Newtons lover i én dimensjon (2)

Like dokumenter
Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon

Newtons lover i én dimensjon

Newtons lover i én dimensjon

Newtons lover i én dimensjon (2)

Kinematikk i to og tre dimensjoner

UNIVERSITETET I OSLO

Kinematikk i to og tre dimensjoner

UNIVERSITETET I OSLO

Repetisjon

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

UNIVERSITETET I OSLO

Fiktive krefter

UNIVERSITETET I OSLO

Fiktive krefter. Gravitasjon og planetenes bevegelser

Newtons lover i én dimensjon

Fiktive krefter

Stivt legemers dynamikk

Repetisjon

Stivt legemers dynamikk

Newtons lover i to og tre dimensjoner

Keplers lover. Statikk og likevekt

Løsningsforslag til ukeoppgave 4

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1

UNIVERSITETET I OSLO

Stivt legemers dynamikk

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Obligatorisk oppgave i fysikk våren 2002

6.201 Badevekt i heisen

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen

Fysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

Newtons lover i to og tre dimensjoner

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Løsningsforslag til midtveiseksamen i FYS1001, 19/3 2018

Løsningsforslag til eksamen i FYS1000, 14/8 2015

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

Impuls, bevegelsesmengde, energi. Bevaringslover.

Fiktive krefter

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

UNIVERSITETET I OSLO

Løsningsforslag til ukeoppgave 2

A) 1 B) 2 C) 3 D) 4 E) 5

Kap Newtons lover. Newtons 3.lov. Kraft og motkraft. kap 4+5 <file> Hvor er luftmotstanden F f størst?

Kap. 6+7 Arbeid og energi. Energibevaring.

Krefter, Newtons lover, dreiemoment

Løsningsforslag til øving 1

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011

Mandag Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.

SG: Spinn og fiktive krefter. Oppgaver

Kinematikk i to og tre dimensjoner

UNIVERSITETET I OSLO

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

Newtons lover i to og tre dimensjoner

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.

Høgskolen i Agder Avdeling for EKSAMEN

Løsningsforslag for øvningsoppgaver: Kapittel 2

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Stivt legemers dynamikk

Fysikkolympiaden Norsk finale 2018 Løsningsforslag

TFY4104 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg:

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:

FYSIKK-OLYMPIADEN Andre runde: 2/2 2012

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

Statikk og likevekt. Elastisitetsteori

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008

FYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)

Løsningsforslag. Eksamen i Fys-mek1110 våren !"!!!. Du kan se bort fra luftmotstand.

UNIVERSITETET I OSLO

4 Differensiallikninger R2 Oppgaver

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

EKSAMENSOPPGAVE. Dato: Fredag 01. mars Tid: Kl 09:00 13:00. Administrasjonsbygget B154

Løsningsforslag Øving 1

FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel)

Statikk og likevekt. Elastisitetsteori

Oppsummert: Kap 1: Størrelser og enheter

Løsningsforslag for øvningsoppgaver: Kapittel 4

Transkript:

Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter forelesning: Ø443 FYS-MEK 111 3.1.17 1

Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve rundt systemet. 4. Finn kontaktpunkter hvor kontaktkrefter angriper. 5. Navngi kontaktkrefter og definer symboler. 6. Identifiser langtrekkende krefter og definer symboler. 7. Tegn objektet med skalerte krefter. 8. Tegn inn koordinatsystemet. Newtons andre lov: F net Fi i ma summen av alle ytre krefter som påvirker objektet og har årsak i omgivelsen. fri-legeme diagram FYS-MEK 111 3.1.17

http://pingo.upb.de/ access number: 45786 Kan bier løfte en laptop? Ja Nei se også Mythbusters episode 156 «bug special» (1) FYS-MEK 111 3.1.17 3

http://pingo.upb.de/ access number: 45786 Du prøver å løfte en stor plate med et helikopter. Platen er festet rett under helikopteret og veier mindre enn nyttelasten. Klarer du å løfte platen? Ja Nei system: helikopter + plate Er luften mellom rotor og plate del av systemet eller omgivelsen? FYS-MEK 111 3.1.17 4

http://pingo.upb.de/ access number: 45786 En vogn står på en friksjonsfritt overflate. En kraftsensor på vognen er festet med en snor til en masse m som henger ned som vist i figuren. I starten holder du vognen. Når du slipper den, så vil spenning i snoren øke bli det samme minke når du holder vognen: T når du slipper: T T mg mg T ma mg mg FYS-MEK 111 3.1.17 5

Newtons første lov: Alle legemer bevarer sin tilstand av ro eller jevn bevegelse i en rett linje, dersom det ikke blitt tvunget til å endre denne tilstand av krefter som blir påført. spesiell tilfelle som følger fra Newtons andre lov: Fnet ma dv a dt v konst. husk: det gjelder bare for inertialsystemer. FYS-MEK 111 3.1.17 6

