Løsningsskisse eksamen 3MX
|
|
- Lisa Lund
- 7 år siden
- Visninger:
Transkript
1 Løsningsskisse eksamen 3MX.6.6 Ikke sjekket, kan være feil. a) f 5tan 5 sincos 5 cos cos Eller: f 5tan 5tan 5 tan 5tan 5 (Produktregel) b) g u 3, u cos g 3u sin 3 cos sin (Kjerneregel. Kan multipliseres ut, men faktorform antagelig ok.) c) sin cosd sin d (Kan bruke delvis to ganger, men mindre arbeid ved å bruke omformingen sin sincos!) cos C cos C 4 Eller substitusjon: u du,u sin,u cos Som gir: u D sin D (Første svaret kan omformes til det samme: cos C 4 4 sin C sin C 4 sin D) d).4.6cos.8,, 4 cos.8.4 cos k k L,8 e))...,geometriskrekke. 4 8 ) a,k,s a k f) r,, ) ) A r d d 4 8 ft 3.5sint a) Amplitude: 3.5, Likevektslinje: 7.5 Periode: T T Faseforskvning gitt av: t b) ft 3.5sint ,.4, eller av 5 3m_eksamen_v6_ls.te
2 c) ) vt f t 3.5cost 4.7 (kjerneregel) 735cost 4.7 ) v ma v 735 cm/s 7.35 m/s d) at v t 735 sint sint 4. 7 [cm/s ] a ma a 54m/s 3.5 a) Dette er et tilfeldig utvalg og gjennomsnittet og det empiriske standardavviket i dette utvalget er forventningsrette estimatorer for forventningen og standardavviket i populasjonen av alle barn det er mulig å velge et tilfeldig barn fra. (Det burde vært angitt hva man velger blandt, populasjonen er udefinert! Alle barn i løpet av et år? år? Alle som var der akkurat nå? Alle barn i Oslo?) Legg hele tabellen i L og bruk -Var Stats L Det gir: Estimat for forventet fødselsvekt: X X Standardfeilen, estimat for for standardavviket i populasjonen: S ("Standardfeilen til estimatet"???? Merkelig ordbruk, dette er ikke standard-avvik eller standard-feil i utvalget eller til estimatoren, men et eget estimat for standardavviket i populasjonen!) b) Konfidensnivå: K.9 z.9 gitt av: z.9 K.95 z (Tabell eller Invorm(.95)) P.645 S n P.645 S n X.645 S n S n.9 Konfidensintervall: KI S,.645 S n n 33, , (Denne beregningen forutsetter at fødselsvekten i utgangspunktet er tilnærmet normalfordelt. n 5 er ikke nok når vi må estimere standardavviket i populasjonen, hvis fordelingen avviker me fra en normalfordeling. (Skjev, haler, usmmetrisk, flere topper...)) c) Y : Antall med lav fødselsvekt blandt tilfeldig utvalgte. (Av alle mulige barn som kan bli født på dette skehuset over en lengre tidsperiode?) av 5 3m_eksamen_v6_ls.te
3 PY Blir for store tall for binompdf() og binomcdf()! Må derfor tilnærme med normalfordeling. np.5 5 og n p er begge over 5, så normaltilnærmingen bør bli bra, selv om p.. Forventning: np 5 Standardavvik: np p PY A n5,7., d A.5 PZ A5 n,, zdz A.55 A A Denne sannsnligheten skal være.5, slik at: A5.5 A5.5 A A A Vi kan altså være 95% sikre på at antall undervektige ikke blir større enn Alternativ I a) e e e Riktig verdi: e (ifølge lommeregner) Hvert ledd i rekken er mindre enn en geometrisk rekke med k.5 så rekken konvergerer når.5. Verdiene ser altså ut til å komme nærmere og nærmere den riktige verdien når antall ledd øker. Utregning av 5 ledd med Lommeregner: sum(seq(.5 ^X/X!,X,,5)) gir ganske riktig.64877! b) e d e e d e e C e C.5 e d.5 e.5 e.5e c) d 3 d 3 4 C e d Altså riktig tilnærming med gjeldende siffer. d) e t dt er en kjenning da det forekommer i standardnormalfordelingen n,, e, bortsett fra at vi må gjøre et variabelskifte til t. Det vi gjør i denne oppgaven antder altså hvordan lommeregnere og datamaskiner kan beregne slike integral numerisk. (Selv om det finnes bedre algoritmer enn Talor-rekker...).5 e t.5 dt t t4 dt.5 t t3 t Lommeregner: fnint(e ^(-X ^),X,,.5) gir , altså riktig med 3 gjeldende siffer. 3 av 5 3m_eksamen_v6_ls.te
