Eksamen S2, Va ren 2013
|
|
- Charlotte Kleppe
- 6 år siden
- Visninger:
Transkript
1 Eksamen S, Va ren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave ( poeng) Deriver funksjonene f x x e a) x x x f x x e x e x x e x e e x x b) gx g x x x x x x x x x x x x x x x x x x x Eksamen REA08 Matematikk S, Våren 0 Side
2 Oppgave (4 poeng) a) Forkort brøken ved å bruke polynomdivisjon x x x x x x x x : x x x Det betyr at x 0 x x x x x b) Bestem tallet a slik at divisjonen går opp x x a: x x x x x a : x x x a x a a 0 a Det betyr at divisjonen går opp hvis a Alternativt: Divisjonen går opp hvis x er en løsning av likningen a 0 a 9 6 x x a 0 Eksamen REA08 Matematikk S, Våren 0 Side
3 c) Bestem tallet b slik at divisjonen går opp x x 4 : x b Divisjonen går opp hvis x b b er en løsning av likningen x x b b 4 0 b b 4 eller b Oppgave ( poeng) Det n -te leddet i en geometrisk rekke er gitt ved a n 0, n Forklar at rekken er konvergent. Hva blir summen? Rekken er konvergent fordi forholdstallet 0, er et tall som ligger mellom og. a 0, Summen av rekken er S 0 k 0, 0,, Oppgave 4 ( poeng) Løs likningssystemet x y z x y z 7 x y z 9 x y z x y z 7 x y z 9 x y z x y z x y z y z y z 7 6 y z y z 7 y z yz yz 9 y z y z 9 4y z x y z x y z x y z x 5 0 y z y z y z y 5 4z z z 4 z z 6 z Eksamen REA08 Matematikk S, Våren 0 Side
4 Oppgave 5 (5 poeng) Funksjonen f er gitt ved a) Bruk f x f x x 6x 9x til å bestemme eventuelle topp- og bunnpunkter på grafen til f. f x x x x f x x x x x x x f x 0 x x 0 x x f f f Regningen viser at grafen stiger når x er mindre enn, grafen synker mellom og, og grafen stiger for x -verdier større enn. Siden også den deriverte er null for x og x, så betyr det at grafen har et toppunkt for x og et bunnpunkt for x. Funksjonsverdien i toppunktet er f Funksjonsverdien i bunnpunktet er f 6 9 b) Bruk f x f x x til å bestemme eventuelle vendepunkter på grafen til f. f x x x 9 6 f x 0 6x 0 x Dette betyr at grafen har ett vendepunkt, for x Funksjonsverdien til vendepunktet er f 6 9 c) Lag en skisse av grafen til f. Eksamen REA08 Matematikk S, Våren 0 Side 4
5 Oppgave 6 ( poeng) Sannsynlighetsfordelingen for en stokastisk variabel X er gitt ved følgende tabell: x 0 4 P X t p p p 0, p a) Forklar hvorfor p 0, Samlet sannsynlighet er lik. Da er p p p 0, p 7p 0,7 p 0, b) Bestem E X og Var X E X x P X x 0p p p 0, 4 p p 0,9 0, 0,9,0 0,8 0, 0 0, 0,4,6 Var X x E X P X x Var X Var X Var X 0,0 0,,0 0,,0 0,,0 0, 4,0 0, Eksamen REA08 Matematikk S, Våren 0 Side 5
6 Oppgave 7 (4 poeng) Vi har gitt fire stokastiske variabler X, X, X og X 4 som alle er normalfordelte. Forventningsverdien E og standardavviket SD for disse er E X 5 og SD X E X 5 og SD X E X 0 og SD X E X 0 og SD X 4 4 a) Hvilke av de grafiske framstillingene nedenfor illustrerer X, X, X og X 4? Begrunn svaret. For framstilling og er forventningsverdien E 0 siden grafene er symmetriske om linjen x 0. Framstilling har større spredning av sannsynlighetene enn framstilling. Det betyr at standardavviket er størst i framstilling. Det betyr at framstilling illustrerer X 4 og framstilling illustrerer X. For framstilling og 4 er forventningsverdien E 5 siden grafene er symmetriske om linjen x 5. Framstilling har større spredning av sannsynlighetene enn framstilling 4. Det betyr at standardavviket er størst i framstilling. Det betyr at framstilling illustrerer X og framstilling 4 illustrerer X. b) For den ene variabelen er P X 7 4 0,75. Hvilken variabel er det? Begrunn svaret. For den aktuelle variabelen skal 75 % av arealet under kurven ligge mellom linjene x 7 og x 4. Av figurene ser jeg at det bare kan stemme for framstilling. Det er for variabel X. Eksamen REA08 Matematikk S, Våren 0 Side 6
