BEKTOREAK ESPAZIOAN. Norabidea: A eta B puntuak dauden zuzenarena eta zuzen horren paralelo guztienari norabidea deitzen

Størrelse: px
Begynne med side:

Download "BEKTOREAK ESPAZIOAN. Norabidea: A eta B puntuak dauden zuzenarena eta zuzen horren paralelo guztienari norabidea deitzen"

Transkript

1 Bektoeak espaioak BEKTOREAK ESPAZIOAN. Eagiketak bektoeekin A jatoia eta B mta den bektoea honela adieaten da: AB Bektoe baten elementak haek dia: Modla: A-tik B-ako distantia, eta honela iendaten da: AB Noabidea: A eta B pntak daden enaena eta en hoen paalelo gtienai noabidea deiten aio. Noankoa: Noabide bakoitak kontako bi noanko dit: A-tik B-a, eta B-tik A-a A B Bi bektoe bedinak dia modl bea, noabide bea eta noanko bea dtenean. Bektoeak letaen gainean gei bat jaita iendaten dia:,, w..., edo, bestela, odekaietako baten bitate, jatoia eta mta gainean geito bat dtela idati... Bektoe baten eta enbaki baten ateko bideketa. k 0 enbaki baten eta bektoe baten ateko bideketa, k beste bektoe bat da eta honako osagai haek dit: Noabidea: -ena Noankoa: -ena edo bee kontakoa, k-en einaen aabea. Modla: -en modlaen eta k-en balio absoltaen ateko bideketa: k = k 0 bektoea eo bektoea, 0 da. - edo -, -en akakoa esaten aio... Bektoeen ateko bata. eta, bi bektoe bateko, honela jokat beha da: jai beha da -en ostean, -en jatoia eta -en mta bat eto daiteen. Bataen emaita,, iango da jatoia -ena eta mta -ena den bektoea eta jatoi beean kokaten baditg eta paalelogamo bat osaten badg, jatoia eta -ena bea iango den diagonala, bata bektoea iango da. O.

2 Bektoeak espaioak.3. Bektoeen ateko kenketa eta, bi bektoeen ateko kenketa egiteko, bat beha diog -en akakoai. eta jatoi beean kokaten baditg eta paalelogamo bat osaten badg, -en mtetik -en mtea doan diagonala kenda bektoea iango da..4. Zenbakia eta bektoeaen ateko bidekada k enbaki bat bide bektoe bat ondoko baldintak beteten diten bektoe bat da: bektoeaen noabide bedina dena. k positiboa bada, bektoeaen noanta beekoa. k negatiboa bada, bektoeaen aldeantiko noanta dena. Bee modla k. Bektoe baten adieapen analitikoa Segment oientaten kasako ehatko ditg konbinaio linealak eta bektoeen menpekotasn eta independentia lineala... Bektoeen konbinaio lineala,,,..., w enbait bektoe eta a, b, c,..., l enbait enbaki ianda, a b c... lw adieapenai bektoeen konbinaio lineala esaten aio... Menpekotasn eta independentia lineala Zenbait bektoe linealki menpekoak diela esaten da bektoe hoietakoen bat besteen konbinaio lineal modan ja daitekeenean. Hoela e denean, linealki independenteak diela esaten da. Leokatta daden bi bektoe linealki menpekoak dia. Hi bektoe planokide linealki menpekoak dia. O.

3 Bektoeak espaioak.3. Oinaia Planokideak e dien,, hi bektoe linealki independenteak badia eta, hoe gain, espaioko beste edoein bektoe mod baka batean adieai ahal bada hi bektoe hoien konbinaio lineal modan, (,, ) oinai bat eaten dte. Hi bektoe hoiek een atean pependiklaak badia, oinai otogonala eaten dtela esaten da. Hoe gainea, lea bea badte (nitatetat haten dena), oinaia otonomala dela esaten da. ( ).4. Bektoe baten koodenatak oinai batekiko,, oinaia emanda, edoein bektoe mod bakaean ja daiteke oinai hoetako elementen konbinaio lineal modan: = a b c a, b, c enbakiei -ekiko oinaiaen koodenatak diela esaten aie. Honela adieaten da: = (a, b, c).5. Eagiketak koodenatekin Bektoeen koodenatek aaoi jokaten dte eekin eagiketak egiteakoan. Iks deagn ondoko adibideetan. (,,) eta (a, b, c) bektoeak emanik, Batketa: = ( a, b, c) Bideketa enbaki batekin: k = (k, k,k ) Konbinaio lineala: p q = (p qa, p qb, p qc) Aiketak: O. 37. eta. O. 3

