's, f the support of the X 's s n (&, ). Ths class of multvarate dstrbutons ncludes the class of max-geometrc stable dstrbutons of Rachev and Resnck [18] and some multvarate logstc dstrbutons of Arnold [1]. These results are gven n Secton 2. Secton 3 conssts of some dependence propertes and characterzatons of the class of mxtures of powers of a max-nfntely dvsble dstrbuton. Secton 4 conssts of results and condtons for max-nfntely dvsble dstrbutons. In Secton 5, some new nterestng parametrc famles of copulas are lsted together wth some propertes. Included are parametrc famles of multvarate copulas wth flexble dependence structure and closed form cumulatve dstrbuton functons (cdfs); prevously no famles wth both of these propertes had been obtaned. The key results n ths artcle are: (a) consderaton of multvarate dstrbutons of the form (2.7) to get a new class of copulas, wth the specal case of (2.8) or (2.10); (b) dependence propertes and characterzatons for (2.7); (c) showng that there are parametrc examples of (2.7) that have good propertes (ths s mportant because nonparametrc nference s dffcult n hgher dmensons wthout a lot of data); and (d) condtons for a multvarate dstrbuton to be max-nfntely dvsble. 2. Mxtures of Mn-Stable or Max-Stable Multvarate Extreme Value Dstrbutons and Extensons. In ths secton, we start wth mxtures of powers of a multvarate extreme value dstrbuton and then go to the larger class of mxtures of powers of a max-nfntely dvsble (max-d) dstrbuton. The former class has some closure propertes and the latter class covers a wde range of multvarate dependence structures. For statstcal modellng. the choce of a multvarate model mght be based on closure propertes or dependence propertes.

3 242 JOE AND HU The three types of unvarate extreme value margns are Gumbel, Webull, and Fre chet. Snce maxma can be transformed nto mnma and vce versa, we wll consder Webull survval margns wth mnma, and Fre chet and Gumbel margns wth maxma so that we can work on ether [0, ) or(&, ) for each unvarate margn. Wthout loss of generalty, we assume that the unvarate margns are dentcal and standardzed. A key property of a multvarate extreme value (MEV) dstrbuton G that s used here s that all postve powers of G are also dstrbutons. More generally, a multvarate cdf (survval functon) that has the property that all postve powers are cdfs (survval functons) s sad to be max-nfntely (mn-nfntely) dvsble. Let G be a mn-stable m-varate exponental survval functon wth unt exponental margns. Let A=&log G be a possble exponent of a mnstable m-varate exponental survval functon. Then A s homogeneous of order 1, A(x 1,..., x m )=x f all arguments are zero except x, and G # (x 1,..., x m )=exp[&#a(x 1,..., x m )]=exp[&a(#x 1,..., #x m )] s a survval functon for all #>0. See Galambos [4] and Joe [6, 9] for some dscusson and examples of mn-stable multvarate exponental dstrbutons. By makng the transformatons x x :, wth :>0, the resultng mnstable m-varate Webull survval functon s G 1 (x 1,..., x m ; :)=exp[&a(x :,..., 1 x: m )]. (2.1) If (X 1,..., X m ) have the dstrbuton n (2.1), then Pr(mn[X 1 c 1,..., X m c m ]>t)=exp[&a((tc 1 ) :,..., (tc m ) : )]=exp[&t : A(c :,..., 1 c: )], t>0, m for all (c 1,..., c m )#R m. That s, mn[x + 1c 1,..., X m c m ] has a scaled Webull dstrbuton for all (c 1,..., c m )#R m. + Smlar results hold for transforms to other extreme value margns. By makng the transformatons x x &;, wth ;>0, the resultng max-stable m-varate Fre chet dstrbuton functon s G 2 (x 1,..., x m ; ;)=exp[&a(x &; 1,..., x &; m )]. (2.2) If (X 1,..., X m ) have the dstrbuton n (2.2), then Pr(max[X 1 c 1,..., X m c m ] t) = exp[&a((tc 1 ) &;,..., (tc m ) &; )] =exp[&t &; A(c &; 1,..., c &; )], m t>0, for all (c 1,..., c m )#R m. That s, max[x + 1c 1,..., X m c m ] has a scaled Fre chet dstrbuton for all (c 1,..., c m )#R m. + By makng the transformatons x e &x, the resultng max-stable m-varate Gumbel dstrbuton functon s G 3 (x 1,..., x m )=exp[&a(e &x 1,..., e &x m )]. (2.3)

4 MULTIVARIATE DISTRIBUTIONS 243 If (X 1,..., X m ) have the dstrbuton n (2.3), then Pr(max[X 1 &c 1,..., X m & c m ] t) = exp[&e &t A(e &c 1,..., e &c m )], &<t<, for all (c 1,..., c m )#R m. That s, max[x 1 &c 1,..., X m &c m ], a maxmum of shfted random varables has a locaton shfted Gumbel dstrbuton for all (c 1,..., c m )#R m. The weghtng s done wth addtve constants rather than multplcatve constants n ths case. Note that a postve power of (2.1), (2.2), or (2.3) s a survval or dstrbuton functon snce ether a scale or locaton shft occurs. By takng mxtures of powers of a multvarate extreme value dstrbuton, we get dstrbutons wth other unvarate margns whch satsfy the closure property of weghted mnma or maxma n the same scale or locaton famly. Let M be the dstrbuton functon of a postve random varable and let ts Laplace transform (LT) be. The mxtures of (2.1), (2.2), (2.3) lead to 0 0 exp[&#a(x :,..., 1 x: m )]dm(#)=(a(x:,..., 1 x: m )), (2.4) exp[&#a(x &; 1,..., x &; m )]dm(#)=(a(x&; 1,..., x &; m )), (2.5) exp[&#a(e &x 1,..., e &x m )]dm(#)=(a(e &x 1,..., e &x m )). (2.6) 0 The unvarate survval margns n (2.4) are (x : ) and the unvarate dstrbuton functons n (2.5), (2.6) are respectvely (x &; ) and (e &x ). If (X 1,..., X m ) has the dstrbuton n (2.4), then mn 1m [X c ] has the survval functon ((t_) : ), for t>0, where _=[A(c :,..., 1 c: m )]&1:. If (X 1,..., X m ) has the dstrbuton n (2.5), then max 1m [X c ] has the dstrbuton ((t') &; ), or t>0, where t>0, where '= [A(c &; 1,..., c &; m )]1;, and f (Y 1,..., Y m ) has the dstrbuton n (2.6), then max 1m [Y &c ] has the dstrbuton (e &[t&+(c 1,..., c m )] ), &<t<, where +(c 1,..., c m )=log A(e &c 1,..., e &c m ). Remarks. 1. The above results overlap wth those n Robertson and Strauss [19] and n Secton 5 of Strauss [20]. 2. More generally, one can have F= H # dm(#)=(&log H), (2.7) where H s a max-stable m-varate dstrbuton wth arbtrary extreme value unvarate margns or a non-mev dstrbuton that s max-d (H # s a dstrbuton for all #>0). Ths s then a generalzaton of constructons n Marshall and Olkn [15] and Joe [8]. If H s not a MEV dstrbuton,

5 244 JOE AND HU then the closure property of weghted maxmamnma does not hold. Subfamles of (2.7) are presented below, and condtons for an m-varate dstrbuton to be max-d are gven n Secton A specal case of (2.7) arses when (s)=(1+s) &1. For H beng a general max-stable dstrbuton, F becomes a max-geometrc stable dstrbuton (see [18]). For H beng the Gumbel dstrbuton, the unvarate margns of (2.6) or (2.7) become the logstc dstrbuton (1+e &x ) &1 and F s a max-geometrc stable multvarate logstc dstrbuton (see [1]). 4. Marley [13] obtans a class of dstrbuton of the form (2.4) wth satsfyng some condtons (the boundary and complete monotoncty condtons of a Laplace transform) and A satsfyng some condtons for dervatves. The class consdered here generalzes Marley's class. In the remander of ths secton, we look at specal cases, wth the form of (2.7), that can lead to parametrc famles of multvarate dstrbutons or copulas wth closed form cdfs, flexble dependence structure and partal closure under takng of margns. The number of parameters s at most ( m 2 )+m+1 for m dmensons. Let K,1<m, be bvarate copulas that are max-d. Let H 1,..., H m be unvarate cdfs. Let M be the dstrbuton of a postve random varable, and let ts LT be. Consder the mxture 0 ` 1<m = \ & : m K : (H, H ) ` 1< m =1 H & : dm(:) m log K (H, H )& : =1 & log H +, (2.8) where usually & 's are nonnegatve, although they can be negatve f some of the copulas correspond to ndependence. The unvarate margns of (2.8) are F =(&(& +m&1) log H ). (2.9) Hence (2.8) s a copula wth unform (0, 1) margns, f H (u ) s chosen to be exp[&p &1 (u )] wth p =(& +m&1) &1, =1,..., m. Wth these substtutons, the copula s C(u 1,..., u m ) (2.10) = \& : 1<m m log K (e &p &1 (u ), e &p &1 (u ) )+ : =1 & p &1 (u ) +. A rough nterpretaton s that the LT leads to a mnmal level of (parwse) dependence, the copulas K add some ndvdual parwse