7 Del Tid: timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave (6 poeng) En bedrift produserer og selger en vare. En markedsanalyse viser at etterspørselen E kan skrives som der p er prisen i kroner per enhet E p p a) Vis at grenseinntekten er gitt ved der E p I' x 500 0,5x x er antall solgte enheter av varen Siden sammenhengen mellom pris og antall enheter er kjent, kan jeg først finne et uttrykk for inntekten som pris per enhet multiplisert med antall enheter. Jeg deriverer inntektsfunksjonen og finner grenseinntekten. E P x p p 500 0,5x I x p x 500 0,5x x 500x 0,5x I' x 500 0,5x 500 0,5x Bedriften regner med at kostnadene K x 0,0x 0x K x kroner ved å produsere og selge x enheter er gitt ved b) Hvor mange enheter må bedriften produsere og selge for at overskuddet skal bli størst mulig? Hva er prisen per enhet da? Overskuddet er størst når grenseinntekten og grensekostnaden er like store Bedriften må produsere og selge 74 enheter for at overskuddet skal bli størst mulig. Eksamen REA08 Matematikk S, Våren 0 Side 7
8 Prisen per enhet er da (fra oppgave a) p500 0,5x 500 0, kroner c) Bedriften ønsker å øke sin markedsandel og vil derfor sette ned prisen, slik at flere kjøper produktet. Hva er den minste prisen bedriften kan sette for likevel å kunne gå i balanse? Jeg finner først overskuddsfunksjon som funksjon av antall enheter, ut fra inntekts- og kostnadsfunksjonene. Jeg kan da finne overskuddsfunksjonen som funksjon av pris, siden E P x p. Jeg tegner grafen til overskuddsfunksjonen, finner skjæringspunktene med grafen og x-aksen og ser at priser mellom 0 kroner og 99 kroner gir overskudd for bedriften. Den minste prisen bedriften kan sette for likevel å kunne gå i balanse er 0 kroner. Eksamen REA08 Matematikk S, Våren 0 Side 8
9 Oppgave (7 poeng) Et firma A importerer og selger et produkt. Antall solgte enheter per år kan beskrives ved modellen,45 e 0, f x x der x er antall år etter 006. a) Hvor mange enheter solgte firma A i 0 ifølge denne modellen? År 0 er 6 år etter år 006. Utregning i GeoGebra viser at det etter denne modellen ble solgt 44 enheter i 0. Et konkurrerende firma B importerer og selger et tilsvarende produkt. Antall solgte enheter per år i firma B ser du i tabellen nedenfor. Antall år etter Antall solgte enheter per år b) Bestem ut fra disse tallene en logistisk modell som viser antall solgte enheter per år i firma B. Jeg brukte kommandoen «RegLogist[<Liste med punkt>]» i GeoGebra, og fikk funksjonen som en modell for antall solgte enheter per år i firma B. g x c) Hvilket firma vil i det lange løp selge flest enheter per år ifølge de to modellene? I begge modellene vil eksponetialfunksjonene i nevnerne gå mot null når antall år blir stort. Firma A vil derfor i det lange løp nærme seg solgte enheter per år og firma B vil i det lange løp nærme seg 7 solgte enheter per år. Firma A vil i det lange løp selge flest enheter per år. Eksamen REA08 Matematikk S, Våren 0 Side 9
10 d) Hvor mange enheter forventes det at hvert av de to firmaene importerer og selger totalt i årene fra og med 006 til og med 05? «Areal under graf» gir en tilnærmet verdi for totalt salg. Arealet under grafen fra x 0 til x kan vi tolke som totalt salg i år 006, og arealet under grafen fra x 9 til x 0 kan vi tolke som totalt salg i år 05. Jeg brukte kommandoen «Integral» i GeoGebra og fant tallene a og b som arealene under kurvene Firma A kan forvente å importere og selge totalt 0 enheter i årene fra og med 006 til og med 05. Firma B kan forvente å importere og selge totalt 5 enheter i årene fra og med 006 til og med 05. Eksamen REA08 Matematikk S, Våren 0 Side 0
