Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål
|
|
- Roy Endresen
- 8 år siden
- Visninger:
Transkript
1 Eksamen AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål
2 Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande reglar. Ingen På første side av svararket skal du skrive namn og type på den lommereknaren du har brukt på eksamen. Der oppgåveteksten ikkje seier noko anna, kan du fritt velje framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil også ein alternativ metode kunne gi noko utteljing. Før inn nødvendig mellomrekning. Skriv forklaring der dette er påkravd, for å vise kva du har gjort. Grafar og bruk av grafisk lommereknar: Rettleiing om vurderinga: Ved opne oppgåveformuleringar bør du forklare kvifor du har valt di tolking av oppgåva og ditt val av løysingsstrategi. Hugs å oppgi eventuelle kjelder. Oppgi dei lommereknarfunksjonane du har brukt. Det er ikkje nødvendig å oppgi alle tastetrykka. Hugs å skrive målestokk og einingar på aksane når du teiknar grafar i svaret. Du treng ikkje føre inn tabell over utrekna funksjonsverdiar dersom det ikkje er spurt spesielt etter det i oppgåva. Ved grafisk løysing på lommereknar er det tilstrekkeleg at du skisserer forma på kurva i svaret. På skissa skal svaret markerast tydeleg. Karakteren blir fastsett etter ei heilskapleg vurdering. Det betyr at sensor vurderer i kva grad du viser grunnleggjande dugleikar kan bruke hjelpemiddel gjennomfører logiske resonnement ser samanhengar i faget, er oppfinnsam og kan bruke fagkunnskap i nye situasjonar vurderer om svar er rimelege forklarer framgangsmåtar og grunngir svar skriv oversiktleg og er nøyaktig med utrekningar, nemningar, tabellar og grafiske framstillingar. Eksamen, AA654 Matematikk 3MX Side av 14
3 Oppgåve 1 a) Deriver funksjonen f 3 sin b) Deriver funksjonen g tan c) Finn integralet e d d) Løys likninga 1 cos sin ved rekning. e) Finn ved rekning botnpunktet på grafen til funksjonen f ln f) Ein spesiell terning har 3 sider med éin prikk, sider med to prikkar og 1 side med tre prikkar. La X vere talet på prikkar i eit terningkast. 1) Set opp ei sannsynsfordeling for X. Bestem forventningsverdien til X. ) Bestem standardavviket til X. Eksamen, AA654 Matematikk 3MX Side 3 av 14
4 Oppgåve Ein periodisk funksjon er gitt ved f cos a) Teikn grafen til f for -verdiar mellom 0 og. b) Bruk grafen og finn likevektslinja, amplituden og perioden for denne funksjonen. c) Forklar at parameteren. Skriv f f Asin c d d) Bruk mellom anna formelen for sin( u v) uttrykket. på forma på uttrykket i c) og vis at dette gir det opphavlege Oppgåve 3 Det er anteke at sannsynet for å overleve ein spesiell type operasjon er lik 0,9. a) Kva er sannsynet for at nøyaktig 16 av 0 pasientar vil overleve denne operasjonen? Kva er den sannsynsfordelinga du bruker her, kalla? Kva for føresetnader ligg til grunn for at du kan bruke denne fordelinga? Når vi ser på eit tilstrekkeleg stort tal pasientar, er denne fordelinga tilnærma lik normalfordelinga. Vi ser no på 00 pasientar. b) Vis at 180 og 4,4 for denne fordelinga. c) Kva er sannsynet for at færre enn 168 av 00 pasientar vil overleve operasjonen? d) Kva er sannsynet for at talet på overlevande pasientar er mellom 168 og 186? Ein kirurg stiller spørsmål ved om sannsynet for å overleve operasjonen er 0,9. Han bestemmer seg derfor for å gjere ei utvalsundersøking for å sjekke om det stemmer. Årleg blir det gjort fleire tusen slike operasjonar. Kirurgen ser på 90 tilfeldig valde operasjonar av denne typen. Av desse var det 63 av pasientane som overlevde. e) Finn eit estimat for den delen som overlevde operasjonen. Rekn ut standardfeilen. f) Vi tenkjer oss at p er sannsynet for å overleve operasjonen. Set opp eit 95 % konfidensintervall for p. Kva kan du seie om p etter at du har sett opp dette intervallet? Eksamen, AA654 Matematikk 3MX Side 4 av 14
5 Oppgåve 4 Du skal svare på anten alternativ I eller alternativ II. Dei to alternativa er likeverdige ved vurderinga. (Dersom svaret inneheld delar av begge, vil berre det du har skrive på alternativ I, bli vurdert.) Alternativ I Sentra A, B og C i dei tre sirklane i figuren nedanfor ligg på ei rett linje. Likningane til dei to ytste sirklane er gitt ved 1 y 15 5 og 4 y a) Skriv ned koordinatane til sentra A og C, og finn AC og AC. b) Kva er radien til den midtarste sirkelen? c) Finn likninga til den midtarste sirkelen. d) Ei rett linje går gjennom B og står vinkelrett på linja gjennom A og C. Finn skjeringspunkta mellom denne linja og den midtarste sirkelen. Eksamen, AA654 Matematikk 3MX Side 5 av 14