4 e) Tilsvarende: e t dt fnint(e ^(-X ^),X,,) gir !?! Grunnen til at dette ikke stemmer er at Talorrekken ikke konvergerer fort nok når t blir for stor og 3 ledd blir derfor for lite til å få noe fornuftig svar. Rekken hopper som man ser me opp og ned før den stabiliserer seg! 3 Alternativ a) f Y/X-.999 ^X MATH, fmin(y,x,,5) gir bunnpunktet 3.,.68 (Eventuelt: Grafe og bruke CALC, 3:minimum ) b) Sannsnlighet for at en tilfeldig utvalgt person har skdommen: p. X :Antallskeavetutvalgpå Resonnement: PX PX p.999 da p er sannsnligheten for at personer er friske, etter multiplikasjonsregelen, når hver persons tilstand er uavhengig av de andre personene i utvalget. Eller: X binomisk fordelt: PX..999 PX c) X :Antall analser i en gruppe på personer. Vi har sannsnlighetsmodellen: X PX p EX p d) Y :Totalt antall analser i alle gruppene, d.v.s grupper, altså er Y X i.(obs:feilåsiaty X!) Et poeng her, gruppene er avhengige av hverandre, men formelen for forventning forutsetter ikke uavhengighet! (Det gjør derimot tilsvarende formel for varians/standardavvik...) EY EX X...X EX 4 av 5 3m_eksamen_v6_ls.te
5 e) EY f For å minimalisere forventet antall analser må 3., altså 35 grupper med 3 i hver Forventet antall analser: f r t at cost,at sin t at cost,tsin t a) OP r a cos,a sin a,p a, b) Produktregel på begge koordinatene gir: r t acost t sin t,sint t cost r acos sin,sin cos a, a,a c) Vektoren r a,a er en tangentvektor til kurven i P, og derfor en retningsvektor for tangenten T. Hvis R er et punkt på tangenten har vi: OR OP s r ("Går" til R fra O via punktet P.), a, sa,a (Vektorform) a a s a s (Parameterform med parameter s.) d) Betingelse for Q: a a s s a a Da får vi: a 4 a Q,4 a e) A POQ gh a4 a 4 3 a A sirkel r a 4 3 a 5 av 5 3m_eksamen_v6_ls.te
0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?
OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir
DetaljerHELDAGSPRØVE. Fredag 9 Mai Løsningsskisse (versjon )
HELDAGSPRØVE Oppgave Fredag 9 Mai 4 Løsningsskisse (versjon 4.5.8) a) Deriver funksjonen fx cosx Kjerneregel: fu cosu, u x f x sinu x x sinx b) Bestem integralet x lnx dx Delvis integrasjon: u x u x 4
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål
Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen f 3 sin b) Deriver funksjonen g tan c) Finn integralet e d d) Løs likningen 1 cos sin ved regning. e)
DetaljerHeldagsprøve 3MX - Onsdag
m HD V Oppgave 1 Heldagsprøve MX - Onsdag.. Løsningsskisse 1) cos 1 k l 6 k 6 l L,, 7, 11 6 6 6 6 ) cos sin 1 sin sin sin 1 sin 1 sin 1.61 k.61 l.61 m.61 n L.61,. b) 1) cos sin d sin ) I 1 d cos 1 1 Substitusjon:
DetaljerEksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II
Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister
DetaljerR2 - Eksamen Løsningsskisser
R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål
Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande
DetaljerEksamen R2 høst 2011, løsning
Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har
DetaljerMatematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
Detaljerbetyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2
ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerKap. 7 - Sannsynlighetsfordelinger
Oppgaver: Kap. 7 - Sannsynlighetsfordelinger Oppgaver fra kapitlet Lærebok: 7.0-0-0-,7.--7, 7.-, 7., 7., 7.7 Oppgavesamling: 7.00, 7.0, 7.09, 7., 7.9, 7., 7.0, 7.0, 7.0 7.0-0-0-0- Stokastisk variabel:
DetaljerEksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
DetaljerEksamen R2, Våren 2015, løsning
Eksamen R, Våren 05, løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f () =- 3cos f =- 3 - sin
DetaljerOppgave 1. Oppgave 2. 3MX eksamen Privatister Løsningsskisse Ikke kontrollert og dobbeltsjekket! Kan være feil her...
