β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1)

Størrelse: px
Begynne med side:

Download "β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1)"

Transkript

1 Kapittel 8 Polarkoordinater Oppgave 1 Vi har gitt skalarfeltet β(x, y) = xy i kartesiske koordinater. a) For polarkoordinater (r, θ) og kartesiske koordinater (x, y) har vi sammenhengen x = rcosθ og y = rsinθ. Innsatt i β = xy: β = r 2 cosθsinθ. b) Gradientvektoren i kartesiske koordinater: Gradientvektoren i polare koordinater: β = β r i r + 1 β r θ i θ β = β β i+ j = yi+xj. (8.1) x y = 2rcosθsinθi r +r( sinθsinθ+cosθcosθ)i θ = 2rcosθsinθi r +r ( cos 2 θ sin 2 θ ) i θ. (8.2) For å vise at (8.1) og (8.2) er samme vektor kan vi gjøre om (8.1) til polare koordinater. Vi trenger da sammenhengen mellom enhetsvektorene i kartesiske og polare koordinater: Vi setter dette inn i likning 8.1: β = yi+xj i = cosθi r sinθi θ j = sinθi r +cosθi θ. = rsinθ(cosθi r sinθi θ )+rcosθ(sinθi r +cosθi θ ) = 2rcosθsinθi r +r ( cos 2 θ sin 2 θ ) i θ. 79

2 80 Polarkoordinater c) Divergensen til β i kartesiske koordianter: β = y x + x y = 0. Divergensen til β i polare koordinater: β = 1 [ ] r(2rcosθsinθ) + 1 ( ) rcos 2 θ rsin 2 θ r r r θ = 1 r 4rcosθsinθ + 1 ( ) 2rcosθ( sinθ) 2rsinθcosθ r = 4cosθsinθ 2sinθcosθ 2sinθcosθ = 0. d) Virvlingen til β i kartesiske koordinater: i j k β = x y 0 y x 0 = Virvlingen til β i polare koordinater: Oppgave 2 β = 1 r r [ r ( rcos 2 θ rsin 2 θ )] k 1 r ( x x y ) k = 0. y θ (2rcosθsinθ)k = 1 r( 2rcos 2 θ 2rsin 2 θ ) k 1 r 2r( sin 2 θ +cos 2 θ ) k = ( 2cos 2 θ 2sin 2 θ+2sin 2 θ 2cos 2 θ ) k = 0. Vi har gitt skalarfeltet β(r) = A r der r = ( x 2 +y 2 +z 2) 1/2 og A er en konstant. a) Gradientvektoren β i kartesiske koordinater: β x = β r r x β = β β i+ x y j + β z k. = A r r 2 x = A 1( x 2 r 2 +y 2 +z 2) 12 2x 2 = Ax ( x 2 +y 2 +z 2) 1 ( x 2 +y 2 +z 2) 1 2 = Ax ( x 2 +y 2 +z 2) 3 2.

3 81 Uttrykkene for β y og β z kan regnes ut på tilsvarende måte slik at β = A ( x 2 +y 2 +z 2) 3 2 (xi+yj +zk). ( = Ar 3 r = A r 3ri r = A ) r 2i r Gradientvektoren β i sfæriske polarkoordinater: β = β r i r + 1 β r θ i θ + 1 β rsinθϕ i ϕ = A r 2i r. b) Divergensen til β i kartesiske koordinater: β = 2 β x β y β z 2. 2 β x 2 = [ Ax ( ] x 2 +y 2 +z 2) 3 2 x [ (x = A 2 +y 2 +z 2) ( 3 2 +x 3 2 ) (x 2 +y 2 +z 2) ] 5 2 2x = A ( x 2 +y 2 +z 2) 3 2 [3x 2( x 2 +y 2 +z 2) ] 1 1. Tilsvarende utregning kan gjøres for 2 β y 2 og 2 β slik at z2 β = A ( x 2 +y 2 +z 2) 3 2 [3 ( x 2 +y 2 +z 2)( x 2 +y 2 +z 2) ] 1 3 = A ( x 2 +y 2 +z 2) 3 2 [ 3 3 ] = 0. Divergensen til β i sfæriske polarkoordinater: β = 1 [r ( 2 Ar )] r 2 r Oppgave 3 = 1 r 2 r ( A) = 0. Vi har gitt et hastighetsfelt i kartesiske koordinater: v = ωyi+ωxj.