Kraftmodeller Gravitasjon F fra B påa mm r 3 AB r AB langtrekkende kraft på jorden F mm m mg g 9.81 r s AB (rettet mot jordens senteret) FYS-MEK 111 3.1.17 7

viskøs kraft for små hastigheter Eksempel: en ball beveger seg gjennom luften luften må flytte seg og strømme rundt ballen luftmotstand små hastighet jevnt strømning erfaring: luftmotstand er hastighetsavhengig empirisk modell fra eksperimenter F D k v v mot bevegelsesretning tilnærming for små hastighet for sfære med radius R og væske med viskositet : k v 6R 1.81 5 Ns m luft: vann: 1.1 3 Ns m FYS-MEK 111 3.1.17 8

viskøs kraft for større hastigheter større hastighet turbulent strømning undertrykk bak objektet empirisk modell fra eksperimenter F D Dv mot bevegelsesretning tilnærming for stor hastighet for en sfære med radius R og en væske med tetthet : D 1. R Du behøver ikke huske uttrykket for k v og D, men du bør huske F k v for små hastighet D v F D Dv for stor hastighet FYS-MEK 111 3.1.17 9

http://pingo.upb.de/ access number: 45786 En små stålkule med radius R og en større stålkule med radius R synker i en stor sylinder med olje. Hvilken kule synker fortere? den lille den store begge er like rask https://www.youtube.com/watch?v=k389fwu5sk FYS-MEK 111 3.1.17 1

Stålkuler som synker i olje F D F D k v v mg når F D blir like stor som gravitasjonskraft nettokraft er null bevegelse uten akselerasjon terminalhastighet terminalhastighet: mg k v v t v t mg k v mg 6R for en kule: 4 m R 3 3 v t R FYS-MEK 111 3.1.17 11

http://pingo.upb.de/ access number: 45786 Er det raskere å svømme i vann ( = 1.1-3 Ns/m ) eller i sirup ( = 1.91-3 Ns/m )? raskere i vann like rask raskere i sirup avhengig av teknikken eksperiment ved University of Minnesota: B. Gettelfinger, E.L. Cussler, Am. Inst. Chem. Eng. J. 5, 646 (4). se også: Mythbusters episode 6 (9) FYS-MEK 111 3.1.17 1

Fjærkraft Eksperiment: vi måler kraften som trengs for å strekke en fjær. Hookes lov: F kl k: fjærkonstant L L L L : likevektslengde stiv fjær myk fjær pass på fortegn: L kan også være negativ. Bruk intuisjon! Vi skriver ofte: F kl FYS-MEK 111 3.1.17 13

Eksempel: Et lodd av masse m = 1 kg er festet til en fjær med fjærkonstant k = N/m. Beregn elongasjonen til fjæren hvis klossen er i ro. x Systemet er i likevekt Vi måler posisjonen til loddet oppover. kontaktkraft F fra fjæren til loddet gravitasjonskraft G Kraftmodell: Newtons andre lov: F kl L L L F net L L kl mg L mg k L ma 1kg 9.81m/s N/m L 4.9cm 4.9cm G mg FYS-MEK 111 3.1.17 14

Eksempel: En masse m = 1 kg er festet til en fjær med fjærkonstant k = 1 N/m og kan bevege seg på et bord uten friksjon og luftmotstand. Massen beveger seg med v = 1 m/s ut fra likevektsposisjon. kontaktkrefter: kraft F fra fjær til massen normalkraft N fra bordet til massen langtrekkende kraft: gravitasjonskraft G Normalkraft kompenserer gravitasjon: ingen bevegelse i y retning. N G kraft F fra fjær til massen: F kl NL: vi definerer x = i likevektsposisjon; hvis x > trekker kraften i negativ x retning: F x F kx ma a k m x F kx initialbetingelser: x( t v( t ) m ) 1m/s FYS-MEK 111 3.1.17 15

Numerisk løsning med Euler-Cromer: massen svinger frem og tilbake vi leser fra diagrammet: x max =.1 m v max = 1 m/s ved x = m Hva er perioden for svingning? FYS-MEK 111 3.1.17 16

Analytisk: a F kx d x dt k m x initialbetingelser: x( t v( t ) m ) 1m/s ansatz: x( t) Asin( t) Bcos( t) dx v( t) Acos( t) Bsin( t) dt a( t) dv dt d x dt Asin( t) Bcos( t) x( t) m k 1 N/m 1s 1kg frekvens: stiv fjær eller liten masse rask svingning 1 x( ) B v( ) A v v 1m/s A -1 1s v x( t) sin( t) v( t) v cos( t) amplitude: høy initialhastighet stor amplitude.1m FYS-MEK 111 3.1.17 17

v [m/s] x [m] Svingning analytisk v x( t) sin( t) v( t) v cos( t)..1 -.1 numerisk -..5 1 1.5 t [s] 1-1 -.5 1 1.5 t [s] FYS-MEK 111 3.1.17 18

Eksempel: bungee jump En person av masse m = 7 kg hopper med en strikk av lengde d = 5 m fra en bro av høyde h = 1 m. Vi kan beskrive strikken med en fjærkonstant k = N/m og en viskøs koeffisient k v = 3 kg/s. For luftmotstanden kan vi bruke D =. kg/m. Treffer han bakken? Vi beskriver bevegelsen til hopperen. Vi måler posisjonen med x(t) oppover fra bakken. Initialbetingelser: x( t v( t t ) x ) v s 1m m/s Kontaktkrefter: kraft F fra strikken til hopperen luftmotstand F D langtrekkende krefter: gravitasjon G FYS-MEK 111 3.1.17 19

Kraftmodell: gravitasjon: G -mg iˆ luftmotstand: F D -Dv v iˆ d Kraften fra strikken virker bare hvis den er stram. elongasjon: L ( h d) x fjærkraft: F S kliˆ L L viskøs kraft avhenger endringsraten for L: d dt d L ( h d x) dt dx dt v NL: k( h d x) iˆ k viˆ x h d v F x h d F G F D F( x, v) iˆ mgiˆ Dv v iˆ maiˆ FYS-MEK 111 3.1.17

FYS-MEK 111 3.1.17 1

Når slutter bevegelsen? FYS-MEK 111 3.1.17