MX esamen.5.5 - Privatister Løsningssisse Ie ontrollert og dobbeltsjeet! Kan være feil her... Oppgave a) sin cos,, sin cos sin,tan sin.588.588.588 L.588 b) f lncos f fu lnu,u cos, i vadrant f f u u u sin
Detaljer, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C
Oppgave a) Deriver funksjonene: ) fx x sinx uv u v uv gir: f x x sinx x cosx x sinx x cosx ) gx sinx sinxcosx sinx, x k cosx cosx g x cosx (x k) (Kan også bruke u v u vuv, men det blir svært tungvindt
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org
Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk
DetaljerEksamen R2 vår 2012, løsning
Eksamen R vår 0, løsning Oppgave ( poeng) a) Deriver funksjonene ) f sin Bruker kjerneregelen på uttrykket sin der Vi har da guu sinu u cosu cos f cos 6cos ) g sin Vi bruker produktregelen for derivasjon.
DetaljerLøsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org
Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og
DetaljerR2 Eksamen V
R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
DetaljerEksamen R2, Høst 2012, løsning
Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
DetaljerLøsningsskisser eksamen R
R 9.. Løsningsskisser eksamen R 9.. Del - Uten hjelpemidler Oppgave a) ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x sin u, u x g x cosu cosx ) Kjerneregel: h x u, u sin x h x u cosx sin x cosx
DetaljerHøgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
DetaljerHeldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.
Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerLøsningsforslag AA6526 Matematikk 3MX - 8. desember eksamensoppgaver.org
Løsningsforslag AA656 Matematikk 3MX - 8. desember 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerR2 Eksamen høsten 2014 ( )
R Eksamen høsten 0 (8..) Løsningsskisser Versjon:.05.6 (Rettet feil i del i oppgave ) Del I - Uten hjelpemidler Oppgave a) Kjerneregel: f x cosu, u x f x 6 sin x b) Produktregel: g x 5e x sin x 5e x cos
DetaljerLøsningsforslag Eksamen 3MX - AA
Løsningsforslag Eksamen 3MX - AA654-04.06.007 eksamensoppgaver.org September 0, 008 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerOppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252
Oppgaver fra 8.3, 8.4, 8.5 8.41, 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 8.41 Populasjon: Tilfeldig variabel X : Trekke en tilfeldig flaske og måle volumet Ukjent sannsynlighetsfordeling, men forventning
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org
Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerMatematikk med TI-83
Matematikk med TI-83 3MX/Y Brukerveiledning knyttet til eksempler av Eystein Raude Arbeidet bygger på Matematikk med TI-83 på GK og VKI Eksemplene oppfyller læreplanens mål Læreplanens mål 1 Mål 3 Funksjonslære
DetaljerLøsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org
Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
DetaljerHeldagsprøve R
Heldagsprøve R - 7.04. Løsningsskisser Versjon 03.05. Del - Uten hjelpemidler Oppgave a) Deriver funksjonene: ) fx x ln x ) gx 3 cos4x 3) hx ax ln x ) Produktregel: f x x ln x x x x ln x x x ln x ) Kjerneregel:
DetaljerOppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1
ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og
DetaljerS2 - Eksamen V Løsningsskisser. Del 1
Litt foreløpige, si ifra hvis dere finner feil! Oppgave 1 S - Eksamen V10-6.06.10 Løsningsskisser Del 1 1) Produktregel: f x x lnx x 1 x x lnx x x lnx 1 ) Kjerneregel: f x 3e x 3e u, u x f x 3e u x 6xe
DetaljerDet anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerStudieretning: Allmenne, økonomiske og administrative fag
Eksamen Fag: AA6526 Matematikk 3MX Eksamensdato: 3. mai 2005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Privatistar / Privatister Oppgåva ligg
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerR1 - Funksjoner 2. Løsningsskisser. Alle oppgaver skal gjøres ved regning! Oppgave 1. Oppgave 2. Kapittel
R1 - Funksjoner 2 04.02.2014 Alle oppgaver skal gjøres ved regning! Løsningsskisser Oppgave 1 Løs ligningene: a) 3 x 5 b) ln 2x 1 ln x 3 0 c) ln 3e x 2 2x a) ln 3 x ln 5 x ln 3 ln 5 x ln 5 ln 3 1. 47 b)
DetaljerEksamen R2, Høst 2012
Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave
DetaljerUDIRs eksempeloppgave høsten 2008
UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e
DetaljerLøsningskisse seminaroppgaver uke 15
HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er
DetaljerSTK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret
DetaljerLøsningsforslag eksamen R2
Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e
DetaljerLøsning på Dårlige egg med bruk av Tabell 2 i Appendix B
Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling
DetaljerBokmål. Eksamensinformasjon
Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte
DetaljerEksamen S2, Va ren 2013