11 Oppgave (6 poeng) Svanhild vurderer å ta opp et annuitetslån på kroner. Hun kan velge mellom en fast årlig rente på,5 % og flytende rente. Lånet har én termin per år med en nedbetalingstid på 0 år. Første innbetaling skjer om ett år. a) Forklar hvorfor vi kan bestemme terminbeløpet ved en fast årlig rente på,5 % ved å løse følgende likning x ,05,05,05,05 Bestem terminbeløpet ved å løse denne likningen. Svanhild skal betale et fast årlig terminbeløp, x. For å sammenlikne verdien av terminbeløpene omregner vi alle terminbeløpene til verdien de ville hatt da lånet ble tatt opp. Disse verdiene kaller vi nåverdiene til terminbeløpene. Figuren gir en oversikt over situasjonen. Nå.år.år 0.år x x x x Summen av nåverdiene til terminbeløpene må være lik lånets verdi. x x x x ,05,05,05,05 x Jeg setter,05 utenfor parentes på venstre side i likningen og får x ,05,05,05,05 Ved å løse denne likningen kan vi altså bestemme terminbeløpet. Eksamen REA08 Matematikk S, Våren 0 Side
12 Parentesuttrykket i likningen danner en geometrisk rekke med a, Likningen blir da k og n 0.,05 0 x, ,05,05 Jeg løser likningen i GeoGebra Det årlige terminbeløpet er på 4 7 kroner Svanhild vurderer å be banken om å endre lånebetingelsene b) Hva er den høyeste renten Svanhild kan ha dersom hun maksimalt kan betale kroner i terminbeløp med 0 års nedbetalingstid? Jeg setter terminbeløpet til kroner og lar rentesatsen være ukjent Den høyeste renten Svanhild kan ha er 5,45 % Eksamen REA08 Matematikk S, Våren 0 Side
13 Bankens rådgiver mener at Svanhild må kunne betale en fast årlig rente på 6,5 %. For at Svanhild skal klare en slik rente, må hun øke antall terminer. Lånet har fremdeles én termin per år. c) Hvor mange terminer må Svanhild betale dersom terminbeløpet skal være mindre enn kroner med en fast årlig rente på 6,5 %? Jeg lar nå antall terminer være ukjent i likningen og lar terminbeløpet være kroner Etter 4 terminer gjenstår da et restbeløp. For at terminbeløpet skal være mindre enn kroner, må antall terminer være minst 5. Eksamen REA08 Matematikk S, Våren 0 Side
14 Oppgave 4 (4 poeng) Ifølge tall fra Statistisk sentralbyrå røykte 7 % av befolkningen i 0. For å få ned dette tallet startet myndighetene en kampanje. Etter at kampanjen var over, ville myndighetene undersøke om den hadde hatt effekt. 00 tilfeldig valgte personer over 6 år ble spurt om de røykte. Vi kan se på denne undersøkelsen som et binomisk forsøk. Av de 00 som ble spurt, svarte personer at de røykte a) Sett opp en passende nullhypotese og en alternativ hypotese for dette forsøket. Nullhypotesen H 0: Fortsatt røyker 7 % av befolkningen Alternativ hypotese H : Det er nå mindre enn 7 % av befolkningen som røyker b) Avgjør om myndighetene har grunn til å tro at kampanjen hadde effekt. Bruk et signifikansnivå på 5 %. Jeg bruker sannsynlighetskalkulatoren i GeoGebra og finner at sannsynligheten for at eller færre personer i et tilfeldig utvalg på 00 personer røyker, forutsatt at 7 % av hele befolkningen røyker, er,4 %. Denne sannsynligheten er ikke mindre enn signifikansnivået på 5 %. Det er altså ikke grunnlag for å si at andelen av befolkningen som røyker har blitt mindre enn 7 %. Myndighetene har derfor ikke grunn til å tro at kampanjen hadde effekt. (Siden P PX -verdien 0,4.4 % er større enn signifikansnivået på 5 %, er det ikke grunnlag for å forkaste nullhypotesen H 0.) Eksamen REA08 Matematikk S, Våren 0 Side 4
15 Oppgave 5 (7 poeng) Funksjonen f er gitt ved f x e x5 a) Tegn grafen til f. Jeg definerer funksjonen i GeoGebra og tegner grafen. b) Bestem f' f x e x. Bruk produktregelen og kjerneregelen for derivasjon, og vis at x5 f '' x x 0x 4 e Bruk dette resultatetet til å bestemme koordinatene til vendepunktene på grafen til f. x5 Kjerneregelen ' x5 x5 x 5 ' 5 ' x5 x5 ' x5 f x e e x e x 5 f '' x e x 5 e x 5 Produktregelen x5 x5 f '' x e x 5x 5 e x5 f '' x e x 0x 5 x5 f '' x x 0x 4 e Eksamen REA08 Matematikk S, Våren 0 Side 5
16 I vendepunktene på grafen til f er den dobbeltderiverte lik null f'' x 0 når x 0x 4 0 Grafen til f har vendepunktene 4, 0,6 og 6, 0,6 For en normalfordelt variabel X med 5 og gjelder Pa X b f xdx b a c) Bruk integralet til å bestemme P a X b der a og b er x-koordinatene til vendepunktene. Jeg bruker GeoGebra og får P 4 X 6 0,68 Eksamen REA08 Matematikk S, Våren 0 Side 6