4 Bektoeak espaioak 3. Bektoeen bidekada eskalaa adieapena- eta, bi bektoeen bidekada eskalaa esaten diog eta en bitate iendaten dg ondoengo emaita ha: = cos(,) Bai modlak eta bai kosina enbakiak dia, bea, bidekada eskalaa enbaki bat da. Bidekada eskalaaen popietateak. = da, ian ee = cos(, ) = cos 0º = cos(, ) = = 0 edo = 0 badia, odan = 0 da. 0 eta 0 badia, odan = 0 -en gaineko -en poiekioa da. Poiekioaen eina edo - iango da angela oota ala kamtsa den aabea. Tkakoa. = Elkakoa. (k ) = k ( ) Banakoa. ( w) = w (i,j,k) oinai otonomala bada, honako ha beteten da: i i= j j= k k= i j=0 i k=0 j k=0 Bidekada eskalaaen adieapen analitikoa. eta -en koodenatak (,, ) eta (,, ) badia (i,j,k) oinai otonomal batekiko, odan: = (Fogat) Bidekada eskalaaen eabileak eta -en koodenatak (,, ) eta (,, ) badia (i,j,k) oinai otonomal batekiko, odan: Bektoe baten modla = = ( i j k)( i j k) = = O. 4

5 Bektoeak espaioak O. 5 Bi bektoek osaten dten angela. α cos = = bektoeaen gaineko bektoeaen poiekioa = Aiketak. O. 4, eta 3

6 Bektoeak espaioak 4. Bidekada bektoiala eta bektoeen bidekada bektoiala, beste bektoe bat da eta honela definiten da: eta linealki independenteak badia, honako eagaiak diten bektoea da: o Modla: = sin(,) o Noabidea: eta -ekiko pependikla o Noankoa: ang(,)<80º bada, goant ang(,)>80º bada, beheant eta linealki menpekoak badia, ha da, eetaiko bat 0 bada edo noabide bea badte, odan = 0 Popietateak bidekada bektoialaen modla eta eta bektoeek mgaten dten paalelogamoaen aalea bedinak dia. = -. Ha da, modl bea, noabide bea eta akako noankoa dte. = 0, eta menpekoak badia. Paaleloak badia. (i,j,k) oinai otonomala bada, honako ha beteten da: ii=0 jj=0 kk=0 ij=k ik=j jk=i (a ) = a ( ) = (a) Bidekada bektoialak e d elkate popietatea beteten: ( ) w eta ( ( w) e dia bedinak Bidekada bektoialaen adieapen analitikoa. (,, ) eta (,, ) badia, odan =,, i = j k = =... = ( ). Baina, ( cos(, ) ) = ( cos (, = ( ) = )) = sin (, ), 0 ang(, ) π ianik. Aiketak: O. 44, eta 3 O. 6

7 Bektoeak espaioak 5. Hi bektoeen bidekada nahasia,, w bektoeen bidekada nahasia esaten aio eta [,, w] adieapena d, eagiketa honela egitean loten den enbakiai: [,,w] = ( w) Bidekada nahasiaen intepetaio geometikoa eta w bektoeek mgattako ( w) = w cosα = w ( cosα) = paalelogamoaen aalea eta w k mgattako planoaekiko pe, eta w k mgattako paa = pendiklaaen gaineko en poiekioa lelepipedoaen oinaiaen aalea, eta w k mgattako =, eta w k mgattako paalelepipedoaen bolmena paalelepipedoaen altea Adieapen analitikoa (,, ), (,, ) eta w( 3, 3, 3 ) badia, odan [,, w] = ( w) = (,, ),, = Popietateak Bektoeetaikoen bat nla bada, bideketa nahasia nla da. [,, w] =[, w, ] =[w,, ] = -[,, w] = -[, w, ] = -[w,, ] [,, w] =0 bada,,, w bektoeak menpekoak dia. [λ,, w] = [, λ, w] = [,, λw] = λ [,, w] Aiketak: O. 45, O. 7

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt . til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i