Eksamen S, Va ren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave ( poeng) Deriver funksjonene f x x e a) x x x f x x e x e x x e x e e x x
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
DetaljerEksamen. Fag: AA6524 Matematikk 3MX. Eksamensdato: 4. juni 2007. Vidaregåande kurs II / Videregående kurs II
Eksamen Fag: AA6524 Matematikk 3MX Eksamensdato: 4. juni 2007 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Oppgåva ligg føre på begge
DetaljerLøsningsforslag Eksamen i Statistikk SIF5060 Aug 2002
Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerLøsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017
Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx
DetaljerLøsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
DetaljerLøsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org
Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er
DetaljerBinomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
DetaljerEksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
DetaljerR2 - K4: Funksjoner. I Deriver de trigonometriske funksjonene: a) f x sinx x b) f x sin 2 x c) f x sinxtanx d) f x sin x. II Gitt funksjonen f x sin x
R2 - K4: Funksjoner 19.02.10 Løsningsskisser I Deriver de trigonometriske funksjonene: a) fx sinx x b) fx sin 2 x c) fx sinxtanx d) fx sin x 2cos x a) f x cosx 1 b) Kjerneregel: fx u 2, u sinx f x 2u cosx
DetaljerR2 - Funksjoner, integrasjon og trigonometri
R - Funksjoner, integrasjon og trigonometri Løsningsskisser Del I - Uten hjelpemidler Oppgave 1 Regn ut integralene: a) x cosx dx b) x x 3x dx c) ex cose x dx a) Delvis integrasjon: x cosx dx x sin x sin
DetaljerLøsningsforslag Matematikk 2MX - AA mai 2006
Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerA. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
DetaljerHØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
Detaljer3 Funksjoner R2 Løsninger
Funksjoner R Løsninger. Trigonometriske definisjoner.... Trigonometriske sammenhenger.... Trigonometriske likninger....4 Trigonometriske funksjoner og funksjonsdrøfting... 7.5 Omforming av trigonometriske
Detaljer2) Finn koordinatane til eventuelle topp- og botnpunkt på grafen til f ved rekning.
OPPGÅVE a) Deriver funksjonen f( ) = tan 2 ( ) b) Bestem integralet 4 lnd c) Bestem integralet + 2 d d) Gitt funksjonen f ( ) = cos 5 0, 2π ) Finn f ( ) 2) Finn koordinatane til eventuelle topp- og botnpunkt
DetaljerLøsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
DetaljerSTK1100 våren 2019 Mere om konfidensintevaller
STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske
DetaljerObservatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter
Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
DetaljerECON2130 Kommentarer til oblig
ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,
DetaljerMatematikk 1 Første deleksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
DetaljerMatematikk 3MZ AA6544 / AA6546 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MZ AA6544 / AA6546 Elever / privatister Bokmål Eksempeloppgave etter læreplan godkjent juli 000 Videregående kurs II Studieretning for allmenne, økonomiske og
DetaljerLøsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org
Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,
DetaljerLøsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11
Løsningsforslag Eksamen S, våren 014 Laget av Tommy O. Sist oppdatert: 1. september 018 Antall sider: 11 Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source,
DetaljerEksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerLøsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
DetaljerEksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
DetaljerLøsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017
Løsningsforslag Eksamen S2, høsten 215 Laget av Tommy O. Sist oppdatert: 25. mai 217 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere funksjonen f(x) = x 3 + 2x. Formelen vi må bruke er (x n ) =
DetaljerEksamen AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 16.05.2008 AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
DetaljerDenne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
DetaljerEksamen S2, Høsten 2013
Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerDa vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X
Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. b) g( x) Løs likningssystemet.
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 3 ( ) 2 4 1 b) g( x) x e x c) h x x x 2 ( ) ln( 4 ) Oppgave 2 (2 poeng) Løs likningssystemet 5x y 2z 0 2x 3y z 3 3x 2y z 3 Oppgave
DetaljerOppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.
DetaljerLøsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren
DetaljerMerk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.
ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerLøsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017
Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle
Detaljer