4 82 Polarkoordinater a) For å finne uttrykket for v i polarkoordinater må vi bruke likningene: x = rcosθ y = rsinθ i = cosθi r sinθi θ j = sinθi r +cosθi θ. v = ωrsinθ(cosθi r sinθi θ )+ωrcosθ(sinθi r +cosθi θ ) = ωr( sinθcosθ +cosθsinθ)i r +ωr(sinθsinθ+cosθcosθ)i θ = ωri θ. v i θ i r r y x v = ωk r = ω i j k x y 0 = ωyi+ωxj. b) Sirkulasjonen kan deles opp i fire deler: C = v dr = v dr + v dr + v dr + v dr. abcd ab bc cd da ab: dr er her et lite bueelement på sirkelen med radius r og har retning i θ. Langs ab er v konstant lik ωr i i θ -retning. dr og v er altså parallelle. v dr = ωr r ϕ (lengden av v lengden av ab). ab

5 83 y d (r + r) ϕ a ϕ r r ϕ b r c x bc: dr peker nå i retning i r og v dr = ωri θ dri r = 0. cd: Her kan vi benytte oss av et tilsvarende argument som for linjestykket ab, men nå er dr et buelement på en sirkel med radius r+ r og peker i positiv i θ -retning: v dr = ω(r + r) (r + r) ϕ (lengden av v lengden av cd). cd da: dr peker nå i retning i r og v dr = ωri θ ( dri r ) = 0. Vi legger sammen leddene og får C = ωr 2 ϕ+ω ( r 2 +2r r+( r) 2) ϕ = ω r ϕ(2r + r). c) Stokes sats: ( v) ndσ = σ λ v dr = C. Vi regnet ut C for et flateelement abcd i oppgave b). Hvis vi nå lar r = 0 og ϕ = 2π får vi sirkulasjonen C for en sirkelflate med radius r: C = ω r ϕ(2r + r) = 2πω( r) 2. Dette er virvlingen for hele sirkelflaten. Deler vi C på arealet får vi virvlingen i et vilkårlig punkt i feltet: C = 2πω( r)2 π( r) 2 = 2ω

6 84 Polarkoordinater med retning normalt sirkelflaten. For å regne ut virvlingen direkte bruker vi polarkoordinatformen: v = ωri θ, v = 1 [ r r (rv θ) v ] r k. θ v = 1 r = ω r 2rk = 2ωk. r (rωr)k Oppgave 4 Et hastighetsfelt er gitt ved der C er en konstant. v = C 2π ( y x 2 +y 2i+ x ) x 2 +y 2j a) For å finne uttrykket for v i polarkoordinater må vi bruke likningene: x = rcosθ y = rsinθ i = cosθi r sinθi θ j = sinθi r +cosθi θ. v = C ( rsinθ 2π r 2 (cos 2 θ+sin 2 θ) (cosθi r sinθi θ ) ) rcosθ + r 2 (cos 2 θ +sin 2 θ) (sinθi r +cosθi θ ) = C ) ( sinθcosθi r +sin 2 θi θ +cosθsinθi r +cos 2 θi θ 2πr = C 2πr i θ. b) Som i tilfellet i oppgave 3b) har vi også denne gangen at bc v dr = v dr = 0 da