17 Oppgave 6 (6 poeng) En likesidet ABC har areal lik T. Midtpunktene på sidene i ABC er hjørnene i en ny likesidet DEF med areal lik T. Midtpunktene på sidene i CDE er hjørnene i en ny likesidet GHI med areal lik T. Etter samme metode lager vi trekanter med areal T, T 4, og så videre. Denne prosessen tenker vi oss fortsetter i det uendelige. Se skissen nedenfor. a) Forklar at rekken av arealer T T T kan skrives som T T T DEF er én av fire like store likesidede trekanter med samlet areal lik arealet til ABC. T DEF har derfor arealet T. 4 GHI er én av fire like store likesidede trekanter med samlet areal lik arealet til CDE. T T GHI har derfor arealet T T T Tilsvarende er T T, og slik fortsetter det b) Vis ved regning eller ved å studere figuren at summen av rekken er lik T. T Rekken er konvergent geometrisk med a og k, og har sum 4 4 T T S T T 4 Eksamen REA08 Matematikk S, Våren 0 Side 7
18 c) Omkretsen av ABC er lik. Trekanten som har areal lik T n har omkrets lik O n. Forklar at rekken av omkretser O O O kan skrives som 4 8 Bestem summen av rekken. Sidene i DEF er halvparten av sidene i ABC. Omkretsen til DEF må da være halvparten av omkretsen til ABC. Det vil si at O Sidene i GHI er halvparten av sidene i DEF. Omkretsen til GHI må da være halvparten av omkretsen til DEF. Det vil si at O O. 4 Tilsvarende er O O, og slik fortsetter det. 4 8 Rekken er konvergent geometrisk med a og k, og har sum S Eksamen REA08 Matematikk S, Våren 0 Side 8
Eksamen REA3028 S2, Våren 2013
Eksamen REA308 S, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene x a) f x x e b) gx x 1 x 3 Oppgave
DetaljerEksamen S2 høsten 2016 løsning
Eksamen S høsten 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f 5 f 3 5 b) g 5 1 7 5 7 1 70 1
DetaljerEksamen S2. Va ren 2014 Løsning
Eksamen S. Va ren 04 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (3 poeng) Deriver funksjonene f 3 a) f 3 3 3 6 3 b) 4 g e 4 4 4 4 4 g
DetaljerEksamen S2 va ren 2015 løsning
Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x
DetaljerEksamen S2, Høsten 2013
Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x
DetaljerS2 eksamen våren 2018 løsningsforslag
S eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x =
DetaljerEksamen S2 høsten 2014 løsning
Eksamen S høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f 3ln 1 3 f 3 1 b) g ln3 1 ln3 g 1
DetaljerEksamen S2, Va ren 2014
Eksamen S, Va ren 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene f x 3 x a) b) 4x g x x e Oppgave (3 poeng) Funksjonen
DetaljerEksamen S2 va ren 2016 løsning
Eksamen S va ren 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene x a) f x e f x e b) gx x x 3 x 4 1 x
DetaljerEksamen S2 høsten 2016
Eksamen S høsten 016 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f x x 5x b) g x 5x 1 7 c) h x x e x e 1
DetaljerEksamen REA3028 S2, Høsten 2011
Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h
DetaljerEksamen S2 høsten 2017 løsninger
Eksamen S høsten 017 løsninger Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) 3 f x x 4x 4 1 f x x x g x x e b)
DetaljerEksamen S2 høsten 2010 Løsning
Eksamen S høsten 010 Løsning Del 1 Oppgave 1 (4 poeng) a) Deriver funksjonene f x x 3x 4 1) 3 3 3 4 3 3 3 1 1 f x x x f x x f x x x g x 6x e ) x x 6x e x x 6 6 x 6 1 g x g x e x e g x e x P x x 6x 8x 4
DetaljerEksamen S2 va r 2017 løsning
Eksamen S va r 017 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f 1 f b) g ln 1 g h 1 e c) h e e e Oppgave
DetaljerEksamen S2 høsten 2014
Eksamen S2 høsten 2014 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f x 3ln x 2 b) gx x ln3x Oppgave 2 (2
DetaljerEksamen S2 høsten 2015 løsning
Eksamen S høsten 015 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (4 poeng) Deriver funksjonene f x x x a) 3 f x 3x g x 3 e x 1 b) 1
DetaljerEksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x
DetaljerDEL 1 Uten hjelpemidler. Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt.