6 MULTIVARIATE DISTRIBUTIONS 245 dependence on top of the global dependence, and the parameters & 's can be used for bvarate and multvarate asymmetry (the asymmetres are represented through & (& +& ), {). Also the parameters & are ncluded n order that the famly (2.10) s closed under margns. For example, f H m 1 n (2.8), then (2.8) becomes 0 ` 1<m&1 = \ & : m&1 K : (H, H ) ` 1<m&1 =1 and the resultng margnal copula s C 1}}}m&1 (u 1,..., u m&1 ) = \& : H (& +1) : dm(:) m&1 log K (H, H )& : 1<m&1 m&1 + : =1 =1 (& +1) log H +, (2.8$) log K (e &p &1 (u ), e &p &1 (u ) ) (& +1) p &1 (u ) +. (2.10$) (Hence the ``parameters'' K reman the same but the parameters & 's change wth takng margns; ths can be shown notatonally by & (m&1) =& (m) +1 and & (2) =& (m) +m&2.) The (, ) bvarate margnal copula of (2.10) s C (u, u )=(&log K (e &p &1 (u ), e &p &1 (u ) ) (2.10") +(& +m&2) p &1 (u )+(& +m&2) p &1 (u )). The copula (2.10") s more concordant (or more postve quadrant dependent) than C (u, u )=( &1 (u )+ &1 (u )), (2.11) whch explans the above nterpretaton for. The proof of ths s gven n Theorem 3.5 and the defnton of concordance s gven at the begnnng of Secton 3. Specal cases of (2.8) are 1. m=3, K 13 (x, y)=xy, & 1 =& 3 =&1, & 2 =0, K 12 (u, v)=k 23 (v, u)= K(u, v). Then (2.8) becomes 0 K : (H 1, H 2 ) K : (H 3, H 2 ) dm(:), (2.12)

7 246 JOE AND HU wth copula C(u 1, u 2, u 3 ) (2.13) =(&log K(e &&1 (u 1 ), e &0.5&1 (u 2 ) )&log K(e &&1 (u 3 ), e &0.5&1 (u 2 ) )); f H 1, H 2, H 3 are chosen approprately so that the unvarate margns of (2.12) are all the same, then the (1, 2) and (2, 3) bvarate margns of (2.12) are the same and are more concordant than the (1, 3) margn. Hence ths model would be approprate for generatng a second-order statonary Markov chan. The proof of concordance s smlar to above snce the (1, 2) and (2, 3) bvarate margns of (2.13) have copula (&log K(e &&1 (u ), e &0.5&1 (u 2 ) )+0.5 &1 (u 2 )) (2.14) and the (1, 3) bvarate margn s C (u 1, u 3 ), gven n (2.11). 2. & 1 =& 2 =&1, & 3 =}}}=& m =0, K 12 (x, y)=xy, p 1 =p 2 =(m&2) &1, p 3 =}}}=p m =(m&1) &1. Then (2.8) becomes wth copula 0 ` 1<m,(,){(1, 2) C(u 1,..., u m )= \& : 1< m, (,){(1, 2) K : (H, H ) dm(:) log K (e &p &1 (u ), e &p &1 (u ) ) +. If s a one-parameter famly of LTs and each K s a one-parameter famly of copulas, then ths becomes a famly wth m(m&1)2 parameters. The labellng s such that the ndces 1, 2 are assgned to the par of varables wth the least amount of dependence. The (1, 2) bvarate margn has the copula n (2.11). 3. Dependence Propertes and Characterzatons In ths secton, we obtan some characterzatons of (2.4)(2.6) and some dependence propertes of (2.4)(2.6) and (2.8)(2.10). In general, for a gven possble unvarate margn, the dstrbutons have postve dependence (from the mxng). We show that the case of ndependence can occur only f corresponds to a Webull dstrbuton for (2.4), a Fre chet dstrbuton for (2.5), or a Gumbel dstrbuton for (2.6). Propertes that are obtaned are the postve dependence condton of assocaton for (2.4)(2.6), and concordance and tal dependence propertes for (2.10) and (2.10").

8 MULTIVARIATE DISTRIBUTIONS 247 We next gve defntons of concordance, tal dependence, postve quadrant dependence, left-tal ncreasngdecreasng, assocated random varables, and TP 2. These are used n the remanng results n ths artcle. References for these defntons are Barlow and Proschan [2] and [7, 8]. Defntons. Two m-varate dstrbutons F 1, F 2 are sad to be ordered by concordance, denoted as F 1 O C F 2,fF 1 (x)f 2 (x) and F 1(x)F 2x) for all x # R m, where F 1, F 2 are the survval functons. (For two bvarate copulas, one set of nequaltes mples the others.) A bvarate copula C has upper tal dependence f C (u, u)(1&u) converges to a constant c 1 n (0, 1] as u 1. Here C s the survval functon defned by C (u, v)=1&u&v+c(u, v). Smlarly, lower tal dependence exsts f C(u, u)u converges to a constant c 2 n (0, 1] as u 0. The constants c 1 and c 2 are referred to as tal-dependence parameters. A bvarate copula K(x, y) satsfes the postve quadrant dependence (PQD) property f K(x, y)xy for all 0x, y1. K satsfes the left-tal decreasng property of the frst varable, denoted LTD1, f K(x, y)x s decreasng n x for all y. (K(x,})x s the condtonal dstrbuton of the second varable gven that the frst varable s less than or equal x). K satsfes the left-tal decreasng properly of the second varable, denoted LTD2, f K(x, y)y s decreasng n y for all x. A vector of random varables X=(X 1,..., X m ) s assocated f the nequalty E[a(X) b(x)]e[a(x)] E[b(X)] holds for all real-valued functons a, b whch are ncreasng or nondecreasng (n each component) and are such that the expectatons exst. A nonnegatve functon h(x, y) stotally postve of order 2, denoted TP 2, n x, y (on ts doman) f for all x 1 <x 2, y 1 <y 2, h(x 1, y 1 ) h(x 2, y 2 ) h(x 1, y 2 ) h(x 2, y 1 ). The frst result s on assocaton. The mxture famles n (2.4), (2.5), (2.6) consst of assocated random varables and hence the dstrbutons satsfy several postve dependence nequaltes. Theorem 3.1. Let F= 0 H # dm(#) be the survval functon or dstrbuton functon gven n (2.4), (2.5), or (2.6). Then F s the dstrbuton of assocated random varables. Proof. Let X=(X 1,..., X m ) have the dstrbuton F. For (2.4), H # s a multvarate mn-stable survval functon for all #>0, and for (2.5) and (2.6), t s a multvarate max-stable dstrbuton functon for all #>0. Hence H # s stochastcally decreasng n # n the former case and stochastcally ncreasng n the latter case. Let 1 be a random varable wth dstrbuton M. To show the assocaton, t s requred to show that Cov(a(X), b(x))0 for all ncreasng functons a, b.

9 248 JOE AND HU The covarance can be wrtten as Cov(a(X), b(x)) =E[Cov(a(X), b(x) 1)]+Cov(E(a(X) 1), E(b(X) 1)). For the frst term, Cov(a(X), b(x) 1=#)0 for all # because H # s assocated from a theorem n Marshall and Olkn [14]. For the second term, E(a(X) 1=#), E(b(X) 1=#)) are decreasng n # for (2.4) and ncreasng n # for (2.5), (2.6) because of the stochastc monotoncty result referred to n the precedng paragraph. Hence the covarance of the two condtonal expectatons s nonnegatve because a sngle random varable 1 s assocated. K In Secton 2, we menton that (2.6) could result n multvarate dstrbutons wth unvarate logstc margnals wth the approprate choce of the LT (s)=(1+s) &1. However, for logstc margns only strctly postvely dependent multvarate dstrbutons can result; t s easly checked that the multvarate dstrbuton wth ndependent unvarate logstc margns does not satsfy the property of closure under weghted maxma. Ths dvson of ndependence versus postve dependence s true n general. We show below that multvarate dstrbutons wth ndependent margns can arse from (2.4) only f the margns are Webull (wth exponental as a specal case). Smlarly, margns must be Fre chet for (2.5) and Gumbel for (2.6). The result for the Gumbel margn s also gven n Theorem 2 of Robertson and Strauss [19]. Theorem 3.2. Suppose (A(x : 1,..., x: m )) n (2.4) s equal to >m =1 (x: ) for all (x 1,..., x m )#R m +. Then all possble solutons are covered by takng (s)=exp[&*s 1_ ] for some postve constants * and _. Proof. Let X 1,..., X m be..d. wth survval functon F (x)=(x : ). Then F 2 (t)=pr(x 1 >t, X 2 >t)=((ta) : )=F (ta) for all t>0, where a : =A(1, 1, 0,..., 0) s a constant (exceedng 1). Let r(t)=&log F (t). Then r(0)=0, r()=, r s ncreasng and 2r(t)=r(at) for all t>0. Let b be a constant satsfyng a=2 b so that 2 b r b (t)=ar b (t)=r b (at). Next, let '(t)=r b (t) so that a'(t)='(at) for all t>0. Snce the LT s dfferentable, ' s dfferentable and a'$(t)=a'$(at) for all t>0. The condtons on r and ' then mply that '$ s a constant and ' s lnearly ncreasng. Snce '(0)=0, '(t)=d b t for a postve constant d. Hence r(t)=dt 1b and b=log alog 2, or F (t)=exp[&dt 1b ] for some constants b, d. K Theorem 3.3. Suppose (A(x &; 1,..., x &; m )) n (2.5) s equal to > m =1 (x &; ) for all (x 1,..., x m )#R m +. Then all possble solutons are covered by takng (s)=exp[&*s 1_ ] for some postve constants * and _.