7 85 siden v står normalt på i r (v er tangent til sirkler med sentrum i origo). Sirkulasjonen, her kalt S, er derfor gitt ved S = abcd v dr = ab v dr + cd v dr. Fra oppgave a) kan vi slutte at v er konstant langs sirkler med sentrum i origo og de to kurveintegralene kan regnes ut (som i oppgave 3b) ved å gange lengden av vektoren v med lengden av kurven: S = C 2πr r ϕ+ C (r + r) ϕ 2π(r + r) = C ϕ 2π + C ϕ 2π = 0. c) Virvlingen i polarkoordinater: v = 1 [ r r (rv θ) v r θ ( ) r k = 1 r = 0. r C 2πr ] k d) Sirkulasjonen av v langs en sirkellinje λ: S = λ v dr der dr kan uttrykkes som dr = dsi θ med ds som en liten buelengde. C S = λ 2πr i θ dsi θ = C ds 2πr λ = C 2πr 2πr = C. Vi har et singulært punkt i origo der v.

8 86 Polarkoordinater Oppgave 5 Et strømfelt i jordatmosfæren er gitt ved v = f(θ)i ϕ. a) Divergensen til v (i sfæriske polarkoordinater): v = f(θ) rsinθ ϕ = 0. b) Visetternåf(θ) = Csin3θ derc erenpositivkonstant.θtilsvarerbreddegradene der θ = 0 er nordpolen, θ = 90 er ekvator og θ = 180 er sydpolen. Hvis vi tegner v inn på en kule får vi vindfeltet i figur 8.1. Nordpolen Ekvator Figur 8.1: Passat- og vestenvindsfeltet. c) Sirkulasjonen kan deles opp i fire deler: S = v dr = v dr + λ ab bc v dr + cd v dr + da v dr. hvor vinkelkoordinatene for punkt a er (θ 0,ϕ 0 ), for punkt b er (θ 0 + θ,ϕ 0 ), for punkt c er (θ 0 + θ,ϕ 0 + ϕ), og for punkt d er (θ 0,ϕ 0 + ϕ). De fire delintegralene blir som følger: ab: dr er et lite bueelement på en sirkel med radius r og har retning i θ, følgelig er v dr = f(θ)i ϕ i θ rdθ = 0. bc: dr er et lite bueelement på en sirkel med radius rsin(θ 0 + θ) og har retning i ϕ. Langs bc er v konstant lik f(θ 0 + θ)i ϕ. Da er dr og v parallelle. v dr = f(θ 0 + θ)rsin(θ 0 + θ) ϕ bc

9 87 cd: dr er et lite bueelement på en sirkel med radius r og har retning i θ, følgelig er v dr = f(θ)i ϕ i θ rdθ = 0. da: dr er et lite bueelement på en sirkel med radius rsinθ 0 og har retning i ϕ. Langs da er v konstant lik f(θ 0 )i ϕ. Da er dr og v parallelle. da Vi legger sammen leddene og får v dr = f(θ 0 )rsinθ 0 ϕ S = r{sin(θ 0 + θ)f(θ 0 + θ) sinθ 0 f(θ 0 )} ϕ r θ {sinθf(θ)} θ=θ0 θ ϕ. Stokes sats: σ ( v) ndσ = λ v dr = S. Sirkelflaten har areal r 2 sinθ 0 θ ϕ og har normalvektor n = i r. Innsatt i Stokes sats ( v) i r r 2 sinθ 0 θ ϕ = r {sinθf(θ)} θ ϕ θ Vertikalkomponenten av virvlingen blir Oppgave 6 ( v) i r = 1 rsinθθ {sinθf(θ)} = C r Newtons gravitasjonslov er gitt ved der r = xi+yj +zk og r = r. F = GmMr r 3 a) Fra likning 4.20 på side 67 i kompendiet finner vi: [ 3cos3θ +sin3θ cosθ ] sinθ F = GmM ( r 3 r + GmM ) r 3 r. Vi ser på høyresiden ledd for ledd: GmM r 3 i x j k y x y z z = GmM ( ) 0i+0j +0k = 0. r 3