6 Alternativ II Trekanttal kan illustrerast som talet på prikkar som dannar ein trekantfigur. Figur 1 viser dei tre første trekanttala a 1, a og a 3. Summen av trekanttala dannar rekkja Figur 1 a) Forklar at a Kva slags rekkje er dette? b) Finn eit uttrykk for a n. c) Bruk lommereknaren til å finne summen av dei 10 første trekanttala. For å finne ein formel for S n, kan vi starte med å sjå på S a S a1 a S3 a1 a a S a a a a d) Bruk mønsteret ovanfor til å skrive opp eit tilsvarande uttrykk for S n. Finn S 14 ved å bruke dette uttrykket. Eksamen, AA654 Matematikk 3MX Side 6 av 14
7 Oppgåve 5 PARTIKKELRØRSLE Ein partikkel følgjer ei bane vist på figuren nedanfor. Posisjonen til partikkelen er gitt ved r ( t) sin t, sin t, 8 cost På figuren er fartsvektoren v( t) og akselerasjonsvektoren a( t) teikna inn i eit punkt på bana. a) Finn ved rekning posisjonen til partikkelen når t 0 og t. 4 b) Finn eventuelle fellespunkt mellom kurva og y-planet., t 0, a( t) v( t) c) Vis at r( t) 8. Undersøk om r( t) v( t). Kva slags bane følgjer partikkelen? d) Bestem farts- og akselerasjonsvektoren til partikkelen når e) Finn v(t) til partikkelen. Kommenter svaret. t. 4 Vinkelen mellom eit plan og ei kurve er den minste vinkelen mellom planet og tangenten til kurva i skjeringspunktet mellom kurva og planet. Tangenten har same retning som fartsvektoren i punktet. f) Finn vinkelen mellom partikkelbana og y-planet når partikkelen passerer dette planet første gong. Eksamen, AA654 Matematikk 3MX Side 7 av 14
8 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5 timer Se gjeldende regler. Ingen På første side av svararket skal du skrive navn og type på den lommeregneren du har brukt på eksamen. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Før inn nødvendig mellomregning. Skriv forklaring der dette er påkrevd, for å vise hva du har gjort. Grafer og bruk av grafisk lommeregner: Veiledning om vurderingen: Ved åpne oppgaveformuleringer bør du forklare hvorfor du har valgt din tolkning av oppgaven og ditt valg av løsningsstrategi. Husk å oppgi eventuelle kilder. Oppgi de lommeregnerfunksjonene du har brukt. Det er ikke nødvendig å oppgi alle tastetrykkene. Husk å skrive målestokk og enheter på aksene når du tegner grafer i besvarelsen. Du trenger ikke føre inn tabell over utregnede funksjonsverdier dersom det ikke er spurt spesielt etter det i oppgaven. Ved grafisk løsning på lommeregner er det tilstrekkelig at du skisserer kurvens form i besvarelsen. På skissen skal svaret markeres tydelig. Karakteren fastsettes etter en helhetlig vurdering. Det betyr at sensor vurderer i hvilken grad du viser grunnleggende ferdigheter kan bruke hjelpemidler gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan anvende fagkunnskap i nye situasjoner vurderer om svar er rimelige forklarer framgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger. Eksamen, AA654 Matematikk 3MX Side 8 av 14
9 Oppgave 1 a) Deriver funksjonen f 3 sin b) Deriver funksjonen g tan c) Finn integralet e d d) Løs likningen 1 cos sin ved regning. e) Finn ved regning bunnpunktet på grafen til funksjonen f ln f) En spesiell terning har 3 sider med én prikk, sider med to prikker og 1 side med tre prikker. La X være antall prikker i et terningkast. 1) Sett opp en sannsynlighetsfordeling for X. Bestem forventningsverdien til X. ) Bestem standardavviket til X. Eksamen, AA654 Matematikk 3MX Side 9 av 14
10 Oppgave En periodisk funksjon er gitt ved f cos a) Tegn grafen til f for -verdier mellom 0 og. b) Bruk grafen og finn likevektslinja, amplituden og perioden for denne funksjonen. c) Forklar at parameteren. Skriv f f Asin c d på formen d) Bruk blant annet formelen for sin( u v) uttrykket. på uttrykket i c) og vis at dette gir det opprinnelige Oppgave 3 Sannsynligheten for å overleve en spesiell type operasjon er antatt å være lik 0,9. a) Hva er sannsynligheten for at nøyaktig 16 av 0 pasienter vil overleve denne operasjonen? Hva kalles sannsynlighetsfordelingen du bruker her? Hvilke forutsetninger ligger til grunn for at du kan bruke denne fordelingen? Når vi ser på et tilstrekkelig stort antall pasienter, er denne fordelingen tilnærmet lik normalfordelingen. Vi ser nå på 00 pasienter. b) Vis at 180 og 4,4 for denne fordelingen. c) Hva er sannsynligheten for at færre enn 168 av 00 pasienter vil overleve operasjonen? d) Hva er sannsynligheten for at antall overlevende pasienter er mellom 168 og 186? En kirurg stiller spørsmål ved om sannsynligheten for å overleve operasjonen er 0,9. Han bestemmer seg derfor for å gjøre en utvalgsundersøkelse for å sjekke om det stemmer. Årlig foretas det flere tusen slike operasjoner. Kirurgen ser på 90 tilfeldig valgte operasjoner av denne typen. Av disse var det 63 av pasientene som overlevde. e) Finn et estimat for andelen som overlevde operasjonen. Regn ut standardfeilen. f) Vi tenker oss at p er sannsynligheten for å overleve operasjonen. Sett opp et 95 % konfidensintervall for p. Hva kan du si om p etter at du har satt opp dette intervallet? Eksamen, AA654 Matematikk 3MX Side 10 av 14