10 MULTIVARIATE DISTRIBUTIONS 249 Proof. The proof s accomplshed by a smlar argument to that of the above theorem. We omt the detals. K Theorem 3.4. Suppose (A(e &x 1,..., e &x m )) n (2.6) s equal to > m =1 (e&x ) for all (x 1,..., x m )#R m.then all possble solutons are covered by takng (s)=exp[&*s 1_ ] for some postve constants * and _. Proof. Let X 1,..., X m have the dstrbuton (A(e &x 1,..., e &x m )). Set Y =exp(&x :), =1,..., m, for :>0. Then (Y 1,..., Y m ) have the survval functon Pr(Y 1 >y 1,..., Y m >y m )=Pr(X 1 <&:log y 1,..., X m <&: log y m ) =(A( y :,..., 1 y: )) m for all ( y 1,..., y m )#R m. If X + 1, X 2,..., X m are ndependent wth survval functon (e &x ), then Y 1, Y 2,..., Y m are also ndependent wth survval functon ( y : ). From the proof of Theorem 3.2, we get that ( y : )=exp(&*y1b ) for some postve constants *, b, and hence (e &x )=exp(&*e &x[:b] ). Ths completes the proof. K Next, we obtan some general results on bvarate tal dependence and concordance for (2.10"); these are appled to specfc examples n Secton 5. Theorem 3.5. The bvarate copula gven n (2.10") s more concordant than that gven n (2.11). Proof. K(e &p &1 (u ), e &p&1 (u ) ) } e &(&+m&2) p &1 (u ) e &(&+m&2) p&1 (u ) e &&1 (u )& &1 (u ) f K(e &p &1 (u ), e &p &1 (u ) )e &p &1 (u )&p &1 (u ) for all 0<u, u <1, or f K(x, y)xy for all 0<x, y<1. The latter postve quadrant dependence nequalty holds snce K max-d mples t s TP 2 (see Secton 4) whch n turns mples the postve quadrant dependence. (If K s TP 2, that s, K(x, y) K(x 2, y 2 )&K(x, y 2 ) K(x 2, y)0 for all 0x<x 2 1, 0y<y 2 1, then lettng x 2, y 2 1 yelds K(x, y)xy for all 0x, y1, that s, K s PQD.) K Remark. Also note that as K ncreases n concordance n (2.10") wth and &, & held fxed, then C ncreases n concordance. Let K be a bvarate copula and be a LT. Wth (, )=(1, 2) and m=2, (2.10") becomes C(u 1, u 2 )=(&log K(e &p 1 &1 (u 1 ), e &p 2 &1 (u 2 ) ) +& 1 p 1 &1 (u 1 )+& 2 p 2 &1 (u 2 )), (3.1) where & 1, & 2 0 are arbtrary and p =(& +1) &1, =1, 2.

11 250 JOE AND HU Theorem 3.6. If $(0) s fnte, then the copula C (u, v)= ( &1 (u)+ &1 (v)) n (2.11) does not have upper tal dependence. If C has upper tal dependence, then $(0)=& and the tal dependence parameter s Proof. lm C (u, u)(1&u) u 1 $ U =2&2 lm [$(2s)$(s)]. (3.2) s0 = lm [1&2u+(2 &1 (u))](1&u) u 1 =2&2 lm $(2 &1 (u))$( &1 (u))=2&2 lm [$(2s)$(s)]. u 1 s 0 If $(0) # (&, 0), then the lmt s zero and C does not have upper tal dependence. s strctly decreasng so that $(0) cannot equal 0. The rest of the result follows. K Theorem 3.7. The copula (3.1) has upper tal dependence only f ether $(0)=& or K has upper tal dependence or both. (The detals of the tal dependence parameter are n the proof.) Proof. Suppose that the copula K n (3.1) has upper tal dependence parameter ; #[0, 1] (;=0 mples no tal dependence). We consder frst the case p 1 =p 2 or & 1 =& 2. Subsequently, for the case of p 1 {p 2, bounds wll be obtaned. For x less than and close to 1, K (x, x)t;(1&x) so that K(x, x)t 2x&1+;(1&x)=1&(2&;)(1&x). Let p 1 =p 2 =p=(&+1) &1. Then for u near 1, &log [K(e &p&1 (u), e &p&1 (u) )]+2&p &1 (u) t&log [1&(2&;)(1&e &p&1 (u) )]+2&p &1 (u) t&log [1&(2&;) p &1 (u)]+2&p &1 (u) t(2&;) p &1 (u)+2&p &1 (u)=# &1 (u), where #=(2(&+1)&;) p=2&;(&+1) # [1, 2]. Hence, for u near 1, [1&2u+C(u, u)](1&u)t[1&2u+(# &1 (u))](1&u) t2&#$(# &1 (u))$( &1 (u))

12 MULTIVARIATE DISTRIBUTIONS 251 and the upper tal dependence parameter of C n (3.1) s $ U = 2&# lm s 0 $(#s)$(s). If C does not have upper tal dependence, then $ U =2&#=;(&+1) and C has upper tal dependence f and only f K has upper tal dependence (and the tal dependence parameter of K s larger snce &0). If C does have upper tal dependence, then # lm s 0 $(#s)$(s) should be ncreasng and $ U decreasng as # ncreases or as & ncreases (ths follows from Theorem 3.8 below). If ;=0 so that #=2, then $ U = 2&2 lm s 0 $(2s)$(s) s the tal dependence parameter of C.If;=1 and &=0 so that #=1, then $ U =1. Hence the tal dependence parameter of (3.1) s greater than or equal to that of C. For the asymmetrc case wth p 1 p 2 (& 1 & 2 ), K(e &p 2 &1 (u), e &p 2 &1 (u) )K(e &p 1 &1 (u), e &p 2 &1 (u) )K(e &p 1 &1 (u), e &p 1 &1 (u) ) so that from above, the tal dependence parameter $ U s bounded as 2&# 2 lm $(# 2 s)$(s)$ U 2&# 1 lm $(# 1 s)$(s), s 0 s 0 where # =(2&;)(& +1)+& 1 (& 1 +1)+& 2 (& 2 +1), =1, 2. Note that # 1 # 2. K Theorem 3.8. Let C be as gven n (3.1). (a) Then C ncreases n concordance as p 1 ncreases ( from 0 to 1) and & 1 decreases f K satsfes the LTD1 property. (b) Also C ncreases n concordance as p 2 ncreases and & 2 decreases f K satsfes the LTD2 property. (c)if p 1 =p 2 =p and & 1 =& 2 =&, then C ncreases n concordance as p ncreases f K satsfes both LTD1 and LTD2. Hence the upper tal dependence parameter of C, $ U = 2&# lm s 0 $(#s)$(s), ncreases as & decreases, wth #=2&;(&+1), K (x, x)t;(1&x). Remark. K LTD mples K PQD but not the converse (see [2]). If K s TP 2 as n max-d copulas, then t s easy to show that K s LTD. Proof. Detals wll manly be gven for case (a). Let 0<p$ 1 = (&$ 1 +1) &1 <p 1 1 and &$ 1 >& 1 0. Then f (&log K(e &p$ 1 &1 (u 1 ), e &p 2 &1 (u 2 ) )+&$ 1 p$ 1 &1 (u 1 )+& 2 p 2 &1 (u 2 )) (&log K(e &p 1 &1 (u 1 ), e &p 2 &1 (u 2 ) ) +& 1 p 1 &1 (u 1 )+& 2 p 2 &1 (u 2 )) \u 1, u 2 K(e &p$ 1 &1 (u 1 ), y) e &&$ 1p$ 1 &1 (u 1 ) K(e p 1 &1 (u 1 ), y) e && 1p 1 &1 (u 1 ) \u 1, y