S2 eksamen vår 2018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 3 f x = 2x
DetaljerEksamen S1 Va ren 2014 Løsning
Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x
DetaljerEksamen S2 høsten 2017
Eksamen S2 høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 2 3 f x 2x 4x g x x e b) 2 x c) hx lnx 3
DetaljerEksamen REA3028 S2, Høsten 2011
Eksamen REA308 S, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f x x x 1 ) gx
DetaljerDel 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.
Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 3 timer. Del skal leveres inn senest etter 5 timer. Vanlige skrivesaker,
DetaljerEksamen S2 va ren 2016
Eksamen S2 va ren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 2x a) f x e b) gx x 3 x 4 c) h x x x 3 6
DetaljerEksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. b) g( x) Løs likningssystemet.
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 3 ( ) 2 4 1 b) g( x) x e x c) h x x x 2 ( ) ln( 4 ) Oppgave 2 (2 poeng) Løs likningssystemet 5x y 2z 0 2x 3y z 3 3x 2y z 3 Oppgave
DetaljerEksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x
DetaljerDEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 3ln( x ) b) g( x) x ln(3 x ) Oppgave ( poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen.
DetaljerEksamen REA3026 S1, Høsten 2012
Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6
DetaljerEksamen S2 va r Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (6 poeng)
Eksamen S va r 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x b) g x lnx 1 h x x e c) x Oppgave (
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Deriver funksjonene a) ( ) x e x
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) 2x 4x g x 2 ( ) x e x 2 3 h x x x 3 ( ) ln( 3 1) Oppgave 2 (4 poeng) a) Utfør divisjonen 3 2 ( x 5x 4x 20) : ( x 5) b) Bestem
DetaljerEksamen S1, Høsten 2013
Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f
DetaljerEksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 b) hxlnx
DetaljerEksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
DetaljerEksempeloppgave REA3028 Matematikk S2. Bokmål
Eksempeloppgave 2008 REA3028 Matematikk S2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
DetaljerEksamen R2, Høst 2012
Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave
DetaljerEksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerEksamen REA3026 S1, Høsten 2010
Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x
DetaljerEksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
DetaljerEksamen S1, Høsten 2011
Eksamen S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonen f f f 6 b) Løs likningene 6 4 ) 6
DetaljerLøsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017
Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx
DetaljerEksamen R2, Høst 2012, løsning
Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (8 poeng) Deriver funksjonene. f x. ( ) e x. Polynomet P er gitt ved
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x 2 ( ) e x b) g( x) x 3 x 4 c) h( x) x( x 3) 6 Oppgave 2 (8 poeng) Polynomet P er gitt ved P x x x 3 2 ( ) 6 32 a) Vis at P( x ) er
DetaljerEksamen REA3026 S1, Våren 2012
Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f ( ) e b) g ( ) 1 c) h( ) (3 1) e Oppgave (3 poeng) På figuren har vi tegnet grafen til en funksjon f gitt ved 3 f( ) k k, D f f a) Faktoriser
DetaljerEksamen S1 Va ren 2014
Eksamen S1 Va ren 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x b) x lg lg x Oppgave ( poeng)
DetaljerS1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
DetaljerLøsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11
Løsningsforslag Eksamen S, våren 014 Laget av Tommy O. Sist oppdatert: 1. september 018 Antall sider: 11 Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source,
DetaljerR1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DetaljerEksamen vår 2009 Løsning Del 1
S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DetaljerDel 1. Oppgave 1. a) Deriver funksjonene. 2) g( x) b) 1) Finn summen av den uendelige rekka: 9 + 0,9+
Del Oppgave a) Deriver funksjonene 3 2 ) f ( x) = 4x 5x + 3x+ 3 2) g( x) = 2 x e 3x b) ) Finn summen av den uendelige rekka: 9 + 0,9+ 0,09+ 0, 009+ L 2) Finn summen av de 9 første naturlige tallene. c)
DetaljerEksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
DetaljerEksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn
DetaljerS1 eksamen våren 2018 løsningsforslag
S1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene
DetaljerEksamen REA3026 S1, Høsten 2012
Eksamen REA3026 S1, Høsten 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 2 2x 8 x b) 33
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) g x x x ( ) ln( x 1) h x ( ) x e x Oppgave ( poeng) Løs likningssystemet x y z 0 x y z 4x y z 1 Oppgave 3 (6 poeng) I en aritmetisk
DetaljerEksamen S1, Høsten 2013
Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df Oppgave
DetaljerEksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
DetaljerR1 eksamen våren 2018 løsningsforslag
R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene
DetaljerR1 eksamen våren 2018
R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4
DetaljerEksamen S2 høsten 2015
Eksamen S2 høsten 2015 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (4 poeng) Deriver funksjonene f x x 2x a) 3 g x 3 e 2x 1 b) 2 x c) h x
DetaljerFunksjoner 1T, Prøve 1 løsning
Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerDEL 1. Uten hjelpemidler. Avgjør om de geometriske rekkene er konvergente. Bestem i så fall summen.
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) e x 4 x 1 g( x) x h( x) x 3 ln x Oppgave (3 poeng) Avgjør om de geometriske rekkene er konvergente. Bestem i så fall summen.
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerR1-eksamen høsten 2017 løsningsforslag
R1-eksamen høsten 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x x x 1 a) fx 6x b) g(
DetaljerEksamen R2, Va ren 2014
Eksamen R2, Va ren 204 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f sin3 b) 2 g e cos Oppgave 2
DetaljerLøsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017
Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerDEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (
DetaljerEksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerS2, Funksjoner Quiz. Test, 2 Funksjoner
Test, Funksjoner Innhold. Derivasjon... 1.3 Funksjonsdrøfting... 6.4 Økonomiske optimeringsproblemer... 13.5 Modellering... 15.6 Bestemte integraler og arealer under kurver... 1 Grete Larsen. Derivasjon
DetaljerEksamen REA3026 S1, Våren 2012
Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b
DetaljerEksamen R2 Høsten 2013 Løsning
Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerDEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4
DetaljerEksamen R2 Høsten 2013
Eksamen R2 Høsten 203 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos b) g sin 2 Oppgave 2 (3
DetaljerFunksjoner S2 Oppgaver
Funksjoner S Funksjoner S Oppgaver. Derivasjon... Den deriverte til en konstant funksjon... Den deriverte til en potensfunksjon... Den deriverte til et produkt av to funksjoner... 4 Den deriverte til en
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen
DetaljerEksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerR1 eksamen høsten 2016 løsningsforslag
R eksamen høsten 06 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) fx 4x 5 b) g(
DetaljerR2 eksamen våren 2017 løsningsforslag
R eksamen våren 07 løsningsforslag DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene a) f 3sin cos f 3cos sin 3cos sin b) g cos uv uv uv der u og v cos Vi bruker produktregelen for derivasjon
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x = x + x 3 5 f () x = 3 x+ 5 = 6x + 5 b gx = 3 ( x ) gu = 3 u 4 4 3 g () u = 34
DetaljerEksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerLøsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017
Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle
Detaljerx + y z = 0 2x + y z = 2 4x + y 2z = 1 b) Vis at summen av de n første leddene kan skrives som S n = 3 n(n + 1)
Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 17. september 2017 Kommentar: Dette er en innskriving av S2 eksamen, basert på scan av dokumentet lastet opp av matematikk.net-bruker Viks. Det
DetaljerEksamen R2 høsten 2014
Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 19.05.2014. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 19.05.014 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerEksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
DetaljerEksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerBokmål. Eksamensinformasjon
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
Detaljer