10 88 Polarkoordinater For å regne ut det andre leddet bruker vi først resultatet fra oppgave 8b i kapittel 2 for å regne ut gradientvektoren: ( GmM ) r 3 ( 1 = GmM r 3 ) [ = GmM x x( 2 +y 2 +z 2) 3 2 i+ ( x 2 +y 2 +z 2) 3 2 j + y ] ( x 2 +y 2 +z 2) 3 2 k z [ = GmM 3 ( x 2 +y 2 +z 2) 5( 2 2xi+2yj +2zk )] 2 Vi krysser nå gradientvektoren med r: ( GmM ) r 3 r = 3GmM ( x 2 +y 2 +z 2) 5 2 = 3GmM ( x 2 +y 2 +z 2) 5 2 = 0 F = 0. i j k x y z x y z [ ] (yz zy)i (xz zx)j +(xy yx)k b) Gravitasjonspotensialet V er definert ved F = V. I sfæriske koordinater kan vi skrive F = GmM r 3 ri r = GmM r 2 i r. Gradientvektoren i sfæriske koordinater er gitt i kapittel 8 som V r V = V r i r +ledd i i ϕ og i θ -retning = GmM r 2 V = GmM r +V 0. c) V(r = R) = 0 V 0 = GmM R og gravitasjonspotensialet kan skrives som ( 1 V = GmM r 1 ) = GmM R r R Rr.

11 89 Arbeidet er definert som kraft ganger vei: W = F dr = = λ R+h R R+h R V dr dv = V(R) V(R+h) = 0+GmM R R h R(R+h) = mgrh R+h.

12 90 Polarkoordinater

β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1) = 2rcosθsinθi r +r( sinθsinθ+cosθcosθ)i θ

β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1) = 2rcosθsinθi r +r( sinθsinθ+cosθcosθ)i θ Kapittel 8 Polarkoordinater Oppgave 1 Vi har gitt skalarfeltet β(x, y) = xy i kartesiske koordinater. a) For polarkoordinater (r,θ) og kartesiske koordinater (x,y) har vi sammenhengen x = rcosθ og y =

Detaljer

Integralsatser: Green, Stokes og Gauss

Integralsatser: Green, Stokes og Gauss Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v = ωyi+ωxj der ω er en konstant. a) trømfarten: v = ω 2 y 2 +ω 2 x 2 = ωr, r = x 2 +y 2. Langs sirkelen r 2 = x 2 +y

Detaljer

Integralsatser: Green, Stokes og Gauss

Integralsatser: Green, Stokes og Gauss Kapittel 7 Integralsatser: Green, tokes og Gauss Oppgave 1 Vi har gitt strømfeltet v ωyi+ωxj der ω er en konstant. a) trømfarten: v ω 2 y 2 +ω 2 x 2 ωr, r x 2 +y 2. Langs sirkelen r 2 x 2 +y 2 er r konstant

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

Fasit til eksamen i MEK1100 høst 2006

Fasit til eksamen i MEK1100 høst 2006 Fasit til eksamen i MEK11 høst 26 Det er tilsammen 1 delspørsmål. Hvert delspørsmål honoreres med poengsum fra til 1 (1 for fullstendig svar, for blank). Maksimal oppnåelig poengsum er 1. Kontroller at

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Obligatorisk oppgave 2

Obligatorisk oppgave 2 MEK Obligatorisk oppgave 2 Nicolai Kristen Solheim Obligatorisk oppgave 2 Oppgave a) Vi kan beregne vektorfluksen Q = F ndσ gjennom en kuleflate σ gitt vektorfeltet σ F = xi + 2y + z j + z + x 2 k. Ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

Feltlikninger for fluider

Feltlikninger for fluider Kapittel 10 Feltlikninger for fluider Oppgave 1 Gitt et to-dimensjonalt strømfelt v = ωyi+ωxj. a) Den konvektive akselerasjonen for et to-dimensjonalt felt er gitt ved b) Bevegelseslikninga (Euler-likninga):

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt Divergensen til v er definert som v = ui+vj +wk. v = u x + v y + w og virvlingen er gitt ved determinanten