13 252 JOE AND HU or f (wth x=e &&1 (u 1 ) and &=& 1, &$=&$ 1 ) K(x 1(&$+1), y) x &$(&$+1) K(x 1(&+1), y) x &(&+1) \x, y #(0,1). Ths s the same as K(x 1(&+1), y) x &(&+1) decreasng n &0 for all x, y or K(x 1&*, y) x * =[K(x 1&*, y)x 1&* ] x decreasng n * # [0, 1]. Fnally, ths s the same as the LTD1 condton of K(z, y)z decreasng n z for all y. For (c), the concordance orderng s equvalent to [K(x 1&*, y 1&* ) [x 1&* y 1&* ]]xydecreasng n * # [0, 1] for all x, y. Ths follows from the LTD1 and LTD2 condtons because f 0*<*$1, then the condtons mply K(x 1&*$, y 1&*$ ) x *$ y *$ K(x 1&*, y 1&*$ ) x * y *$ K(x 1&*, y 1&* ) x * y *. K Analogous results for lower tal dependence are gven next. Theorem 3.9. The copula C (u, v)=( &1 (u)+ &1 (v)) has a lower tal dependence parameter equal to $ L =2 lm [$(2s)$(s)]. (3.3) s Proof. The proof s smlar to that of Theorem 3.6. K Theorem If p 1 =p 2 =p (and & 1 =& 2 =&) n (3.1) and the lower tal dependence parameter of K s ; #(0,1], then the lower tal dependence parameter of C n (3.1) s $ L =# lm $(&log ;+#s)$(s), (3.4) s where #=p(1+2&)1. If the lower tal dependence parameter of K s 0, then the lower tal dependence parameter of C s less than the rght-hand sde of (3.4) for all ;>0 (wth #=p(1+2&)). If the behavor at the lower tal s K(x, x)t;x \ as x 0 wth p>1, then the lower tal dependence parameter of C s gven by (3.4) wth #=p(\+2&)1. Proof. If ;>0, then K(x, x)t;x for x near 0. Hence, C(u, u)t(&log[;e &p&1 (u) ]+2&p &1 (u)) t(&log ;+p(1+2&) &1 (u)). Equaton (3.4) follows. The case K(x, x)t; 2 x \ s proved smlarly. K Examples that llustrate these tal dependence results are gven n Secton 5.

14 MULTIVARIATE DISTRIBUTIONS Condtons for Max-Infntely Dvsble Multvarate Dstrbutons In ths secton, we obtan condtons for max-nfnte dvsblty and apply them to the famles n Joe [8] and those n Secton 2 of ths artcle. A necessary and suffcent condton for a bvarate dstrbuton K to be max-d s that ts copula K(x, y) stp 2 n (x, y) (cf. [16, Theorem 3.4]). If the densty of K s TP 2, then K s TP 2 (the proof smlar to that n [2, p. 143]). For a multvarate dstrbuton K, a necessary condton s that all bvarate margns are TP 2. Hence the condton of max-d s a postve dependence condton. A general condton for max-d, that generalzes the above bvarate result to any dmenson m, s gven next. Theorem 4.1. Let m2. Suppose K(u 1,..., u m ) s m-varate dstrbuton and let }=log K. For a subset S of [1,..., m], let } S denote the partal dervatve of } wth respect to u, # S. A necessary and suffcent condton for K to be max-d s that } S 0 for all (nonempty) subsets S of [1,..., m]. Proof. We look at the dervatves of H=K # =e #k wth respect to u 1,..., u m, =1,..., m, and then permute ndces. All of the dervatves must be nonnegatve for all #>0 f K s max-d. The dervatves are: Hu 1 =#H} 1, 2 Hu 1 u 2 =# 2 H} 1 } 2 + #H} 12, 3 Hu 1 u 2 u 3 = # 3 H} 1 } 2 } 3 +# 2 H[} 1 } 23 +} 2 } 13 +} 3 } 12 ]+#H} 123, etc. For the nonnegatvty of S H> # S u for #>0 arbtrarly small, a necessary condton s that } S 0. From the form of the dervatves above, t s clear that } S 0 for all S s a suffcent condton. K For multvarate dstrbutons whch have specal forms, smpler condtons can be obtaned. For permutaton symmetrc Archmedean copulas, a condton, from Joe [8], nvolves LTs that correspond to (sum-)nfntely dvsble dstrbutons. For the condton, we need the defnton of L* n =[ : [0,)[0, ) (0)=0, ()=, (&1) &1 ( ) 0, =1,..., n], for n=1, 2,...,. L* s smlar to the condton of completely monotone; an nfntely dfferentable functon,: [0, ) [0, 1] s completely monotone f (&1), ( ) 0, =1, 2,.... Let F(x 1,..., x m )=( m =1 &1 (x )) be a permutaton symmetrc Archmedean copula and let /= &1. Then F # (x 1,..., x m )= exp[#_( m =1 /(x ))], where _=log. Note that _$=$, _"= ("& 2 ) 2, _$$$=[2($) 3 &3$"+ 2 $$$] 3, _ (4) =[&6($) 4 +

15 254 JOE AND HU 12($) 2 "&4 2 $$$$&3 2 (") (4) ] 4. Wth /$ =/$(x ), mthorder mxed dervatves h 1}}}m of F # for m=2, 3,..., are h 12 =e #_ /$ 1 /$ 2 [# 2 _$ 2 +#_"], h 123 =e #_ /$ 1 /$ 2 /$ 3 [# 3 _$ 3 +3# 2 _$_"+#_$$$], etc. From the pattern of the dervatves, F # s max-d for up to dmenson m f &_ # L* m, and F # s max-d for all m f &_ # L*. From Joe [8], the property of &log # L* holds for the famles LT1, LT2, LT3, LT4, of LTs n Secton 5, so that the condton s not too strong for applcatons. Asde. A consequence of the results here s that f s completely monotone, &log # L* and s completely monotone, then C(u 1,..., u m )=, \&log _ : m =1 &1 (e &,&1 (u ) ) &+ (4.1) s an Archmedean copula wth functon '(s)=,(&log (s)). Snce ths functon can be used for a permutaton symmetrc copula for any dmenson m, ' s completely monotone; that s, ' s a LT. Ths s a result on page 441 of Feller [3]. Hence for n one of the four famles LT1, LT2, LT3, LT4, '=,(&log ) s a LT whenever, s a LT. Next we go to max-d for partally symmetrc copulas n Secton 4 of Joe [8]. For the trvarate case, let F(u 1, u 2, u 3 )=( &1 b,(, &1 (u 1 )+, &1 (u 2 ))+ &1 (u 3 )) = def ( (`1(u 1 )+`2(u 2 ))+`3(u 3 )). Let H=F # and let _=log, so that H(u 1, u 2, u 3 )=exp[#_( (`1(u 1 )+`2(u 2 ))+`3(u 3 ))]. Suppose # L* 2 and &log # L* 3. Then the mxed dervatves up to thrd order are nonnegatve snce each term of the dervatves s nonnegatve. The dervatves are: Hu 3 =#H_$`$ 3, 2 Hu 1 u 3 =# 2 H_$ 2 $`$ 1`$ 3 + #H_" $`$ 1`$ 3, 3 Hu 1 u 2 u 3 =# 3 H_$ 3 $ 2`$ 1`$ 2`$ 3 +3# 2 H_$_" $ 2`$ 1`$ 2`$ 3 + # 2 H_$ 2 "`$ 1`$ 2`$ 3 +#H_$$$ $ 2`$ 1 `$ 2 `$ 3 +#H_" "`$ 1`$ 2`$ 3. For hgher dmensonal copulas n ths class, wrte H(u 1,..., u m )=exp[#_( 1 b 2 b }}} b k (}}})+}}})] and let `$ =`$ (u ). Suppose &log =&_#L* m and 's are n L* n for suffcently large n (greater than or equal to number of terms n the argument of ). Then the copula s max-d. As above, dfferentaton of a term wll lead to terms that are each nonnegatve. For example, dfferentaton of H n a term wth respect to u leads to a factor lke #H_$ $ 1 }}} $ k`$ 0, dfferentaton of [_ ( ) ] l n a term leads to a factor l[_ ( ) ] l&1 _ ( +1) $ 1 }}} $ k`$ whch has the same sgn as [_ ( ) ] l, and dfferentaton of ( ) l n a term leads to a factor ( +1) l $ l+1 }}} $ k`$ whch has the same sgn as ( ) l. More generally, consder F(u 1,..., u m )=(&log K(u 1,..., u m )), where K s max-d and &log # L* m. We use Theorem 4.1 to prove that F s also

