UNIVERSITETET I OSLO

Størrelse: px
Begynne med side:

Download "UNIVERSITETET I OSLO"

Transkript

1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 14 juni 2019 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter i fysikk og teknikk eller Angell, Lian, Øgrim: Fysiske størrelser og enheter: Navn og symboler Rottmann: Matematisk formelsamling Elektronisk kalkulator av godkjent type. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å forklare hvordan du løser problemene og begrunn svarene dine. Oppgave 1 (8 poeng) Et kar har en grov overflate med friksjonskoeffisient μ på den ene siden, mens den andre siden er helt blank og uten friksjon. En kule slippes fra en høyde h på siden med friksjon. a. Beskriv hvordan kulen beveger seg ned på siden med friksjon. Er friksjonskraften statisk eller dynamisk? Diskuter kvalitativ hvordan friksjonskoeffisienten og helningsvinkelen påvirker bevegelsen. (4 poeng) Når kulen slippes på siden med friksjon gir kraftmomentet fra friksjonskraften en vinkelakselerasjon til kulen. I tillegg til en akselerasjon ned helningen vil kulen også få en vinkelakselerasjon. Hvis friksjonskoeffisienten er stor og helningsvinkelen relativ små, er friksjonskraften statisk og kulen ruller uten å skli. Hvis friksjonskoeffisienten er relativ små eller helningen stor, oppnå friksjonskraften maksimalverdien for statisk friksjon og friksjonskraften blir dynamisk. I så fall vil kulen rulle og skli samtidig. b. Beskriv bevegelsen på siden uten friksjon. Hvor høyt opp kommer kulen på den andre siden hvor det er ingen friksjon: (i) lenger opp, (ii) like langt opp, eller (iii) mindre langt opp? Forklar! (4 poeng) Uansett om friksjonskraften er statisk og kulen ruller ned, eller om friksjonskraften er dynamisk og kulen ruller og sklir samtidig, har kulen både translasjons- og rotasjonsenergi i bunnen av karet. På den andre siden er det ingen friksjonskraft som kan bremse rotasjonsbevegelsen til kulen. Kulen vil fortsette å rotere med samme vinkelhastighet mens translasjonsenergien gjøres om til potensiell energi igjen. Også i det høyeste punktet roterer kulen. Rotasjonsenergien, som er konstant på siden uten friksjon, er ikke tilgjengelig som potensiell energi. Derfor kommer kulen ikke opp til samme høyde h.

2 Oppgave 2 (5 poeng) En homogen kule med masse M og radius R ruller uten å skli. Treghetsmomentet til kulen er I = 2 5 MR2. Hvilken kinetisk energi er større, den relatert til translasjon eller den relatert til rotasjon? Begrunn svaret ditt! Hvis kulen ruller uten å skli er relasjonen mellom lineær og vinkelhastighet gitt ved rullebetingelsen: v = Rω. Vi setter inn i uttrykket for rotasjonsenergi: E r = 1 2 Iω2 = 1 2 v2 MR2 2 5 R 2 = 1 5 Mv2 Rotasjonsenergien er dermed mindre enn kinetisk energi til translasjonsbevegelsen, som er: E t = 1 2 Mv2 Oppgave 3 (17 poeng) Du slipper en bowlingball slik at den sklir med initialhastighet v 0 langs en horisontal bowlingbane. Ballen, som har masse m og radius R, har ingen vinkelhastighet når du slipper den. Den dynamiske friksjonskoeffisienten mellom ballen og banen er μ d. Treghetsmomentet til ballen om massesenteret er I = 2 5 mr2. a. Tegn et frilegemediagram til ballen og navngi alle krefter. (3 poeng) G : gravitasjonskraft N : normalkraft f d : dynamisk friksjonskraft b. Finn både lineærakselerasjon og vinkelakselerasjon til ballen, uttrykt som funksjon av friksjonskoeffisienten μ d, radiusen R og tyngdeakselerasjonen g. (6 poeng) Det er ingen bevegelse i vertikal retning. Newtons andre lov i vertikal retning gir: N mg = ma = 0 N = mg Den dynamiske friksjonskraften er f d = μ d N = μ d mg, og Newtons andre lov i horisontal retning gir: f d = ma a = f d m = μ dg Vi ser på kraftmomentene om massesenteret: Gravitasjonskraften angriper i massesenteret og gir ingen kraftmoment. Normalkraften er parallell med kraftarmen og gir ingen kraftmoment heller. Den eneste kraften som gir et kraftmoment er friksjonskraften: τ cm = Rj ( f d )i = Rf d k = μ d mgrk Vi bruker spinnsatsen τ = Iα for å finne vinkelhastigheten om z aksen: α = τ I = μ dmgr 5 = mr2 c. Vis at ballen begynner å rulle uten å skli etter en tid: (5 poeng) v 0 t r = 2 7 μ d g μ d g R