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui+vj +wk. Divergensen til v er definert som v = u x + v y + w z og virvlingen er gitt ved determinanten

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten

Detaljer

Tillegg om strømfunksjon og potensialstrøm

Tillegg om strømfunksjon og potensialstrøm Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v v x i+v y j er virvlingen gitt ved

Detaljer

Oppgavehefte for Mek 1100

Oppgavehefte for Mek 1100 Oppgavehefte for Mek 1100 Geir Pedersen Høst 2009 Oppg. 1 Normal til bane i planet. Vi har gitt en posisjonsvektor som funksjon av t på dimensjonsløs form r(t) = (5 + t)i + t 2 j. a) Finn hastigheten,

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v = v x i+v y j er virvlingen gitt ved

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

MEK1100 Løsningsforslag til oppgavene i Feltteori og vektoranalyse

MEK1100 Løsningsforslag til oppgavene i Feltteori og vektoranalyse MEK11 Løsningsforslag til oppgavene i Feltteori og vektoranalyse av Gjevik & Fagerland Opprinnelig laget av Morten Wang Fagerland våren 5 Rettinger og oppdateringer ved Karsten Trulsen Takk til studenter,

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk

Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk Dato 17. januar 2014 Oppgavegjennomgang, i hovedsak, fredager kl. 1015-1200 i Auditorium 105 helge.drange@gfi.uib.no 1. Polare koordinater

Detaljer

Virvelfrihet, potensialer, Laplacelikningen

Virvelfrihet, potensialer, Laplacelikningen Virvelfrihet, potensialer, Laplacelikningen Kap 10 og 9 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE Forelesninger NYTT TEMA Hvorfor snakker vi om virvelfri bevegelse? Forelesninger Todimensjonal

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Fredag 29 mai 2009. Tid for eksamen: 14:30 17:30. Oppgavesettet er på 6 sider.

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

5 z ds = x 2 +4y 2 4

5 z ds = x 2 +4y 2 4 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Kapittel 2 Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Oppgave Gitt funksjonen f(x,y,z) = x 2 y+z 2 x. Vi regner først ut de partielt deriverte med hensyn på x, y og z: f x = 2xy f +z2, = f x2,

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

Løsning til utvalgte oppgaver fra kapittel 13, (16).

Løsning til utvalgte oppgaver fra kapittel 13, (16). Løsning til utvalgte oppgaver fra kapittel, (6) Oppgave 7 ( 67 ) Kurven rt () (, t,), t t ligger i - planet Dette gir alternativ b eller f Setter inn t som gir punktet (, ) som bare er med i alternativ

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer

Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Kapittel 2 Gradientvektoren, vektorfelt, strømlinjer, feltlinjer Oppgave Gitt funksjonen f(x,y,z) = x 2 y + z 2 x. Vi regner først ut de partielt deriverte med hensyn på x, y og z: De dobbeltderiverte

Detaljer

Løsningsforslag til Øving 9 Høst 2014 (Nummerne refererer til White s 6. utgave)

Løsningsforslag til Øving 9 Høst 2014 (Nummerne refererer til White s 6. utgave) TEP45: Fluidmekanikk Oppgave 8. Løsningsforslag til Øving 9 Høst 4 (Nummerne refererer til White s 6. utgave Vi skal finne sirkulasjonen Γ langs kurven C gitt en potensialvirvel i origo med styrke K. I

Detaljer

Løsning, Stokes setning

Løsning, Stokes setning Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k

Detaljer

Onsdag og fredag

Onsdag og fredag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 4 Onsdag 21.01.09 og fredag 23.01.09 Elektrisk felt fra punktladning [FGT 22.1; YF 21.4; TM 21.4; AF 21.6; LHL 19.5;

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

FYS1120 Elektromagnetisme

FYS1120 Elektromagnetisme Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

Plan. I dag. Neste uke

Plan. I dag. Neste uke Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ = SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