16 MULTIVARIATE DISTRIBUTIONS 255 max-d. Let _=log and }=log K as above, so that F=(&log K)= exp[_(&})]. Let H=exp[#_(&})]. Then Hu 1 =&#H_$} 1 0, 2 Hu 1 u 2 =# 2 H_$ 2 } 1 } 2 +#H_"} 1 } 2 &#H_$} 12 0, etc., snce each term s nonnegatve. The pattern of dervatves of each term beng nonnegatve contnues. For example, dfferentaton of H n a term wth respect to u leads to a factor lke &#H_$} 0, dfferentaton of [_ ( ) ] l n a term leads to a factor &l[_ ( ) ] l&1 _ ( +1) } whch has the same sgn as [_ ( ) ] l, and dfferentaton of } S n a term leads to a nonnegatve factor. The LT famles ( };{) gven below n Secton 5 are such that &log # L*. Therefore the use of n one of these famles wll lead to max-d multvarate dstrbutons n (2.8). If the resultng (2.8) s substtuted as H nto (2.7) wth a dfferent n one of the famles, then another max-d multvarate dstrbuton obtans. 5. New Parametrc Famles of Copulas In ths secton, we gve examples of nterestng parametrc famles for (2.7) and (2.8), etc., whch result from takng a parametrc famly for the LTs and a parametrc famly for the bvarate copulas K. Before dong ths, we lst one-parameter famles of bvarate copulas and LTs and some of the tal dependence propertes assocated wth them. In (2.7), wrte H as K(H 1,..., H m ), where K s a m-varate copula and H 1,..., H m are the unvarate margns, so that (2.7) becomes F(x)= K # (H 1 (x 1 ),..., H m (x m )) dm(#)=(&log K(H 1 (x 1 ),..., H m (x m ))). 0 The m-varate copula for F n (5.1) s (5.1) C(u 1,..., u m )=(&log K(e &&1 (u 1 ),..., e &&1 (u m ) )), u #(0,1),=1,..., m. (5.2) Ths obtans by choosng H (u )=e &&1 (u ), =1,..., m. When m=2, wth varous choces of one-parameter famles for K and M (or ) n (5.1), one can get two-parameter famles. Smlarly for m2 n (2.8), wth a one-parameter famly for the K 's (that s, K (u, u )=K(u, u ; { ) for a one-parameter famly of copulas K( };{)) and a one-parameter famly for, one can get a parametrc famly wth m(m&1)2+m+1 parameters. Subcases wth fewer parameters obtan from takng parametrc famles n the examples at the end of Secton 2. In order that resultng famles have easly nterpretable parameters, we wll use famles of K's

17 256 JOE AND HU such that K( };{) s ncreasng n concordance as { ncreases. Then clearly C ncreases n concordance as { or { ncreases wth other parameters held fxed. From Joe [8] some useful choces of famles of bvarate copulas K(u, v; {) are: C1. exp[&[(&log u) { +(&log v { ] 1{ ], {1, C2. (u &{ +v &{ &1) &1{, {>0, C3. 1&((1&u) { +(1&v) { &[(1&u)(1&v)] { ) 1{, {1, C4. &{ &1 log (1&(1&e &{ ) &1 (1&e &{u )(1&e &{u )), {>0, C5. uv exp[[&log u) &{ +(&log v) &{ ] &1{ ], {>0, and some choces of LT famles (s; %) are: LT1. exp(&s 1% ), %1, LT2. (1+s) &1%, %0, LT3. 1&(1&e &s ) 1%, %1, LT4. &% &1 log[1&(1&e &% ) e &s ], %>0. The famles C1C4 are famles of Archmedean copulas, wth the respectve LTs gven n LT1LT4. C1 and C5 are famles of extreme value copulas and the other famles have TP 2 denstes (and, hence, TP 2 cdfs). (As hstorcal correcton to Joe [8], an earler reference for the use of C2 as a famly of copulas s Kmeldorf and Sampson [11]. Also a correcton to Joe [8] s that C3 s a LT mxture famly of copulas.) From drect calculatons or from use of the tal dependence results n Secton 3, tal dependence assocated wth C1C4 or LT1LT4 are as follows. Examples (Upper tal dependence for (2.11)): LT1. $(s)=&% &1 s 1%&1 exp[&s 1% ] and $(0)=&. The lmt n (3.2) s $ U =2&2 lm s 0 [$(2s)($(s)]=2&2}2 1%&1 =2&2 1%. LT2. $(s)=&% &1 (1+s) &1%&1 and $(0)=&% &1.So$ U =0. LT3. $(s)=&% &1 (1&e &s ) 1%&1 e &s and $(0)=&. The lmt n (3.2) s $ U =2&2 1%. LT4. $(s)=&% &1 (1&e &% ) e &s [1 &(1&e &% ) e &s ] and $(0)= &% &1 e % (1&e &% ). So $ U =0. Examples (Lower tal dependence for (2.11)): LT1. From (3.3), $ L = 2 lm s [$(2s)$(s)] = lm s 2 1% exp[&(2 1% &1) s 1% ]=0.

18 MULTIVARIATE DISTRIBUTIONS 257 LT2. $ L =lm s 2(1+s[1+s] &1 ) &1%&1 =2 &1%. LT3. $ L =lm s 2(1+e &s ) 1%&1 e &s =0. LT4. $ L =lm s e &s [1&(1&e &% ) e &s ][1&(1&e &% ) e &2s ]=0. Examples. (Lower tal dependence for (3.1) wth & 1 =& 2 =& (and p 1 =p 2 =p=(1+&) &1 )): LT1. The lmt (3.4) s lm s #[&s &1 log ; + #] 1%&1 exp[&[&log ;+#s] 1% ] exp[s 1% ]=$ L.If&>0so that #>1 then $ L =0, and f #=1 (and &=0, \=1) and ;>0, then $ L =1 for %>1 and $ L =; for %=1. LT2. The lmt n (3.4) becomes lm s #[#+(1&#&log ;)(1+ s) &1 ] &1%&1 =# &1% =$ L.If&=0and \=1, then #=1 and $ L =1. If \=2 as for the case of the ndependence copula, then #=2 and $ L =2 &1%, the same as the copula C2 wth parameter %. If1\<2, then 1#<2 and there s more lower tal dependence than the copula C2 wth parameter %. For example, let K be the copula C1 wth parameter {1, then K(x, x)=x \ wth \=2 1{ so that $ L =2 &1(%{) f &=0 and p=1 (and #=\). If K s the copula C5 wth parameter {>0, then K(x, x)=x \ wth \=2&2 &1{. If K s the copula C4 wth parameter &<{<, then K(x, x)t &{ &1 log[1&{ 2 x 2 (1&e &{ )]t{x 2 (1&e &{ ) and #=2. LT3. The lmt n (3.4) s $ L =lm s #[(1&;e &#s )(1&e &s )] 1%&1 ;e &(#&1) s. Ths s 0 f #>1 and t s ; f #=1. LT4. The lmt n (3.4) s $ L =lm s ;e &(#&1) s [1&(1&e &% ) e &s ] [1&(1&e &% ) ;e &#s ]. Ths s 0 f #>1 and t s ; f #= Bvarate Copulas. In ths subsecton, we lst a few nterestng cases, from the pont of vew of tal dependence, of (5.2) wth m=2, wth the use of the above famles C1C5 and LT1LT4. From the above calculatons, the use of LT1, LT2, LT3 lead to copulas wth tal dependence; the propertes of the copulas for LT3 are smlar to those for LT1. Some multvarate generalzatons are gven n Subsecton 5.2. Suppose K s parameterzed by the parameter { and s parameterzed by the parameter % (denoted as % ). If K s ncreasng n concordance as { ncreases, then clearly C ncreases n concordance as { ncreases wth % fxed. The concordance orderng for { fxed and % varyng s harder to check. If K has the form of an Archmedean copula, then from (4.1), then C also has the form of an Archmedean copula. That s, f K(x, y; {)=, { (, &1 { (x)+, &1 { ( y)) for a famly, {, then C(u, v; %, {)= % (&log, { [, &1 { (e & &1 % (u) )+, &1 { (e & &1 % (v) )]) =' %, { (' &1 %, { (u)+'&1 %, {(v)), (5.3)