3 Vi integrerer akselerasjon og vinkelakselerasjon for å finne henholdsvis hastighet og vinkelhastighet: v(t) = v 0 + at = v 0 μ d gt ω(t) = ω 0 + αt = 5 μ d g 2 R t Vi bruker rullebetingelsen for å finne tidspunktet t r når ballen begynner å rulle uten å skli: v(t r ) = Rω(t r ) v 0 μ d gt r = 5 2 μ dgt r v 0 = 7 2 μ dgt r t r = 2 7 μ d g d. Hva er hastigheten til ballen når den begynner å rulle uten å skli? (3 poeng) Vi setter denne tiden inn i uttrykket for hastigheten: v 0 v(t r ) = v 0 μ d gt r = v 0 (1 2 7 ) = 5 7 v 0 Oppgave 4 (13 poeng) En statue fraktes på lasteplanet av en lastebil som kjører med konstant fart v gjennom en sving med kurveradius R. Statuen står slik at en linje mellom føttene vil være vinkelrett på bevegelsesretningen, og avstanden mellom føttene er 2d. Massesenteret til statuen befinner seg i høyde h over et punkt på lasteplanet som ligger midt i mellom føttene. Mens bilen kjører gjennom svingen forblir statuen i ro uten å skli og uten å velte. Du kan se bort fra luftmotstanden, og du kan anta at avstanden d er små i forhold til kurveradius R. a. Tegn et frilegemediagram for statuen mens bilen kjører gjennom svingen og navngi aller krefter. Husk at begge føttene er i kontakt med lastebilen og vær oppmerksom på den relative størrelsen til kreftene. (4 poeng) Vi kan enten beskrive statuen i referansesystemet som er knyttet til gaten, eller i referansesystemet som beveger seg med bilen. Sett fra gaten virker friksjonskreftene som sentripetalkraft som holder statuen på sirkelbanen. Koordinatsystemet som beveger seg med lastebilen er ingen inertialsystem, og det oppstår i tillegg en sentrifugalkraft som fiktiv kraft. Begge beskrivelser er riktig.

4 G : gravitasjonskraft N 1 : normalkraft fra bilen på foten ytterst i svingen N 2 : normalkraft fra bilen på foten innerst i svingen f 1 : friksjonskraft fra bilen på foten ytterst i svingen f 2 : friksjonskraft fra bilen på foten innerst i svingen (F s : setrifugalkraft) b. Vis at normalkraften N 1 fra bilen på foten som er på utsiden av svingen er: N 1 = m hv2 (g + 2 Rd ) og at normalkraften N 2 fra bilen på foten som er på innsiden av svingen er: N 2 = m hv2 (g 2 Rd ) Husk at statuen ikke velter. (6 poeng) Vi bruker Newtons andre lov i både vertikal og horisontal retning: N 1 + N 2 mg = ma = 0 f 1 + f 2 = ma = m v2 R Siden statuen ikke velter er kraftmomentet om massesenteret null: τ cm = r 1 (N 1 + f 1 ) + r 2 (N 2 + f 2 ) = 0 hvor r 1 og r 2 er posisjonsvektorene til punktene hvor kreftene angriper. Med koordinatsystemet som definert i frilegemediagrammet finner vi: τ cm = ( di lj ) (f 1 i + N 1 j ) + (di lj ) (f 2 i + N 2 j ) = (hf 1 dn 1 + hf 2 + dn 2 )k = 0 h(f 1 + f 2 ) + d(n 2 N 1 ) = 0 Vi setter inn fra Newtons andre lov i horisontal retning: hm v2 R + d(n 2 N 1 ) = 0 N 1 N 2 = hmv2 Rd Fra Newtons andre lov i vertikal retning hadde vi: N 1 + N 2 = mg Vi legger sammen: og vi finner for N 2 : 2N 1 = mg + hmv2 Rd N 1 = mg 2 + hmv2 2Rd N 2 = mg N 1 = mg 2 hmv2 2Rd Alternativ kan vi se på kraftmomentene om foten ytterst i svingen. Vi må huske å ta med sentrifugalkraften siden statuen er i ro i systemet som beveger seg med lastebilen. Vi får:

5 F s h + 2N 2 d mgd = 0 N 2 = mg 2 m v 2 2d R h som skal vises. N 1 får vi fra kraftsummen i horisontal retning. c. Finn den maksimale farten som lastebilen kan ha uten at statuen velter. Du kan anta at friksjonskoeffisienten mellom lasteplanet og statuen er så stor at statuen ikke sklir. (3 poeng) Statuen velter når normalkraften fra bilen på foten innerst i svingen forsvinner: N 2 = m 2 (g hv max Rd ) = 0 2 v max = Rdg h Oppgave 5 (13 poeng) En skive med radius R roterer om sin symmetriakse (z akse) med konstant vinkelhastighet ω = ωk. En liten kule med masse m ruller gjennom et rør slik at kulen treffer på skiven ved posisjon r (t 0 ) = x 0 i + y 0 j med hastighet v (t 0 ) = v 0,x i + v 0,y j. Kulen har et fargestoff på seg slik at banen til kulen blir synlig på skiven. Du kan se bort fra friksjon og luftmotstand. a. Først beskriver vi bevegelsen til kulen i laboratoriesystemet (som ikke roterer). Tegn et frilegemediagram til kulen og beskriv hvordan kulen beveger seg. (4 poeng) Det virker gravitasjonskraften og en normalkraft fra skiven på kulen. Uten friksjon og luftmotstand virker det ingen horisontale krefter. Kulen beveger seg i en rett linje over skiven. b. Når du beskriver bevegelsen til kulen i koordinatsystemet som roterer med skiven er kulen påvirket av Corioliskraften F C (t) = 2mω v (t). Skriv Corioliskraften i komponentform ved bruk av enhetsvektorer og hastighetskomponenter. (3 poeng) F C (t) = 2mωk (v x (t)i + v y (t)j ) = 2mω(v y (t)i v x (t)j ) c. Skriv et program som beregner posisjon og hastighet til kulen i koordinatsystemet som roterer med skiven. Bevegelsen skal begynne i posisjon r (t 0 ) med r (t 0 ) < R og initialhastighet v (t 0 ). Beregningen avsluttes når kulen faller av skiven ved r (t 0 ) = R. Det er tilstrekkelig å kun ta med definisjon av initialbetingelsene og integrasjonsløkken. (6 poeng) Det er flere muligheter for å beregne banen. Her er to eksempler hvor Coriolisakselerasjonen er beregnet komponentvis og ved hjelp av vektorproduktet.