Kapittel 10: Funksjoner av flere variable

Kapittel 10: Funksjoner av flere variable 0.. Introduksjon til funksjoner av flere variable 95 Kapittel 0: Funksjoner av flere variable 0.. Introduksjon til funksjoner av flere variable. Oppgave 0..: a) Den naturlige definisjonsmengden for f(x,

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

Feltteori og vektoranalyse. Forelesninger og oppgaver i MEK1100

Feltteori og vektoranalyse. Forelesninger og oppgaver i MEK1100 Feltteori og vektoranalyse Forelesninger og oppgaver i MEK11 av Bjørn Gjevik og Morten Wang Fagerland Avdeling for mekanikk Matematisk institutt Universitetet i Oslo 214 Forord Dette kompendiet er utarbeidet

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 15-19/2

Fasit til utvalgte oppgaver MAT1110, uka 15-19/2 Fasit til utvalgte oppgaver MAT1110, uka 15-19/2 Øyvind Ryan (oyvindry@i.uio.no) February 19, 2010 Oppgave 3.6.1 Vi ser på ligningen Vi fullfører kvadratene: 4x 2 + 9y 2 + 32x 18y + 37 = 0. 4(x 2 + 8x

Detaljer

Ma Flerdimensjonal Analyse Øving 1

Ma Flerdimensjonal Analyse Øving 1 Ma1203 - Flerdimensjonal Analyse Øving 1 Øistein Søvik Brukernavn: Oistes 23.01.2012 Oppgaver 10.1 6. Show that the triangle with verticies (1, 2, 3), (4, 0, 5) and (3, 6, 4) has a right angle. z y x Utifra

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

Partieltderiverte og gradient

Partieltderiverte og gradient Partieltderiverte og gradient Kap 2 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Struktur Mye er repitisjon fra MAT1100, litt

Detaljer

Obligatorisk oppgåve 1

Obligatorisk oppgåve 1 FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13 Innlevering i FORK00 - Matematikk forkurs OsloMet Obligatorisk innlevering Innleveringsfrist Onsdag 4.november 08 kl. 0:0 Antall oppgaver: Bestem vinkelen mellom vektorene u = [, 7] og v = [4, 5]. Hva

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

SIF 5005 Matematikk 2 våren 2001

SIF 5005 Matematikk 2 våren 2001 IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,

Detaljer

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392). Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

PARAMETERFRAMSTILLING FOR EN KULEFLATE

PARAMETERFRAMSTILLING FOR EN KULEFLATE 1 PARAMETERFRAMSTILLING FOR EN KULEFLATE Vi har tidligere sett hordan i kan lage en parameterframstilling for et plan ed å uttrykke koordinatene ed to parametere, f. eks s og t. Fra 1.2 et i at x = x0

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b. .9 til oppgavene i avsnitt.9.9. Regn ut (a) k ( i + j ), () ( i k ) ( j + 3k ), (c) ( i j + 3k ) ( 3i + j k ) a. k ( i + j ) = 0,0,,,0 = 0 + 0 + 0 = 0. ( i k ) ( j k ) ( ) + 3 =, 0, 0,,3 = 0 + 0 + 3 =

Detaljer

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet

Detaljer

=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11

=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11 3.3 Oppgaver 3.3.1 1 2 3 1 2 3 2 0 1.La A,,,,, 3 4 B 2 1 C 0 1 a -1 b 1 c 2 Regn ut (a) A a, (b) B b, (c) C c, (d) A B, (e) A B C ( a) ( c) ( e) ( f ) 1-2 2 1 2 + ( 2) ( 1) 4 A a 3 4 1 3 2 + 4 ( 1 ( b)

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Høgskolen i Gjøvik Avd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving Exercise (a), (c) - j yim() j - - - 0 xre() Merk! I oppgaven skal vi merke av punktene (angitt med ), men de komplekse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Øvelse, eksamensoppgaver MAT 1050 mars 2018

Øvelse, eksamensoppgaver MAT 1050 mars 2018 Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir

Detaljer