19 258 JOE AND HU where ' %, { (s)= % (&log, { (s)). For { fxed and % 2 >% 1 wth ' =' %, {, =1, 2, the concordance orderng of C(};% 1,{) and C( };% 2,{) could be establshed by showng that =' &1 2 b ' 1 s superaddtve ( (x+y) (x)+ (y) for all x, y>0). Ths condton holds f (s)s s ncreasng n s>0 or f (s) s convex n s (see [5]). Now four examples are lsted together wth some of ther propertes; these show dfferent types of upper and lower tal dependence behavour and nclude examples wth both upper and lower tal dependence. The tal dependence propertes come from results n Secton 3 and the precedng examples n Secton 5. Example 5.1. In (5.2), let K be the famly C1 and let be the famly LT2. Then the resultng copula, s C(u, v; %, {)=[1+[(u &% &1) { +(v &% &1) { ] 1{ ] &1% ='(' &1 (u)+' &1 (v)), {1, %>0, (5.4) where '(s)=' %, { (s)=(1+s 1{ ) &1%. Ths s the copula n the bvarate Webull dstrbuton n Eq. (2.5) of Lu and Bhattacharyya [12]. Some propertes of the famly of copulas (5.4) are: a. The famly C2 s a subfamly when {=1, and the famly C1 s obtaned as % 0. Hence the lmt as % 0 and { 1 s the case of ndependence, C I (u, v)=uv. The lmt as % or { corresponds to the Fre chet upper bound, C U (u, v)=mn(u, v). b. The lower tal dependence parameter s 2 &1({%), whle the upper tal dependence parameter s 2&2 1{, ndependently of %. The extreme value lmts from the lower and upper tals (from lmts of [C*(1&n &1 e &x, 1&n &1 e &y ; %, {)] n and [C(1&n &1 e &x,1&n &1 e &y ; %, {)] n respectvely, where C*(u, v; })=u+v&1+c(1&u, 1&v; } )) are the famles C5 and C1 respectvely. c. Concordance ncreases as % ncreases for fxed {. To show that (5.4) s ncreasng n %, we show that (s)s s ncreasng, where (s)=' &1 (' % 2, { % 1, {(s))=[(1+s 1{ ) \ &1] {, % 1 <% 2, and \=% 2 % 1. It s easly verfed that d( (s)s)ds0 s equvalent to (\&1) z&1+(1+z) 1&\ 0 for all z>0 wth z=s 1{. From the above, we can get a one-parameter famly C(u, v; {) by settng %={&1 n (5.4): C(u, v; {)=[1+[(u 1&{ &1) { +(v 1&{ &1) { ] 1{ ] &1(1&{), {1. (5.5)

20 MULTIVARIATE DISTRIBUTIONS 259 Ths s a new one-parameter famly of copulas wth both upper and lower tal dependence. Moreover, copula (5.5) s absolutely contnuous and ncludes both the cases of ndependence and the Fre chet upper bound at the extremes. Example 5.2. In (5.2), let K be the famly C2 and let be the famly. Then the copula s C(u, v; %, {)=exp [&[{ &1 log (e {u~ % +e {v~ %&1)] 1% ] ='(' &1 (u)+' &1 (v)), %1, {>0, (5.6) where u~ =&log u, v~ =&log v, and '(s)=' %, { s)=exp[&[{ &1 log(1+s)] 1% ]. Some propertes of the famly of copulas (5.6) are: a. The famly C2 s a subfamly when %=1, and the famly C1 s obtaned as { 0. The lmt as % or { corresponds to the Fre chet upper bound. b. The lower tal dependence parameter s 2 &1{ when %=1 and 1 when %>1, whle the upper tal dependence parameter s 2&2 1%, ndependently of {. The extreme value lmt from the upper tal s famly C1. c. Concordance ncreases as % ncreases. (5.6) s ncreasng n % f and only f &D{ &1 log (D{)+[e {x x log x+e {y y log y](e {x +e {y &1)0 for all x, y>0 and {>0, where D=log (e {x +e {y &1). Ths condton holds from numercal checks but has not been confrmed analytcally. Wth a change of parametrzaton to (%, :) wth :={ 1%, the famly of copulas has been shown to be ncreasng n concordance wth both parameters % and :. Example 5.3. In (5.2), let K be the famly C5 and let be the famly LT2. Then the copula s C(u, v; %, {)=(u &% +v % &1&[(u &% &1) &{ +(v &% &1) &{ ] &1{ ) &1%, %0, {>0, (5.7) Some propertes of the famly of copulas (5.7) are: a. The famly C2 s obtaned when { 0, and the famly C5 s obtaned as % 0. The Fre chet upper bound obtans as % as {. b. The lower tal dependence parameter s (2&2 &1{ ) &1%, whle the upper tal dependence parameter s 2 &1{, ndependently of %. The extreme value lmt from the lower tal leads to the mn-stable bvarate exponental

21 260 JOE AND HU famly exp[&a(x, y)] wth A(x, y)=x+y&[x &% +y &% &(x %{ + y %{ ) &1{ ] &1% and ths s a two-parameter extenson of the famly C5. The extreme value lmt from the upper tal s famly C5. c. Concordance ncreases as % ncreases. (5.7) s ncreasng n % f and only f [x+y&1&((x&1) &{ +( y&1) &{ ) &1{ ] log [x+y&1&((x&1) &{ + ( y&1) &{ ) &1{ ]&x log x&y log y+((x&1) &{ +(y&1) &{ ) &1{&1 ((x&1) &{ x log x+(y&1) &{ y log y)0 for all x, y>1 and {>0. Ths condton holds from numercal checks but has not been confrmed analytcally. Example 5.4. In (5.2), let K be the famly C1 and let be the famly LT3. Then the copula s C(u, v; %, {)=1&(1&exp[&[(&log(1&u % )) { +(&log(1&v % )) { ] 1{ ]) 1% ='(' &1 (u)+' &1 (v)), %1, {1, (5.8) where u =1&u, v =1&v, and '(s)=' %, { (s)=1&[1&exp (&s 1{ )] 1%. Some propertes of the famly of copula (5.8) are: a. The famly C1 s obtaned when %=1, and the famly C3 s obtaned when {=1. The lmt as % + or { + corresponds to the Fre chet upper bound. b. The lower tal dependence parameter s 0, and the upper tal dependence parameter s 2&2 1(%{). The extreme value lmt from the upper tal s the famly C1. c. Concordance ncreases as % ncreases. To show that (5.8) s ncreasng n %, we show that (s) s convex n s>0, where (s)= ' &1 (' % 2, { % 1, {(s))=[_(s 1{ )] and _(s)=&log (1&[1&e &s ] \ ), \=% 2 % 1 >1. It s easly verfed that _$(s)>0, _"(s)>0 for all s>0, and hence _(t)t_$(t), where t=s 1{. Therefore, "(s)={ &1 s &2 [_(t)] {&2 [t_"(t)+ ({&1) _$(t)(t_$(t)&_(t))]0 for all s> Multvarate Copulas and Multvarate Extreme Value Dstrbutons. In ths subsecton, we lst three famles of parametrc multvarate copulas, two of whch are extensons from subsecton 5.1. Two of these famles are famles of extreme value copulas; n the thrd case, the lmtng famly of extreme value copulas s obtaned. (Extreme value copulas C satsfy the property of C(u t 1,..., ut m )=Ct (u 1,..., u m ), for all t>0.) The results are three parametrc famles of multvarate extreme value dstrbutons, wth closed form cdfs and flexble dependence structure. The famles of multvarate extreme value dstrbutons n Joe [9, 10] have flexble dependence structure but not closed form cdfs.

22 MULTIVARIATE DISTRIBUTIONS 261 Example 5.5. In (2.10), let K be the famly C1 wth parameter { and let be the famly wth parameter %. The result s the famly: m C(u 1,..., u m )=exp _ {& : ((p z % ){ +(p z % ){ ) 1{ + : & p z & 1%= %, 1<m =1 (5.9) where z = &log u, =1,..., m. Ths s a famly of extreme value copulas snce the exponent n (5.9) s homogeneous of order one as a functon of z 1,..., z m. The bvarate margns are: C (u, u )=exp[&[((p z % ){ +(p z % ){ ) 1{ +(& +m&2) p z % +(& +m&2) p z % ]1% ]. When p =p =1 or & =& =2&m, ths bvarate copula s C1. The correspondng upper tal dependence parameter s 2&[( p { +p { ) 1{ + (& +m&2) p +(& +m&2) p ] 1% ; t ncreases as { or % ncreases. In a specal case, we check for the range of dependence that s possble for the bvarate tal dependence parameters. For m=3, { 13 =1, { 12 ={ 23 ={, & 1 =& 3 =&1, & 2 =0, and p 1 =p 3 =1, p 2 =0.5, (5.9) and (2.13) become C(u 1, u 2, u 3 )=exp[&[(2 &{ z %{ 2 +z%{ 1 )1{ +(2 &{ z %{ 2 +z%{ 3 )1{ ] 1% ], (5.10) where z =&log u, =1, 2, 3. The bvarate margns are C 2 (u, u 2 ) =exp[&[(2 &{ z %{ 2 +z%{ ) 1% z% 2 ]1% ], =1, 3, and C 13 (u 1, u 3 )= exp[&(z % 1 +z% 3 )1% ]. The bvarate (upper) tal dependence parameters are $ 12 =$ 23 =2&[(2 &{ +1) 1{ +2 &1 ] 1% and $ 13 =2&2 1%. As {, $ 12 = $ 23 2&(1.5) 1%. A check for how close $ 13 s to the nonsharp lower bound max[0, $ 12 +$ 23 &1]=max[0, 3&2(1.5) 1% ] (from [10]) s gven n Table I. Table I shows that there s a lot of flexblty n how small $ 13 can get, gven $ 12 =$ 23. For the trvarate famles n Joe [8], two of the bvarate margns must have the same dependence parameter and the bvarate dependence of the thrd margn must be at least as large as the other two (hence n comparson wth the above, the bvarate tal dependence parameter for the (1, 3) margn s at least as large as that for the (1, 2) and (2, 3) margns). It can also be shown that (5.10) has a flexble range for the trple of bvarate Kendall taus. TABLE I Tal Dependence Parameters n Specal Trvarate Case % &2 1% &2(1.5) 1%