6 Oppgave 6 (6 poeng) Tre romskip, A, B og C, beveger seg som vist i figuren. Astronauten i romskip B observerer at romskip C kommer rett imot med relativhastighet 0.8 c, og at romskip A kommer bakfra med relativhastighet 0.5 c. Hva er hastigheten til romskip C relativ til en observatør som befinner seg i romskip A? Vi kaller systemet som er knyttet til romskip B for system S, og vi definerer retningen som er gitt ved orienteringen av romskip B som positiv. Hastighetene til romskipene A og C målt i system S er henholdsvis: v A = 0.5 c og v C = 0.8 c. Vi kaller systemet som er knyttet til romskip A for system S. System S beveger seg relativ til system S med relativhastighet: u = v A = 0.5 c For å finne hastigheten til romskip C i system S bruker vi Lorentz-transformasjonen for hastighet: v C = v C u 0.8 c 0.5 c 1.3 c 1 u c 2 v = = ( 0.8) 1.4 = 13 c 0.93c 14 C Oppgave 7 (26 poeng) To sylindriske skiver ligger flat på et friksjonsfritt horisontalt bord. Skive A, som har masse M og radius 2R, beveger seg med konstant hastighet v 0 i x retning og roterer samtidig med positiv vinkelhastighet ω 0 om z aksen (som står vinkelrett på bordet, se figur som viser bordet ovenfra). Skive B med masse 2M og radius R ligger i ro. Banen er slik at de to skivene berører seg så vidt når de er på samme x posisjon. De to skivene festes øyeblikkelig når de kommer i kontakt, slik at de beveger seg som ett stivt legeme etter kollisjonen. Treghetsmomentet til en sylinder med masse m og radius r som roterer om symmetriaksen er I = 1 2 mr2.

7 a. Finn massesenteret til det nye legemet som består av begge skivene. (3 poeng) Vi bruker koordinatsystemet som er tegnet inn i figuren for å beregne hvor på y aksen massesenteret ligger: R y = m Ar cm,a + m B r cm,b M 2R + 2M ( R) = = 0 m A + m B M + 2M Massesenteret ligger i kontaktpunktet mellom de to skiver. b. Vis at treghetsmomentet om z aksen gjennom massesenteret er: I tot = 9MR 2. (5 poeng) Vi bruker parallellakseteoremet for å beregne treghetsmomentet til skivene om kontaktpunktet: I A = I A,cm + M(2R) 2 = 1 2 M(2R)2 + 4MR 2 = 6MR 2 I B = I B,cm + 2MR 2 = 1 2 (2M)R2 + 2MR 2 = 3MR 2 Vi bruker superposisjonsprinsippet og legger sammen treghetsmomentene til begge skiver: I tot = I A + I B = 9MR 2 c. Finn hastighet v 1 til legemet etter kollisjonen. (4 poeng) Bevegelsesmengde er bevart i kollisjonen siden det virker ingen ytre krefter i horisontal retning, og gravitasjon og normalkraften som ytre krefter i vertikal retning hever seg bort. Kreftene som virker mellom de to skivene er indre krefter. Bevegelsesmengde i systemet som består av begge skiver er derfor bevart: Mv 0 = 3Mv 1 v 1 = 1 3 v 0 d. Vis at vinkelhastigheten til legemet etter kollisjonen er: ω 1 = 2 9 (ω 0 v 0 R ) (5 poeng) Uten ytre krefter er også kraftmomentet null, og spinn er bevart i kollisjonen. Skive A har spinn fra lineærbevegelsen i forhold til kontaktpunktet og spinn fra rotasjonsbevegelsen om sitt massesenter. De to spinnkomponentene har forskjellig fortegn. Vi setter opp en ligning for spinnbevaring: I A,cm ω 0 2RMv 0 = I tot ω 1 1 ω 1 = 2 M(2R)2 ω 0 2RMv 0 9MR 2 = 2MR2 ω 0 2MRv 0 9MR 2 = 2 9 (ω 0 v 0 R ) e. Diskuter rotasjonsretningen til legemet etter kollisjonen som funksjon av initialbetingelsene v 0 og ω 0. Hvor stor må vinkelhastighet ω 0 være for at det nye legemet ikke roterer? (3 poeng) I tilfelle hvor ω 0 > v 0 er vinkelhastigheten ω R 1 positiv og legemet roterer med positiv vinkelhastighet om z aksen, i samme retning som skive A roterte før kollisjonen. Hvis ω 0 < v 0 så er ω R 1 negativ og legemet roterer i motsatt retning. Hvis ω 0 = v 0 så er R vinkelhastigheten ω 1 = 0, og legemet beveger seg i x retning uten rotasjon.

8 f. Hvis E 0 er energien før kollisjonen og E 1 energien etterpå, hva er forholdet E 1 /E 0 i tilfellet hvor legemet ikke roterer etter kollisjonen? Hvordan tolker du resultatet? (6 poeng) Før kollisjonen har skive A både translasjons- og rotasjonsenergi, mens skive B er i ro: E 0 = 1 2 Mv I A,cmω 2 0 = 1 2 Mv v M(2R)2 0 R 2 = 3 2 Mv 0 2 Etter kollisjonen har legemet translasjonsenergi, men roterer ikke: E 1 = 1 2 (3M)v 1 2 = M (v 0 3 ) = 1 6 Mv 0 2 E 1 = 1 2 E = 1 9 Vi ser at mesteparten av energien til skive A forsvinner i kollisjonen, som er sterk uelastisk. Det må virke sterke dissipative (ikke-konservative) krefter som bremser rotasjonsbevegelsen mens skivene knyttes sammen. Hvis kreftene hadde vært elastiske ville skivene sprette fra hverandre igjen. Hvor mye energi blir tapt er avhengig av forholdet mellom ω 0, v 0 og R. I situasjonen hvor rotasjonsbevegelsen kanselleres er energitapet størst. Hvis ω 0 v 0 har legemet også rotasjonsenergi, og R forholdet E 1 /E 0 øker. *** Dette er siste ark i oppgavesettet. Lykke til med oppgavene! Formelark FYS-MEK 1110 F = ma = dp dr dv, hvor p = mv = m og a = = d2 r dt dt dt dt 2 Konstant a : v = v 0 + a t, r = r 0 + v 0 t a t2, v 2 v 0 2 = 2a (r r 0 ) Konstant α: ω = ω 0 + αt, θ = θ 0 + ω 0 t αt2, ω 2 ω 0 2 = 2α(θ θ 0 ) Baneakselerasjon: a = dv dt u T + v2 ρ u N Rotasjon: v = ω r, a = α r + ω (ω r ) Galilei transformasjon: r = R + r, v = V + v Fjærkraft: F(x) = k(x x 0 ), luftmotstand: F v = kv eller F v = Dvv Statisk friksjon: F s μ s N, dynamisk friksjon: F d = μ d N Arbeid: W AB = B A F dr = K B K A, kinetisk energi: K = 1 2 mv2 Potensiell energi for gravitasjon: U = mgy, for fjærkraft: U = 1 2 k(x x 0) 2 Konservativ kraft: F = U(r )

9 t Impuls: J = 1 F dt = p = p (t 1 ) p (t 0 ) t 0 Rakettligningen: F ext + v rel dm dt = ma Massesenter: R = 1 m M ir i = 1 i M M r dm, M = i m i = dm M Kraftmoment: τ = r F, spinn: L = r p Spinnsats: τ = dl dt, stive legemer: L z = I z ω z, τ z = I z α z Kinetisk energi: K = 1 2 Iω2, treghetsmoment: I = i m i ρ 2 i = ρ 2 dm M Parallellakseteoremet: I = I cm + Md 2 Rullebetingelse: V = ωr Fiktive krefter: ma = F ext ma m dω dt r 2mω v mω (ω r ) Gravitasjon: F (r ) = G m 1m 2 u r, U(r) = G m 1m 2 r 2 r Spenning og tøyning: σ xx = F x = E x = Eε A x x xx, y y x = x Lorentz transformasjon: x = γ(x ut), y = y, z = z, t = γ (t u 1 c2 x), γ = 1 u2 c 2 Lorentz transformasjon for hastighet: v = v u 1 u c 2v

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Repetisjon

Repetisjon Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1 Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter

Detaljer

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

Fiktive krefter

Fiktive krefter Fiktive krefter 29.04.2015 FYS-MEK 1110 29.04.2015 1 Eksempel: Gyroskop spinn i x retning: L I z y x r L gravitasjon: G mgkˆ angrepspunkt: r G riˆ G kraftmoment: r G G riˆ ( mgkˆ) rmg ˆj spinnsats: d L

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Fiktive krefter

Fiktive krefter Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)

Detaljer

Oppsummert: Kap 1: Størrelser og enheter

Oppsummert: Kap 1: Størrelser og enheter Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011 Side av 5 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Keplers lover. Statikk og likevekt

Keplers lover. Statikk og likevekt Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

Rotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst

Rotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

Sykloide (et punkt på felgen ved rulling)

Sykloide (et punkt på felgen ved rulling) Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):

Detaljer

Arbeid og energi. Energibevaring.

Arbeid og energi. Energibevaring. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

Løsningsforslag. Eksamen i Fys-mek1110 våren !"!!!. Du kan se bort fra luftmotstand.

Løsningsforslag. Eksamen i Fys-mek1110 våren !!!!. Du kan se bort fra luftmotstand. Side av 6 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

Løsningsforslag Fys-mek1110 V2012

Løsningsforslag Fys-mek1110 V2012 Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil

Detaljer

Løsningsforslag til ukeoppgave 4

Løsningsforslag til ukeoppgave 4 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon

Detaljer

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP

Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er

Detaljer

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver: Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA

Detaljer

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink. EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:

Detaljer

Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK

Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK Institutt for fysikk Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433 Eksamensdato: Mandag

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 14/16 Utsatt individuell skriftlig eksamen i IBI 4- Basal biomekanikk Torsdag 6. februar 15 kl. 1.-13. Hjelpemidler: kalkulator formelsamling

Detaljer

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på: Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p

Detaljer

EKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

EKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink. EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:

Detaljer

Kortfattet løsningsforslag / fasit

Kortfattet løsningsforslag / fasit 1 Kortfattet løsningsforslag / fasit Eksamen i: YS-MEK 1110 - Mekanikk / YS-ME 1110 - Mekanikk for ME Eksamensdag: redag 9. juni 006 Det tas forbehold om at løsningsforslaget kan inneholde feil! Denne

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

EKSAMEN i TFY4108 FYSIKK

EKSAMEN i TFY4108 FYSIKK Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 23. mars 2017 Tid for eksamen: 14.30-17.30, 3 timer Oppgavesettet er på 8 sider Vedlegg: Formelark

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel)

FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel) UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00

Detaljer

Fiktive krefter. Gravitasjon og planetenes bevegelser

Fiktive krefter. Gravitasjon og planetenes bevegelser iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1001 Eksamensdag: 12. juni 2019 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (3 sider).

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK

Detaljer

Kap. 3 Arbeid og energi. Energibevaring.

Kap. 3 Arbeid og energi. Energibevaring. Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)

Detaljer

Høgskolen i Agder Avdeling for EKSAMEN

Høgskolen i Agder Avdeling for EKSAMEN Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

Fysikkolympiaden Norsk finale 2018 Løsningsforslag

Fysikkolympiaden Norsk finale 2018 Løsningsforslag Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet

Detaljer

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:

Detaljer

Kortfattet løsningsforslag

Kortfattet løsningsforslag 1 Kortfattet løsningsforslag Eksamen i FY-ME100 4. sept. 2002 Oppgave 1 Korte enkeltspørsmål. Gode og kortfattede begrunnelser verdsettes! a) En stein med masse 1 kg er festet til enden av en rett stav

Detaljer

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8) kap8.ppt 03.0.203 TFY445/FY00 ekanisk fysikk Størrelser og enheter (Kap ) Kinematikk i en, to og tre dimensjoner (Kap. 2+3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons

Detaljer

Fiktive krefter

Fiktive krefter Fiktie krefter 5.04.013 FYS-MEK 1110 5.04.013 1 Fiktie krefter problem: Newtons loer gjelder bare i inertialsystemer hordan analyserer i en beegelse i et akselerert system? z z x y transformasjon transformasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

Kap. 9+10 Rotasjon av stive legemer

Kap. 9+10 Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legemer Vi skal se på: Vinkelhastighet, inkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. august 2015 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)

FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00

Detaljer