11 Oppgave 4 Du skal besvare enten alternativ I eller alternativ II. De to alternativene er likeverdige ved vurderingen. (Dersom besvarelsen inneholder deler av begge, vil bare det du har skrevet på alternativ I, bli vurdert.) Alternativ I Sentrene A, B og C i de tre sirklene i figuren nedenfor ligger på en rett linje. Likningene til de to ytterste sirklene er gitt ved 1 y 15 5 og 4 y a) Skriv ned koordinatene til sentrene A og C, og finn AC og AC. b) Hva er radien til den midterste sirkelen? c) Finn likningen til den midterste sirkelen. d) En rett linje går gjennom B og står vinkelrett på linja gjennom A og C. Finn skjæringspunktene mellom denne linja og den midterste sirkelen. Eksamen, AA654 Matematikk 3MX Side 11 av 14
12 Alternativ II Trekanttall kan illustreres som antall prikker som danner en trekantfigur. Figur 1 viser de tre første trekanttallene a 1, a og a 3. Summen av trekanttallene danner rekka Figur 1 a) Forklar at a Hva slags rekke er dette? b) Finn et uttrykk for a n. c) Bruk lommeregneren til å finne summen av de 10 første trekanttallene. For å finne en formel for S n, kan vi starte med å se på S a S a1 a S3 a1 a a S a a a a d) Bruk mønsteret ovenfor til å skrive opp et tilsvarende uttrykk for S n. Finn S 14 ved å bruke dette uttrykket. Eksamen, AA654 Matematikk 3MX Side 1 av 14
13 Oppgave 5 PARTIKKELBEVEGELSE En partikkel følger en bane vist på figuren nedenfor. Posisjonen til partikkelen er gitt ved r ( t) sin t, sin t, 8 cost På figuren er fartsvektoren v( t) og akselerasjonsvektoren a( t) tegnet inn i et punkt på banen. a) Finn ved regning posisjonen til partikkelen når t 0 og t. 4 b) Finn eventuelle fellespunkter mellom kurva og y-planet., t 0, a( t) v( t) c) Vis at r( t) 8. Undersøk om r( t) v( t). Hva slags bane følger partikkelen? d) Bestem farts- og akselerasjonsvektoren til partikkelen når e) Finn v(t) til partikkelen. Kommenter svaret. t. 4 Vinkelen mellom et plan og en kurve er den minste vinkelen mellom planet og tangenten til kurva i skjæringspunktet mellom kurva og planet. Tangenten har samme retning som fartsvektoren i punktet. f) Finn vinkelen mellom partikkelbanen og y-planet når partikkelen passerer dette planet første gang. Eksamen, AA654 Matematikk 3MX Side 13 av 14
14 Kolstadgata 1 Postboks 94 Tøyen 0608 OSLO Telefon Telefaks
Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål
Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen f 3 sin b) Deriver funksjonen g tan c) Finn integralet e d d) Løs likningen 1 cos sin ved regning. e)
Eksamen AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 16.05.2008 AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
Nynorsk. Eksamensinformasjon
Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte
Bokmål. Eksamensinformasjon
Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte
Eksamen AA6516 Matematikk 2MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 04.12.2008 AA6516 Matematikk 2MX Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5 timer Se
Eksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II
Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister
Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene
Eksamen 02.05.2008. VG1340 Matematikk 1MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 02.05.2008 VG1340 Matematikk 1MX Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
Matematikk 3MZ AA6544 / AA6546 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MZ AA6544 / AA6546 Elever / privatister Bokmål Eksempeloppgave etter læreplan godkjent juli 000 Videregående kurs II Studieretning for allmenne, økonomiske og
Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1
Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 7.11.015 REA04 Matematikk R Ny eksamensordning Del 1: timar (utan hjelpemiddel) / timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale verktøy
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
Eksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 0.05.015 REA304 Matematikk R Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 02.12.2008. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 0.1.008 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9.05.204 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del 2: 5 timar: Del skal leverast inn etter 2 timar. Del 2 skal leverast
Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del
Eksamen REA3022 Matematikk R1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 19.05.015 REA30 Matematikk R1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 23.11.2015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til
Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.05.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 19.05.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 3.11.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 29.11.2013. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9..03 REA304 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn seinast