23 262 JOE AND HU Example 5.6. In (2.10), let K be the famly C5 wth parameter { and let be the famly LT2 wth parameter %. Let u^ = p ( u & % &1), =1,..., m. The result s the famly: C(u 1,..., u m )= _: m =1 u &% &(m&1)& : 1<m &{ (u^ &{ +u^ ) & &1{ &1%. (5.11) The specal case [ m =1 u&% &(m&1)] &1% arses as p 0, =1,..., m. The bvarate margns are C (u, u )=[u &% +u &% &1&(u^ & { & { +u^ ) &1{ ] &1%. When p =p =1, ths bvarate copula corresponds to that derved n Example 5.3. Ths copula has both lower and upper tal dependence. Usng the approxmatons u &% &1r%(1&u ) and u^ r p % (1&u ) as u 1, =1,..., m, the upper tal dependence parameters can be computed as ( p &{ +p &{ ) &1{. The lower tal dependence parameters are [2&(p &{ +p &{ ) &1{ ] &1%. The tal dependence parameters are ncreasng as { ncreases. The upper tal dependence parameters do not depend on %; the lower tal dependence parameters ncreases as % ncreases. The upper tal extreme value lmt (obtaned from the lmt of C n (1&n &1 e &x 1,..., 1&n &1 e &x m )) s exp[& e &x + < ( p &{ e { x + p &{ e { x ) &1{ ]. Ths s not very nterestng as t does not depend on %. The lower tal extreme value lmt s more nterestng. It s analogous to (5.9) and generalzes C5. Let S be a subset of [1,..., m] of sze 2 or more. Let C S denote the margn of C n (2.10) wth ndces n S. The functon h S (z, # S) s defned as the lmt of nc S (n &1 z, # S) as n, wth z >0, =1,..., m. It s straghtforward to verfy that h S (z, # S)= _: z &% & : # S <, #S, # S (p &{ z %{ +p &{ The lmtng multvarate extreme value copula has the form where z = &log u, C(u 1,..., u m )=exp[&a(z 1,..., z m )] &1% z %{ ) & &1{. A(z 1,..., z m )=z 1 +}}}+z m +: (&1) S +1 h S (z, #S), (5.12) wth the summaton over all subsets S of [1,..., m] of sze 2 or more, and S beng the cardnalty of S. S

24 MULTIVARIATE DISTRIBUTIONS 263 Some specal cases are gven next. For m=2, & 1 =& 2 =0 (and hence p 1 =p 2 =1), and {={ 12, (5.12) becomes A(z 1, z 2 )=z 1 +z 2 &[z &% 1 +z &% & 2 (z %{ 1 +z%{ 2 )&1{ ] &1% whch appears from the bvarate extreme value lmt n Example 5.3. For m=3, { 13 0, { 12 ={ 23 ={, & 1 =& 3 =&1, & 2 =0, (5.11) becomes A(z 1, z 2, z 3 )=z 1 +z 2 +z 3 &(z &% 1 +z &% 3 ) &1% &[z &% 1 +z &% 2 &(z %{ 1 +2{ z %{ 2 )&1{ ] &1% &[z &% 3 +z &% 2 &(z %{ 3 +2{ z %{ 2 )&1{ ] &1% +[z &% 1 +z &% 2 +z &% 3 &(z %{ 1 +2{ z %{ 2 )&1{ &(z %{ 3 +2{ z %{ 2 )&1{ ] &1%. The bvarate margns (by lettng one of the z 's go to zero n turn) are A 2 (z, z 2 )=z +z 2 &[z &% +z &% 2 &(z %{ +2 { z %{ 2 )&1{ ] &1%, =1, 3, and A 13 (z 1, z 3 )=z 1 +z 3 &(z &% 1 +z &% 3 ) &1%. The correspondng upper tal dependence parameters, 2&A (1, 1), are $ 2 =[2&(1+2 { ) &1{ ] &1%, =1, 3, and $ 13 =2 &1%.As{,$ 12 =$ 32 (1.5) &1%. The check, gven n Table II, shows that $ 13 s qute close to the nonsharp lower bound max[0, $ 12 +$ 23 &1]=max[0, 2(1.5) &1% &1], for part of the range of %. Example 5.7. In (2.10), let K be the famly C5 wth parameter { and let be the famly LT1 wth parameter %. Let z = &log u, =1,..., m. The result s the famly of extreme value copulas: C(u 1,..., u m )=exp {& _ : m =1 z % & : 1<m (p &{ Note that & 's appear only mplctly n the p 's. The bvarate margns are C (u, u )=exp[&[z % +z% &(p&{ z &%{ TABLE II z &%{ +p &{ Tal Dependence Parameters n Specal Trvarate Case z &%{ ) & 1%= &1{. (5.13) +p &{ z &%{ ) &1{ ] 1% ]. (5.14) % &1% max[0, 2(1.5) &1% &1]

25 264 JOE AND HU The upper tal dependence parameter for (5.14) s 2&[2&( p &{ + p &{ ) &1{ ] 1%. It s ncreasng as { or % ncreases. For m=3, { 13 0, { 12 ={ 23 ={, & 1 =& 3 =&1, & 2 =0, p 1 =p 3 =1, p 2 =0.5, (5.13) becomes C(u 1, u 2, u 3 )=exp[&[z % 1 +z% 2 +z% 3 &(z&%{ 1 +2 { z &%{ 2 ) &1{ &(z &%{ 3 +2 { z &%{ 2 ) &1{ ] 1% ]. (5.15) The bvarate margns of (5.15) are C 2 (u, u 2 )=exp[&[z % +z% & 2 (z &%{ +2 { z &%{ 2 ) &1{ ] 1% ], =1, 3, and C 13 (u 1, u 3 )=exp [&[z % 1 +z% 3 ]1% ]. The tal dependence parameters are $ 2 =2&[2&(1+2 { ) &1{ ] 1%, =1, 3, and $ 13 =2&2 1%.As{,$ 2 2&(1.5) 1%. The remanng analyss s the same as n Example Dscusson In ths artcle, many multvarate dstrbutons and copulas are derved based the mxture of powers approach. The potental usefulness of the multvarate models may be based on the closure property of weghted maxma mnma, or on dependence and other propertes of the copulas. The famles of copulas here have postve dependence only; extensons to allow for some negatve dependence wll come n a subsequent artcle. Future research wll consst of applcatons to multvarate ordnal data and comparsons wth the multvarate probt model and the model n Molensbergh and Lesaffre [17]. As well, the new multvarate extreme value famles wll be appled to data sets of extreme values. Other mxture or transform approaches could be used to derve famles of multvarate dstrbutons and copulas, for example, mxtures of convolutons or usng a property of (sum)-nfntely dvsble, nstead of maxnfntely dvsble. However, we have not been successful n gettng closed form parametrc famles of copulas usng other approaches. Acknowledgments Ths research has been supported by a NSERC Canada grant. The second author s grateful to the Department of Statstcs, Unversty of Brtsh Columba, for the hosptalty durng a vst n Thanks to the referees and assocate edtor for comments leadng to an mproved presentaton.