Detaljer

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11

=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11 3.3 Oppgaver 3.3.1 1 2 3 1 2 3 2 0 1.La A,,,,, 3 4 B 2 1 C 0 1 a -1 b 1 c 2 Regn ut (a) A a, (b) B b, (c) C c, (d) A B, (e) A B C ( a) ( c) ( e) ( f ) 1-2 2 1 2 + ( 2) ( 1) 4 A a 3 4 1 3 2 + 4 ( 1 ( b)

Detaljer

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo Universitetet i Oslo 27. oktober 2011 Pol og polare Enhetssirkelen har likningen q(x, y) = x 2 + y 2 1 = 0 For hvert punkt a = (a 1, a 2 ) på sirkelen er tangentlinja til sirkelen definert av likningen

Detaljer

Interferensmodell for punktformede kilder

Interferensmodell for punktformede kilder Interferensmodell for punktformede kilder Hensikt Oppsettet pa bildet besta r av to transparenter med identiske sirkelmønstre, og brukes til a illustrere interferens mellom to koherente punktkilder. 1

Detaljer

! "#$% &'()('*+),-.-/(.)&/(-'0),1 % % ' # # $ "

! #$% &'()('*+),-.-/(.)&/(-'0),1 % % ' # # $ ! "#$% &'()('*+),-.-/(.)&/(-'0),1! "#$ # % % #& ' # #!$ (! "#)*+ " $ " #)*+$ 1 21,-. /0123 4-512167-8 ) 9-2:.1236;: A-8,34

Detaljer

Vektoranalysis. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Vektoranalysis. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Vektoranalsis Aufgaben mit Lösungen Jörg Galer, Lubov Vassilevskaa Inhaltsverzeichnis 1. Ebene und räumlich Kurven................................ 1 1.1. Differentiation eines Vektors nach einem Parameter................

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I AGDER Gid E K S A M E N S O P P G A V E : AG: YS ikk LÆRER: ikk : Pe Henik Hogd Kle: Do: 5.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 5 inkl. foide Anll oppge: Anll edlegg: ille

Detaljer

Ekuazioak eta inekuazioak

Ekuazioak eta inekuazioak Ekuazioak eta inekuazioak EKUAZIOAK LEHEN MAILAKOAK BIGARREN MAILAKOAK BIKARRATUAK BESTE MOTATAKO EKUAZIOAK ZATIKI ALJEBRAIKOEKIN ( a) ( b) 0 ERROKETADUN EKUAZIOAK INEKUAZIOAK Azken gaua Denbora-tarte

Detaljer

Fysikk-OL Norsk finale 2005

Fysikk-OL Norsk finale 2005 Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på

Detaljer

(((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'

(((5( *, (( (*(5((,5( +! #  #$% & ' % & ! & & ((()!#)((( $%&'!$%*(((! # $%  & ' ((()& # &  & )(((& $( # &  ) # & $( *+& ((,*()* ((,**! # $%&' (((5( *, (( (*(5((,5( +! "# " #$% & ' % & "! & & ((()!"#)((( $%&'!$%*(((!" # $% " & ' ((()& # & " & )(((& $( # & " ) # & $( *+& ((,*()* ((,**! "# $%&'&%!!""!!()!*++,!!*!*! % -''&. /'& 0 + -. /.0.10' 1.0

Detaljer

1 Å konstruere en vinkel på 60º

1 Å konstruere en vinkel på 60º 1 Å konstruere en vinkel på 60º Vi skal konstruere en 60º vinkel med toppunkt i A. Høyre vinkelbein skal ligge langs linja l. Slå en passende sirkelbue om A. Sirkelbuen skjærer l i et punkt B. Slå en sirkelbue

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

!"+ <B<* 78!./ +e}+ <"#"5? "! 8*$CD<!b. 24E"-F m3" m3 %5 "56<"5!!+ erh;<: 24E"-F m3! ;<5 *556+55! ~ *5G".c 9: -04IJK"!+

!+ <B<* 78!./ +e}+ <#5? ! 8*$CD<!b. 24E-F m3 m3 %5 56<5!!+ erh;<: 24E-F m3! ;<5 *556+55! ~ *5G.c 9: -04IJK!+ # " ' ; 0 2 & $ 5 ; ;' 0! 3) # #!"# /!"#$%&' "#()* # +,-!,. $% 23!(0 1 456-789:5;0 ' ?@ABC$! D EE ADBC 233(4 0F!5 GH IJKLMNO2P QRS TU V WXYM!(0 1 456DEZ[3\U]^_`abc RS TDE ab KLK 456 ab% 4!( 523 0 1

