1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket et AB med lengde 6 ved hjelp av verktøyet Linjestykke med bestemt lengde. På rullegardinmenyen under vinkelsymbolet velger vi verktøyet Vinkel med fast størrelse. Deretter klikker vi først på punktet B og deretter på vinkelpunktet A. Nå fyller vi ut skjermbildet slik: Legg merke til at denne vinkelen er avsatt i retning mot klokka. Det dukker da opp et punkt B slik at BAB = 50. I rullegardinmenyen for linjer velger vi Stråle gjennom to punkt og klikker på punktene A og B. Nå slår vi en sirkel med radius 4 om punktet A ved å bruke verktøyet Sirkel definert ved sentrum og radius. Til slutt finner skjæringspunktet C mellom strålen og sirkelen ved å bruke verktøyet Skjæring mellom to objekt. Det gir dette resultatet: Nå markerer vi trekanten ved hjelp av mangekantverktøyet og skjuler strålen, sirkelen og B ved å klikke på kulene foran dem i algebrafeltet. Til slutt viser vi verdier for vinkelen og sidekantene på denne måten: Sinus 1T > Geometri 1
Oppgave 1.80 I ABC er AB = 4, AC = 3 og A = 35. c) Finn ukjente sider og vinkler. Oppgave 1.81 I ABC er AB = 5, BC = 4 og B = 40. c) Finn ukjente sider og vinkler. Oppgave 1.82 I ABC er AB = 6, A = 30 og B = 45. b) Finn AC og BC. Oppgave 1.83 I ABCD er A = 60, B = 80, AB = 5, AD = 3 og BC = 2. a) Tegn firkanten digitalt. b) Finn arealet av firkanten. c) Finn ukjente vinkler og sider i firkanten. Noen ganger er det mer enn én trekant som passer til opplysningene om en trekant. Nå skal vi se hvordan vi da kan tegne trekanten digitalt. EKSEMPEL I ABC er A = 30, AB = 6 og BC = 4. Løsning: a) I GeoGebra bruker vi først Linjestykke med bestemt lengde og setter av et linjestykke AB med lengde 6. Deretter bruker vi Vinkel med fast størrelse og Stråle gjennom to punkt til å lage ei stråle gjennom A som danner en vinkel på 30 med linjestykket AB. Ettersom BC = 4, må C ligge på en sirkel med radius 5 om punktet B. Derfor bruker vi verktøyet Sirkel definert ved sentrum og radius og slår denne sirkelen om B. Det gir dette resultatet: Sinus 1T > Geometri 2
Både punktet C og D har avstanden 4 fra B. Punktet D er også en mulig plassering for punktet C. Det er dermed to trekanter som passer med opplysningene i oppgaven. Vi høyreklikker nå på punktet D, velger Gi nytt navn og setter navnet C på punktet. Nå bruker vi mangekantverktøyet og merker først trekanten ABC og deretter trekanten ABC. Så skjuler vi strålen, sirkelen og punktet B og viser lengden på de kjente sidene. Disse to trekantene passer med opplysningene i oppgaven: b) I algebrafeltet finner vi nå arealet av de to mulige trekantene: ABC har arealet 3,83, og ABC har arealet 11,76. Oppgave 1.84 I ABC er B = 45, AB = 5 og AC = 4. Oppgave 1.85 I ABC er A = 35, AC = 6 og BC = 4. b) Finn ukjente sider og vinkler i trekanten. Sinus 1T > Geometri 3
Oppgavedel 1.8 Digital tegning av vinkler Oppgave 1.180 a) Tegn digitalt ABC der AB = 5,0, BC = 7,0 og B = 65. c) Finn ukjente sider og vinkler. Oppgave 1.181 a) I ABC er AB = 8,0 og A = 60. Midt på siden AB ligger et punkt D, og ADC = 30. Tegn ABC. (Du kan skifte navn på et hjørne ved å høyreklikke på navnet til hjørnet.) b) Finn ABC og BCD. c) Finn ut hvilken trekant som har størst areal av ADC og DBC. Oppgave 1.182 a) Figuren nedenfor viser et kvadrat ABCD der sidene har lengde 5. FE står normalt på AC, og AE = 5. Tegn digitalt denne figuren. b) Finn lengdene av EC, EF og EFB. c) Finn arealet av FEC. d) Finn arealet av firkanten ABFE. Oppgave 1.183 a) Tegn digitalt ABC der A = 90, AB = 4,0, BC = 6,0. b) Finn AC. c) Tegn et punkt D slik at CD = BC og AB = AD. d) Tegn en sirkel med sentrum i C som har radius 6,0. Trekk ei linje fra A gjennom C som treffer sirkelen i punktet E. Tegn BCE og CDE. Finn lengden av BE og DE. e) Finn CBE. f) Finn arealet av firkanten BCDE. Sinus 1T > Geometri 4
Oppgave 1.184 a) I ABD er D = 90, AB = 7,5 og AD = 4,5. Tegn trekanten digitalt. b) Finn A og B. c) ABD er en del av en firkant ABCD. Punktet E ligger på diagonalene AC og BD i firkanten slik at BE = 4,0. Videre er DBC = 60. Tegn firkanten ABCD digitalt. d) Finn BCD og BDC. e) Finn BC og CD. f) Finn arealet av firkanten BCDE. Oppgave 1.185 I ABC er A = 60, AB = 6,0 og BC = 5,5. c) Finn ukjente sider og vinkler i trekanten. d) Finn ut hvor lang BC må være for at vi bare skal få én trekant som passer til opplysningene i oppgaven. Vi går ut fra at A og AB er uendret. Sinus 1T > Geometri 5
FASIT teoridel 1.80 b) 3,4 c) BC = 2,3, B = 48,1 og C = 96,9 1.81 b) 6,4 c) AC = 3,2, A = 53,0 og C = 87,0 1.82 b) AC = 4,4 og BC = 3,1 1.83 b) 9,5 c) CD = 3,2, C = 111,3 og D = 108,7 1.84 b) 2,94 eller 9,56 1.85 b) Enten AB = 2,88, B = 120,6 og C = 24,4 eller AB = 6,95, B = 59,4 og C = 85,6 FASIT oppgavedel Oppgave 1.180 b) 15,9 c) AC = 6,7, A = 72,2, ABC = 42,8 Oppgave 1.181 b) ABC = 13,9, BCD = 16,1. c) Like store, begge har areal 3,46. Oppgave 1.182 b) EC =EF = 2,07, EFB = 135 c) 2,14 d)10,36 Oppgave 1.183 b) 4,5 d) BE = DE = 11,2 e) CBE = 20,9 f) 24 Oppgave 1.184 b) A = 53,1 og B = 36,9 d) BCD = 73,7, BDC = 46,3 e) BC = 4,5, CD = 5,4 Oppgave 1.185 b) 3,11 og 12,48 c) AC = 1,2, ABC = 10,9 og ACB = 109,1 eller AC = 4,8, ABC = 49,1 og ACB = 70,9 d) ca. 5,2 Sinus 1T > Geometri 6