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

A Nonparametric Test of Serial Independence for Time Series and Residuals

A Nonparametric Test of Serial Independence for Time Series and Residuals Journal of Multvarate Analyss 79, 191218 (2001) do10.1006jmva.2000.1967, avalable onlne at httpwww.dealbrary.com on A Nonparametrc Test of Seral Independence for Tme Seres and Resduals Klan Ghoud Unverste

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4- Chapter 4 Reflecton and Transmsson of Waves Dr. Stuart Long 4- Boundary Condtons ^ n H H 3 H 4 w H l y (fg. 4.) 4-3 Boundary Condtons n ^ H H 3 H4 w H l y Tae ˆ component of H J+ jω D (fg. 4.) H y H

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

Log Linear Model. . Web Page: 2. (estimating parameter) ก (main effect) interaction effect

Log Linear Model. .   Web Page:   2. (estimating parameter) ก (main effect) interaction effect Log Lnear Model. ก ก Emal: nkom@kku.ac.th Web Page: http://home.kku.ac.th/nkom. ก (fttng models) ก 2. (estmatng parameter) ก ก ก (man effect) nteracton effect Log Lnear Model dfference from logt model

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Oppgave. føden)? i tråd med

Oppgave. føden)? i tråd med Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Level-Rebuilt B-Trees

Level-Rebuilt B-Trees Gerth Stølting Brodal BRICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University August 1998 1 B-Trees Bayer, McCreight 1972 Level 2 Level 1

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Nijenhuis algebras, NS algebras, and N-dendriform algebras

Nijenhuis algebras, NS algebras, and N-dendriform algebras Front. Math. Chna 2012, 7(5): 827 846 DOI 10.1007/s11464-012-0225-2 Njenhus algebras, NS algebras, and N-dendrform algebras Peng LEI 1, L GUO 1,2 1 Department of Mathematcs, Lanzhou Unversty, Lanzhou 730000,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON3 Statstkk Exam: ECON3 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Torsdag. jun 6 Sensur kunngjøres: Fredag 6. jun Date of exam: Thursday, June, 6 Grades wll be gven: Frday,

Detaljer

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

SIGNAL LEVELS ABOVE 0.5 uv UTC FMUF ECOF 3.6 MHZ 7.1 MHZ 14.1 MHZ 21.2 MHZ 28.3 MHZ

SIGNAL LEVELS ABOVE 0.5 uv UTC FMUF ECOF 3.6 MHZ 7.1 MHZ 14.1 MHZ 21.2 MHZ 28.3 MHZ MINIPROP (TM) SHORT-PATH PREDICTIONS 01-13-2005 Path Length : 14251 km TERMINAL A : 60.03 N 10.81 E OSLO Bearing to B : 281.8 deg TERMINAL B : 27.15 S 109.45 W EASTER ISLAND Bearing to A : 33.3 deg Terminal

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Bokmål Eksamen i: ECON1210 Forbruker, bedrift og marked Exam: ECON1210 Consumer Behaviour, Firm behaviour and Markets Eksamensdag: 12.12.2014 Sensur kunngjøres:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

Dialogkveld 03. mars 2016. Mobbing i barnehagen

Dialogkveld 03. mars 2016. Mobbing i barnehagen Dialogkveld 03. mars 2016 Mobbing i barnehagen Discussion evening March 3rd 2016 Bullying at kindergarten Mobbing i barnehagen Kan vi si at det eksisterer mobbing i barnehagen? Er barnehagebarn i stand

Detaljer

Start Here USB *CC * *CC * USB USB

Start Here USB *CC * *CC * USB USB 1 USB Start Here USB 11 USB WARNING: To ensure that the software is installed correctly, do not connect the USB cable until step 11. 11 USB 2 a. b. Lower both the paper tray and the print cartridge door.

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF234 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor

Detaljer

IN2010: Algoritmer og Datastrukturer Series 2

IN2010: Algoritmer og Datastrukturer Series 2 Universitetet i Oslo Institutt for Informatikk S.M. Storleer, S. Kittilsen IN2010: Algoritmer og Datastrukturer Series 2 Tema: Grafteori 1 Publisert: 02. 09. 2019 Utvalgte løsningsforslag Oppgave 1 (Fra

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES.

AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES. AVERAGING SPECIAL VALUES OF DIRICHLET L-SERIES KEVIN JAMES Abstrct In ths pper we derve estmtes or weghted verges o the specl vlues o Drchlet L-seres whch generlze smlr estmtes o Dvd nd Ppplrd [] Introducton

Detaljer

PHIL 102, Fall 2013 Christina Hendricks

PHIL 102, Fall 2013 Christina Hendricks PHIL 102, Fall 2013 Christina Hendricks Peter Singer Australian, now at Princeton University Clip from a documentary called Examined Life, giving an overview of Singer s views on poverty and ethical treatment

Detaljer

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard

Trådløsnett med. Wireless network. MacOSX 10.5 Leopard. with MacOSX 10.5 Leopard Trådløsnett med MacOSX 10.5 Leopard Wireless network with MacOSX 10.5 Leopard April 2010 Slå på Airport ved å velge symbolet for trådløst nettverk øverst til høyre på skjermen. Hvis symbolet mangler må

Detaljer

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt) FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere

Detaljer

RF Power Capacitors Class1. 5kV Discs

RF Power Capacitors Class1. 5kV Discs RF Power Capacitors Class 5kV Discs T H E C E R A M C E X P E R T S RF Power Capacitors Class 5kV Discs The CeramTec Group is a world leader in the design and manufacture of complex electronic ceramic

Detaljer

6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012

6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012 6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012 100 200 3000 0 0 0 13 38 63 88 113 138 163 4000 188 213 238 263 288 313 338 363 378 386 5000 394 402 410 417

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION

REMOVE CONTENTS FROM BOX. VERIFY ALL PARTS ARE PRESENT READ INSTRUCTIONS CAREFULLY BEFORE STARTING INSTALLATION 2011-2014 FORD EXPLORER PARTS LIST Qty Part Description Qty Part Description 1 Bull Bar 2 12mm x 35mm Bolt Plates 1 Passenger/Right Mounting Bracket 2 12mm Nut Plate 1 Driver/Left Mounting Bracket 2 12mm

Detaljer

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 1 The law The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 2. 3 Make your self familiar with: Evacuation routes Manual fire alarms Location of fire extinguishers

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Optimization of imperfect economic manufacturing models with a power demand rate dependent production rate

Optimization of imperfect economic manufacturing models with a power demand rate dependent production rate Sådhanå (219)44:26 Ó Indan Academy of Scences https://do.org/1.17/s1246-19-1171-4sadhana(123456789().,-volv)f3 ](123456789().,-volV) Optmzaton of mperfect economc manufacturng models wth a power demand

Detaljer

Skog som biomasseressurs: skog modeller. Rasmus Astrup

Skog som biomasseressurs: skog modeller. Rasmus Astrup Skog som biomasseressurs: skog modeller Rasmus Astrup Innhold > Bakkgrunn: Karbon dynamikk i skog > Modellering av skog i Skog som biomassressurs > Levende biomasse > Dødt organisk materiale og jord >

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS 2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS SPECIAL SECTION TO IN BUSINESS LAS VEGAS 3A September 23, 2005 SEE, PAGE 8A Businesses seek flexibility. It helps them compete in a fast-paced,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for

Detaljer

The Norwegian Citizen Panel, Accepted Proposals

The Norwegian Citizen Panel, Accepted Proposals PROGRAMMER NOTE: There are 4 ways question is asked. That is, each of these one of these 4 questions. Please be sure to use a truly random assignment method to determine

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

EMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post:

EMPIC MEDICAL. Etterutdanningskurs flyleger 21. april Lars (Lasse) Holm Prosjektleder Telefon: E-post: EMPIC MEDICAL Etterutdanningskurs flyleger 21. april 2017 Lars (Lasse) Holm Prosjektleder Telefon: +47 976 90 799 E-post: Lrh@caa.no it-vakt@caa.no Luftfartstilsynet T: +47 75 58 50 00 F: +47 75 58 50

Detaljer

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis)

Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis) Norsk (English below): Guide til anbefalt måte å printe gjennom plotter (Akropolis) 1. Gå til print i dokumentet deres (Det anbefales å bruke InDesign til forberedning for print) 2. Velg deretter print

Detaljer

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT STØTTEMATERIALE TIL FORELESNINGENE OM SKATT ECON3610, H2017 Kristoffer Midttømme Eksempler på skattevridninger: Den britiske vindusskatten Fordeling av antall vinduer (1) Oates, Wallace E., and Robert

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 575 2 ). Ved bruk av tabell A.3 finner

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

Appendix B, not for publication, with screenshots for Fairness and family background

Appendix B, not for publication, with screenshots for Fairness and family background Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots

Detaljer

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper

Detaljer

Kundetilfredshetsundersøkelse FHI/SMAP

Kundetilfredshetsundersøkelse FHI/SMAP Kundetilfredshetsundersøkelse FHI/SMAP Sluttrapport pr. 20. April 2010 Alle 9 kunder av FHI s produksjonsavdeling for biofarmasøytiske produkter (SMAP) i perioden 2008-2009 mottok i januar 2010 vårt spørreskjema

Detaljer

Forecast Methodology September LightCounting Market Research Notes

Forecast Methodology September LightCounting Market Research Notes Forecast Methodology September 2015 LightCounting Market Research Notes Vladimir Market Kozlov Forecast Methodology, September, September, 2015 2015 1 Summary In summary, the key assump=on of our forecast

Detaljer