Detaljer

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Gd E K S M E N S O P P G V E : G: YS kk LÆRER: kk : Pe Henk Hogd Kle: Do: 5.. Ekend, f-l: 9.. Ekenoppgen beå følgende nll de: 5 nkl. fode nll oppge: nll edlegg: lle hjelpedle e: Klkulo

Detaljer

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00 NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C

Detaljer

!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '

! #$ % <'/ & ' & &  E*.E *N 9  9 ) $ 9 ' & )*./W BN 9 ' 9E * )* * 9 ' \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * ' !"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCouseWae http://ocw.mt.edu 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5 Please use the followng ctaton fomat: Maus Zahn, 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5. (Massachusetts

Detaljer

Eksamen høsten 2009 Løsninger

Eksamen høsten 2009 Løsninger Eksamen høsten 009 Løsninger Eksamen høsten 009 Løsninger DEL Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave a f( ) = 5 e f () = 5e = 5e b

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = =

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = = til oppgavene i avsnitt 55 til oppgaver i avsnitt 55 551 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger cos( u + v) sin( u + v) cosu sin u u+ v u = sin( u v) cos( u v) sin

Detaljer

TMA4120 Matematikk 4K Høst 2015

TMA4120 Matematikk 4K Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Løsningsforslag Øving 9 hapter 13.7 La z. Logaritmen til z, ln z, er definert som tallene ln z ln

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2004.. 35.. 2 Š 621.039.5; 550.837 ƒ ˆŸ Š Œ.. ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 349 Š ƒ ƒˆ Šˆ Œ ˆ ˆ ƒ ˆ Šˆ Š ˆ 350 Ÿ œ Œ Š Œˆ ˆ ˆ ˆ ŠˆŒˆ Œˆ ƒ ˆ Œ ˆ 366 ˆ œ ˆ Š ƒ - ˆ ˆˆ Œ ƒ ƒˆˆ ˆ ƒ

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

Probema di Marek. (Problema dei quattro punti inaccessibili).

Probema di Marek. (Problema dei quattro punti inaccessibili). ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI "In Meoria dei Morti per La Patria" Viale Enrico Millo, 1-16043 Chiavari Laboratorio di Topografia - G.P.S. - G.I.S Anno scolastico 2009-2010 Soario

Detaljer

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form Esamn i SIF4 Fsi 7. smb 999 LØYSINGAR Oppgav a S [ÃÃÃÃÃÃÃ[Ã [ S DVVHÃ ÃÂÃ [ÃÃ$NVHOHUDVMRQÃ t Kaft opp: S sinα -Ssinα S α S S Nwtons. lov gi som bølgjlininga, av fom S µ t µ S t v t m v bølgjfat som v v

Detaljer

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Løsningsforslag til prøveeksamen i MAT1050, vår 2019

Løsningsforslag til prøveeksamen i MAT1050, vår 2019 Løsningsforslag til prøveeksamen i MT15, vår 19 Oppgave 1. a) Vi har sinx + y) d R cosx + y) sinx + π) + sin x siden alle fire leddene er. yπ y π dx sinx + y) dy dx cosx + π) + cos x) dx sin π + sin π)

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Notat om trigonometriske funksjoner

Notat om trigonometriske funksjoner Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks

Detaljer

Oppgaver i matematikk,

Oppgaver i matematikk, Oppgaver i matematikk, Nyttig før skolestart Tallregning og algebra Oppgave Regn ut både med og uten kalkulator c) f) g) h) + + ( ) + + ( ) + ( ) + ( ) ( ) 7 ( ) ( ) 7 i) () j) k) l) Oppgave Forkort brøkene

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Jon Anreas Støvneng Telefon: 7 59 6 6 / 41 4 9 0 LØSNINGSFORSLAG TIL EKSAMEN I FY100 ELEKTRISITET OG MAGNETISME

Detaljer

!" " #$ "% & & %(!!!! )* %+, *-./--0 1! 1 11!"#!!"! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! "#$%&' ()*+,-./