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksempeloppgåve / Eksempeloppgave
Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
Eksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.05.014 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0..009 REA0 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: timar:
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 04.1.008 REA306 Matematikk S1 Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0.05.016 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.
Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksempeloppgåve/ Eksempeloppgave 2009
Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:
Eksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 1.11.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast
Eksamen. MAT1017 Matematikk 2T Nynorsk/Bokmål
Eksamen 27.05.2016 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal
Eksempeloppgåve / Eksempeloppgave
Eksempeloppgåve / Eksempeloppgave Matematikk R April 007 Programfag i studiespesialiserande utdanningsprogram / Programfag i studiespesialiserende utdanningsprogram Elevar/Elever Privatistar/Privatister
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 8.05.018 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal
Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA306 Matematikk S1 Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del 1 Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast
Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 19.05.2009 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 041008 REA30 Matematikk R1 Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 27.05.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
Eksamen. 14. november MAT1006 Matematikk 1T-Y. Programområde: Alle programområde / programområder. Nynorsk/Bokmål
Eksamen 14. november 017 MAT1006 Matematikk 1T-Y Programområde: Alle programområde / programområder Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter,5 timar.
Eksamen 30.11.2009. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 30.11.009 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 28.11.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.011 REA06 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamensoppgåver V06/ Eksamensoppgaver V06. Matematikk (AA)
Eksamensoppgåver V06/ Eksamensoppgaver V06 Matematikk (AA) Fagkode AA6514 AA6515 AA6516 AA654/AA656 AA657 AA6534 AA6535 AA6536 AA6544/AA6546 AA6547 Fagnavn: Matematikk MX E Matematikk MX med IKT E Matematikk
Eksamen REA3024 Matematikk R2
Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
Eksamen. 30. mai MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 30. mai 018 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
Eksamen 25.05.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 03.12.2009. REA3024 Matematikk R2
Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 22.05.2009. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 22.05.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen REA3028 Matematikk S2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 0.05.015 REA308 Matematikk S Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksamen 27.05.2008. MAT1008 Matematikk 2T Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 27.05.2008 MAT1008 Matematikk 2T Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Andre opplysningar:
Fylkeskommunenes landssamarbeid. Eksamen MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 28.05.2019 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Eksamen varar i 4 timar. Del 1 skal leverast inn etter
Eksamen 26.11.2015. REA3026 Matematikk S1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 6.11.015 REA306 Matematikk S1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksamen 02.12.2009. REA3026 Matematikk S1
Eksamen 02.12.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen. 1. juni MAT 1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 1. juni 017 MAT 1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
Eksamen 25.05.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 3. mai 2006. Felles allmenne fag Privatistar/Privatister
Eksamen Fag: VG1341 Matematikk 1MY Eksamensdato: 3. mai 2006 Felles allmenne fag Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge
Eksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 28.11.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 28.05.2008 REA3026 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:
Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del
Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram
Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del
Eksamen 02.12.2008. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 02.12.2008 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring:
Eksamen 25.05.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.