!  #$ % & & %(!!!! )* %+, *-./--0 1! 1 11!#!!! ! :; 56!!! < = AB 8C D < E 1 4 '!11 FGHIJK2 LM!111! #$%&' ()*+,-./ !""#$"% & & %(!!!! )*%+,*-./--01!111!"#!!"! 1234 1!11156789:; 56!!!=?@AB 8CD< E 14'!11FGHIJK2 LM!111! "#$%&'()*+,-./0123456789: ;./0134.?.@AB/()CD&'E *D&'FG HCDIJKLMNO HPKQRFST UV34W./01DXY&'CDI

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle

Detaljer

NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER

NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER NORMALFORDELINGER, KOVARIANSMATRISER OG ELLIPSOIDER SIE 3080 STOKASTISKE OG ADAPTIVE SYSTEMER Oddvar Hallingstad 0. februar 00 Vi skal her utlede noen nyttige formler for arbeidet med kovariansmatriser

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8. Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160

Detaljer

FAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland

FAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: F Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Han Gelland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

-*/-* ( (5 4 -*+* *( *.+ * 01/ %F R QRP>SNTU? / -*A./ /4 +,LB % )* NE4 A LB.L I K[ DEN01 ^.L N &. L * b - 2 E +4B +,B Q b- * DE? 9?5+01 :./

-*/-* ( (5 4 -*+* *( *.+ * 01/ %F R QRP>SNTU? / -*A./ /4 +,LB % )* NE4 A LB.L I K[ DEN01 ^.L N &. L * b - 2 E +4B +,B Q b- * DE? 9?5+01 :./ -*/-* ((54-*+**( 54-8 54++*.+* 01/%FR QRP>SNTU?/ -*A.//4 +,LB%)*NE4ALB.LIK[ DEN01^.LN&. L * b - 2 E +4B +,BQb-*DE? 9?5+01 :./IB?K 2 L B. L N _ '*R0Q&==2 b-./,b 77._.AB L F E -./%)** 01$&(&)&!$$#&&&& &#-"01/2""7

Detaljer

FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad

FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

Nivåtettheten for ulike spinn i 44 Ti

Nivåtettheten for ulike spinn i 44 Ti 7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Geometri R1, Prøve 1 løysing

Geometri R1, Prøve 1 løysing Geometri R, Prøve løysing Del Tid: 60 min Hjelpemiddel: Skrivesaker Oppgåve Til høgre ser du ein sirkel med sentrum i S. B ligg på sirkelperiferien og punkta Aog Cer skjeringspunkt mellom sirkelen med

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk bee læng Hanlngsplan fo bæumsskolen mo 2020 Relasjons- og leelseskompeanse/vueng fo læng/gal akkk fe uvklngsomåe skolemelngen pesenee fe uvklngsomåe Længsoppage Den ykge læe bee læng Skolemelng fo bæumsskolen

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

!"##$%&#'()*+,-%!./001!!2!

!##$%&#'()*+,-%!./001!!2! !"##$%&#'()*+,-%!./001!!2! "#$%&'($)!*+,-./0!!"#$%&$#'%#$()*+,--'*.-/0"($#%1!23451!"6.76!89-:.;?)!@ABC1! 2676D47..+.;!,EF+,9!G66:

Detaljer

Niels Henrik Abels matematikkonkurranse Finale Løsninger

Niels Henrik Abels matematikkonkurranse Finale Løsninger Niels Henrik Abels matematikkonkurranse 6. mars 2018 Oppgave 1. Det kinesiske restleddteoremet tillater oss å telle opp antall par (x, y) der x er restklassen til n!! modulo 125 og y er restklassen modulo

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Løsningsforslag til ukeoppgave 12

Løsningsforslag til ukeoppgave 12 Oppgaver FYS1001 Vår 018 1 Løsningsforslag til ukeoppgave 1 Oppgave 16.0 Loddet gjør 0 svingninger på 15 s. Frekvensen er da f = 1/T = 1,3 T = 15 s 0 = 0, 75 s Oppgave 16.05 a) Det tar et døgn for jorda

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 11/5-15/5

Fasit til utvalgte oppgaver MAT1110, uka 11/5-15/5 Fasit til utvalgte oppgaver MAT0, uka /5-5/5 Øyvind Ryan (oyvindry@i.uio.no May, 009 Oppgave 5.0.a Ser at f(x, y = (, 3, og g(x, y = (x, y. g(x, y = 0 hvis og bare hvis x = y = 0, og dette er ikke kompatibelt

Detaljer

Høst 98 Ordinær eksamen

Høst 98 Ordinær eksamen ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo

Detaljer

Eksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid:

Eksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Lørdag 22. desember

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

Internet: nauka.sibstrin.ru/trudy/ : (383) , : (383)

Internet: nauka.sibstrin.ru/trudy/ : (383) , : (383) - (). 21, 3 (69) 2018 - () : :, -,, -,, -,, ;,, -, - - ; (, -, ),,, ;, -,,, ; -,, - ; -, - ;, (), -, - ; 9000, - ; ; ;, -, ;. 630008,.,. я, 113, - () E-mail: dao@sibstrin.ru, ntio@sibstrin.ru Internet:

Detaljer

Solutions to selected problems from Exercise 5

Solutions to selected problems from Exercise 5 Soluions o seleced poblems om Execise 5 Po. Rakhesh Singh 1 Execise 5.1 Since j E E ˆ ˆ x + y e he diecion o wave popagaion k x ˆ + y ˆ x+ y he coesponding magneic ield can be obained om Maxwell s cul

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA251 Numeriske metoder Løsningsforslag, Øving 3 Oppgave 1 a) Start med å tegne en skisse av funksjonen f(x) = x.99(e x 1). Vi oppdager fort at α må ligge svært nær, faktisk rundt.2. Newtons metode anvendt

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

Arantza Egurcegui MATEM DBH A 2 TIKA erein

Arantza Egurcegui MATEM DBH A 2 TIKA erein Arantza Egurcegui DBH 2 MATEMATIKA erein Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako salbuespenezko

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Part 8. Acoustic Radiators

Part 8. Acoustic Radiators Pat 8 Acoustic Radiatos Sphical Wavs Oscillating sphical cavity, a va adius of th oscillating sphical cavity vlocity amplitud of th cavity oscillation a) oscillating cavity b) point souc ( a > λ

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning EKSAMEN I FOA94 Differensialligninger KLASSAR : 08HETK, 08HMAM, 08HMMT, 08HMPR, 08HUVT DATO : 0. desember 200 ANTALL OPPGAVER 3 ANTALL SIDER 3 VEDLEGG

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN 006 007 Andre runde: / 007 Skriv øverst: Navn, fødselsdato, e-postadresse, hjemmeadresse og skolens navn Varighet:

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

ØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A.

ØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A. SK10 askinkonstruksjon Kap. Oppgae.1. ØVING : DIENSJONERING AV AKSLINGER OG ROTORER Oppgae.1 a) aks. øyespenningen regnes fra: σ _ max ) Nedøyningen ed punkt C (der aften F angriper) er gitt ed δ C CC

Detaljer

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS8 Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall oppgae:

Detaljer

Løsningsforslag til ukeoppgave 4

Løsningsforslag til ukeoppgave 4 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave

Detaljer

Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016

Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m

Detaljer

SIE30AR Ulineær bevegelsestyring - Servoteknikk Løsningsforslag til øving 11: Passivitet

SIE30AR Ulineær bevegelsestyring - Servoteknikk Løsningsforslag til øving 11: Passivitet SIE3AR Ulineær bevegelsestyring - Servoteknikk Løsningsforslag til øving 11: Passivitet u u 1 H 1 y 1 y y H u Figure 1: To systemer i tilbakekobling 1 Fra Figur 1 kandet sees at u = u 1 + y y = y 1 = u

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

!"#$%&&'&()*+"(, -!"#. "$ *'&(*&!*,/!"# &$*!$*01$*'!22 3, &9 *$ "&$*2 "*( /. )* * - 1*((&$'&&2$!$*2$&* 7* -

!#$%&&'&()*+(, -!#. $ *'&(*&!*,/!# &$*!$*01$*'!22 3, &9 *$ &$*2 *( /. )* * - 1*((&$'&&2$!$*2$&* 7* - !"#$%&$ $"$ ' ($)$)($'!"#$%&&'&()*+"(, -!"#. "$ *'&(*&!*,/!"# &$*!$*01$*'!22 3,!'$ $*$+, $)-$%&4 $($5 6!$"'&' 7!(*2 3'&(* 7& *2 38 ("(3 2* 4 &9 *$ "&$*2 "*( / &! 3'&(*:!* $&2 7*'&(*"2 *2 3&$*2 "*('&. )*

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Geometri

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Geometri QED 1 7 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Kapittel.3 3. For eksempel: a) b) c) d) 1 e) Kapittel.4 6. 7. Denne oppgaven kan det være greit å vente med til etter

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer