Eksamen MAT1013 Matematikk 1T Hausten 2014

Størrelse: px
Begynne med side:

Download "Eksamen MAT1013 Matematikk 1T Hausten 2014"

Transkript

1 Eksamen MAT1013 Matematikk 1T Hausten 01 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform , ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgåve (1 poeng) Løys likninga 16 lg lg16 lg lg lg l g lg lg Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

2 Oppgåve 3 (1 poeng) Løys likninga lg( 3) lg(3) Oppgåve ( poeng) Løys ulikskapen 0 Finn nullpunkta til andregradsuttrykket: b b ac a ( ) v Andregradsutrykket er lik 0 for og 1, og kan skrivast: ( )( 1) 1 Eg sjekkar så når uttrykket er positivt og negativt ved å velje ein -verdi frå kvart av intervalla,,,1 og 1,. 3 : ( 3 )( 3 1) ( 1)( ) 0 : (0 )(0 1) ()( 1) : ( )( 1) ()(1) positiv negativ positiv for, og 1, Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

3 Oppgåve 5 ( poeng) I ein klasse er det seks gutar og fire jenter. To elevar blir valde tilfeldig til å vere med i ei spørjeundersøking. Teikn eit valtre, og bruk dette til å bestemme sannsynet for at éi jente og éin gut blir valde ut. 6 6 P(gut) 6 10 P(jente) 6 10 Ein kan trekkje éin gut og éi jente på to måtar: først guten og så jenta, eller først jenta og så guten P (gut og jente) Sannsynet for at éin gut og éi jente blir vald ut er 8/15. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

4 Oppgåve 6 (3 poeng) Ovanfor ser du grafen til en tredjegradsfunksjon f. a) For kva verdiar av er f() 0? For kva verdiar av er f () < 0? f() 0 når = 0 og 3. Den deriverte er negativ der grafen fell. f () < 0 når 0 < <. b) Bestem den gjennomsnittlege vekstfarten til f frå = 0 til =. y f() f(0) a 0 0 Den gjennomsnittlege vekstfarten til f frå = 0 til = er -. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

5 Oppgåve 7 ( poeng) Trekk saman og skriv så enkelt som mogleg ( 3)( 3) ( 3)( 3) ( 3)( 3) ( 3)( 3) ( 3)( 3) Oppgåve 8 (3 poeng) Forklar kvifor kvar av påstandane nedanfor er riktige. a) ,5 5 5 Uttrykket til venstre kan ein skrive som,5, som er større enn. b) tan51 motstående katet Definisjonen av tangens, tanv, gjeld for rettvinkla trekantar. I ein hosliggende katet rettvinkla trekant der den eine vinkelen er 5, må også den siste vinkelen vere 5, ettersom Vi har dermed ein likebeint rettvinkla trekant. Det tyder at tangensverdien blir lik 1. c) log00 lg Definisjonen av logaritme gir 10 a a. Det gjer lg Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

6 Oppgåve 9 ( poeng) Gitt ABC. Punktet D ligg på AB og punktet E ligg på AC slik at DE ǁ BC. Sjå skissa ovanfor. AB = 8, AE = 3 og arealet ABC er 16. a) Bestem AC og AD ved rekning. 1 A ABC AB AC 1 8 AC 16 AC 16 AC Ettersom DE og BC er parallelle, blir vinkel ADE og ABC like store. Det same gjeld vinkel AED og ACB. Trekantane er difor formlike, og vi kan setje opp følgjande uttrykk: AD AB AE AC AD AD 3 6 b) Vis ved rekning at BC DE 5 BC AB AC DE AD AE BC DE Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

7 Oppgåve 10 (5 poeng) n n1 Karin har lært at det er mogleg å bruke derivasjonsregelen ( )' n til å derivere funksjonen f ved f ( ) 1 Ho startar med å skrive f( ) Så deriverer ho f '( ) 1 1 a) Skriv om uttrykket for f () ovanfor, og vis at 1 f'( ) f '( ) Funksjonane g og h gitt ved g ( ) derivasjonsregelen ovanfor. b) Bestem g'( ) og h'( ). og h() kan også deriverast ved å bruke g( ) g'( ) h( ) h'( ) 1 Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

8 Oppgåve 1 ( poeng) 0,6,5 5, 7,8 9,6 y Det er ein tilnærma lineær samanheng mellom storleikane og y. Sjå tabellen ovanfor. Bruk regresjon til å bestemme denne samanhengen. Eg plottar punkta inn i GeoGebra, ved å skrive (0.6, 50, (.5, 80) osv. i innskrivingsfeltet. Deretter brukar eg kommandoen beste tilpassa linje. Den beste tilpassa lineære samanhengen mellom storleikane og y er y = 9,5 + 00,3. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

9 Oppgåve (6 poeng) Grete observerer ein bakteriekultur. Funksjonen B gitt ved 3 B( ) 0,1 5, viser talet på bakteriar B() i bakteriekulturen timar etter at ho starta observasjonane. a) Teikn grafen til B for [0,60] Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

10 b) Bestem toppunktet på grafen og skjeringspunkta mellom grafen og aksane. Eg finn toppunktet ved å skrive inn kommandoen Ekstremalpunkt[B] i innskrivingsfeltet. Eg finn skjeringspunktet med -aksen ved å skrive inn kommandoen Nullpunkt[B]. Konstantleddet fortel oss kva skjeringspunktet med y-aksen er. Toppunktet er (31.3, 97871), skjeringspunktet med -aksen er (56.7,0) og skjeringspunktet med y-aksen er (0, ). c) Kva fortel svara i oppgåve b) om bakteriekulturen? 0, ,6 Ved starttidspunktet er det bakteriar i kulturen. Talet stig opp til ein topp på ca , før det byrjar å minke. Etter 56 timar og 0 minutt er det ingen bakteriar igjen. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

11 d) Bestem den momentane vekstfarten til bakteriekulturen etter 0 timar. Eg markerer punktet (0, B(0)) på grafen, og brukar kommandoen «tangentar» til å teikne ein tangent i dette punktet. Stigingstalet til tangenten er den momentane vekstfarten etter 0 timar. Den momentane vekstfarten etter 0 timar Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

12 Oppgåve 3 ( poeng) I ein klasse er det 13 gutar og 17 jenter. 8 av gutane og 9 av jentene har teke trafikalt grunnkurs. Vi vel tilfeldig ein elev frå klassen. Eleven har ikkje teke trafikalt grunnkurs. a) Bestem sannsynet for at eleven er ei jente. Eg lagar ein krysstabell: Har teke trafikalt grunnkurs Har ikkje teke trafikalt grunnkurs Gut 8 5 Jente 9 8 SUM SUM P (jente ikkje trafikalt grunnkurs) 8 13 Vi vel tilfeldig to elevar frå klassen. b) Bestem sannsynet for at minst éin av dei har teke trafikalt grunnkurs. P(minst éin har trafikalt grunnkurs) 1 P (ingen har trafikalt grunnkurs) Reknar i CAS i GeoGebra: P (minst éin har trafikalt grunnkurs) 0,8 Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

13 Oppgåve ( poeng) Ei tomt har form som vist på figuren ovanfor. Bestem arealet av tomta ved rekning. Eg delar tomta i to ved å trekkje opp diagonalen BD. A ABD 70 m80 m 800 m Finn lengda av BD ved å bruke Pytagoras setning. Reknar i CAS i GeoGebra. Finn så vinkel C ved å bruke cosinussetninga. Finn så arealet av trekant BCD, og legg saman med areal av trekant ABD. Arealet av tomta ABCD er ca. 618 m. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

14 Oppgåve 5 ( poeng) Gitt to ulike trekanta r ABC som er slik at A 0, BC 6,0 cm og AC 9,0 cm. a) Lag ei skisse som viser korleis dei to trekantane kan sjå ut. b) Set opp uttrykk som du kan bruke til å bestemme lengda av sida AB i kvar av trekantane. Bruk uttrykka til å bestemme dei to lengdene. Brukar cosinussetninga. Reknar i CAS i GeoGebra: Dei to moglege lengdene av sida AB er 5,3 cm og 8,5 cm. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

15 Oppgåve 6 ( poeng) Funksjonane f og g er gitt ved f( ) a g( ), `0 a) Illustrer grafisk at likninga f( ) g( ) kan ha inga løysing, éi løysing eller to løysingar, avhengig av verdien av a. Eg teiknar dei to grafane i GeoGebra. For f() vel eg ein glidar for a. f() er den raude linja, medan g() er den blå grafen. Ved å dra i glidaren kan vi variere verdien av a. Dette er stigingstalet, og di større dette talet er, di brattare blir linja. Er linja negativ, fell linja. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

16 Ved å la a = 0, får vi berre éi løysing: Ved å la a = -, får vi berre éi løysing: Ved å la a < -, får vi inga løysing: Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

17 Når a,0 0,, får vi to løysingar. Når a < -, får vi inga løysingar. Når a = - og a = 0, får vi berre éi løysing. Når a,0 0,, får vi to løysingar. b) Bestem ved rekning verdiane av a slik at likninga f( ) g( ) har inga løysing ei løysing to løysingar a a 0 b b ac a a a ( ) for alle a a a Vi kan ikkje finne kvadratrota av negative tal, så vi får heller inga løysing når 16 8a < a 0 8a 16 a Vi får berre éi løysing når uttrykket under kvadratrot er lik 0, dvs. når a = -. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

18 Høvet når a=0 a 0 1 berre ei løysing Når a < -, får vi inga løysingar. Når a = - og a = 0, får vi berre éi løysing. Når a,0 0,, får vi to løysingar. Oppgåve 7 ( poeng) Gitt punkta A (0,0), B(5,0) og C (0,). Eit punkt P ligg på den rette linja l som går gjennom punkta B og C. a) Forklar at koordinatane til P kan skrivast på forma, 5 Må først finne likninga til den rette linja. y 0 Finn stigingstalet: a Brukar så eittpunktsformelen: y 0 ( 5) 5 y 5 Om punktet P skal liggje på linja l, må y. 5 Koordinatane til P kan difor skrivast som,. 5 b) Bestem ved rekning koordinatane til P slik at arealet av ABP blir halvparten så stort som arealet av ABC. Eg teiknar ei skisse av dei to trekantane i koordinatsystemet: Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

19 Dei to trekantane har same grunnlinje, AB. Høgda i trekant ABC er. For at arealet av trekant ABP skal vere halvparten av trekant ABC, må høgda vere. Eg set y =, og løyser likninga: Koordinatane til punktet P blir 5, Oppgåve 8 ( poeng) Per og Kari er på veg opp trappene i eit tårn. Per er heile tida 5 trappetrinn framfor Kari. Når Per er kommen halvvegs opp, roper han til Kari: «Når eg er heilt oppe, er du kommen tre gonger så langt som du er no.» Kor mange trappetrinn er det i tårnet? Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

20 Eg lagar eit likningssett, der er kor mange trinn Per har gått når han er halvvegs, og y er kor mange trinn Kari då har gått. y5 3y 5 Eg løyser likningssettet i CAS i GeoGebra: Det er 08 trappetrinn i tårnet. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

21 Oppgåve 9 (6 poeng) Figuren ovanfor er sett saman av eit rektangel med lengd og breidd b, og eit kvadrat med sider. Figuren har areal lik c. a) Forklar kvifor må være ei løysing av likninga b c Den samansette figuren er eit rektangel med lengde og breidde b +. Arealet blir då c ( b ) b må difor vere ei løysing av likninga b c Allereie for 000 år sidan var babylonarane i stand til å løyse andregradslikningar av same type som likninga i oppgåve a). Babylonarane brukte eit geometrisk resonnement. Dei starta med figuren i oppgåve a) og teikna så rektangel og kvadrat som vist nedanfor. b b) Vis at arealet av kvadratet ABCD er gitt ved c b Det vesle kvite kvadratet har sidekantar b b Arealet blir då c c Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

22 c) Forklar kvifor må være den positive løysinga av likninga b b c Firkant ABCD er eit kvadrat med sidekant b Arealet kan då skrivast som b Ved å setje dette uttrykket lik uttrykket for arealet av ABCD i b), får vi uttrykket over. d) Bruk oppgåve c) til å vise at b b c b b c b b c b b c b c b b c b b b c Arealet er positivt Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

23 Bileteliste Teikningar, grafar og figurar: Utdanningsdirektoratet Løysingar: Roar Edland-Hansen, NDLA matematikk. Eksamen MAT1013 Matematikk 1T Hausten 01 - Løysing

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16

Detaljer

Oppgåve 1 (1 poeng) Oppgåve 2 (1 poeng) Oppgåve 3 (1 poeng) Oppgåve 4 (2 poeng) Rekn ut og skriv svaret på standardform. Løys likninga.

Oppgåve 1 (1 poeng) Oppgåve 2 (1 poeng) Oppgåve 3 (1 poeng) Oppgåve 4 (2 poeng) Rekn ut og skriv svaret på standardform. Løys likninga. Oppgåve ( poeng) Rekn ut og skriv svaret på standardform 50000000000,0005 Oppgåve ( poeng) Løys likninga 6 Oppgåve 3 ( poeng) Løys likninga lg( 3) 0 Oppgåve 4 ( poeng) Løys ulikskapen Oppgåve 5 ( poeng)

Detaljer

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT03 Matematikk T Høsten 04 Oppgave ( poeng) Regn ut og skriv svaret på standardform 50000000000,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng)

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgåve ( poeng) Rekn ut og skriv svaret så enkelt som mogleg

Detaljer

Eksamen 1T våren 2016 løysing

Eksamen 1T våren 2016 løysing Eksamen T våren 06 løysing Oppgåve ( poeng) Rekn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Utan hjelpemiddel Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgåve (1 poeng) Løys likningssystemet x3y7 5xy8 Vel å løyse likninga

Detaljer

Eksamen MAT1013 Matematikk 1T Hausten 2013

Eksamen MAT1013 Matematikk 1T Hausten 2013 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgåve (4 poeng) Siv har fire blå og seks svarte bukser i skapet. Éi av dei blå og tre av

Detaljer

1T eksamen hausten 2017 Løysing

1T eksamen hausten 2017 Løysing 1T eksamen hausten 017 Løysing Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 105000 0,15

Detaljer

Eksamen 1T våren 2016

Eksamen 1T våren 2016 Eksamen 1T våren 016 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av 1 punkt. Kvart av tala nedanfor

Detaljer

Eksamen 1T våren 2016 løsning

Eksamen 1T våren 2016 løsning Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket

Detaljer

Eksamen 1T hausten 2015 løysing

Eksamen 1T hausten 2015 løysing Eksamen 1T hausten 015 løysing Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 1 1,8

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 DEL 1 Utan hjelpemiddel Oppgåve 1 (18 poeng) a) Rekn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Rekn ut og skriv svaret på standardform 5 6 5,510 6,010 11 1 33,0 10

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Eksamen 1T, Hausten 2012

Eksamen 1T, Hausten 2012 Eksamen 1T, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Ei rett linje har stigingstal. Linja skjer x

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgåve 2 (2 poeng) Rekn ut og skriv svaret så enkelt som mogleg 1 2 0 1 3 2 9 6 4

Detaljer

1T eksamen våren 2017 løysingsforslag

1T eksamen våren 2017 løysingsforslag 1T eksamen våren 017 løysingsforslag Tid: timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform 0,710

Detaljer

1T eksamen våren 2018 løysingsforslag

1T eksamen våren 2018 løysingsforslag 1T eksamen våren 018 løysingsforslag DEL 1 Utan hjelpemiddel Tid: Del 1 skal leverast inn etter timar. Hjelpemiddel: Del 1 Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve

Detaljer

Eksamen matematikk S1 løysing

Eksamen matematikk S1 løysing Eksamen matematikk S1 løysing Oppgåve 1 (3 poeng) Løys likningane a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må vere større enn null fordi den opphavlege likninga inneheld

Detaljer

1T eksamen hausten 2017

1T eksamen hausten 2017 1T eksamen hausten 017 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 10 5000 0,15 Oppgåve

Detaljer

Eksamen 1T våren 2015 løysing

Eksamen 1T våren 2015 løysing Eksamen T våren 05 løysing Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve ( poeng) Rekn ut og skriv svaret på standardform 5 7,5 0 0,003

Detaljer

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast

Detaljer

1T eksamen våren 2018

1T eksamen våren 2018 1T eksamen våren 018 DEL 1 Utan hjelpemiddel Tid: Del 1 skal leverast inn etter 3 timar. Hjelpemiddel: Del 1 Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve 1 ( poeng) Løys

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

Eksamen 1T, Hausten 2012

Eksamen 1T, Hausten 2012 Eksamen 1T, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Ei rett linje har stigingstal. Linja skjer x

Detaljer

Eksamen S1 hausten 2015 løysing

Eksamen S1 hausten 2015 løysing Eksamen S1 hausten 015 løysing Oppgåve 1 (5 poeng) Løys likningane nedanfor a) x 3x 0 x(x3) 0 x 0 x 3 0 3 x 0 x b) 3 1 17 x 4 lg 3 x1 34 lg 3 x1 34 3x 1 lg 34lg 3x 1 lg lg 34 lg lg 3x 1 34 3 x 33 3 3 x

Detaljer

Eksamen MAT 1011 matematikk 1P va ren 2015

Eksamen MAT 1011 matematikk 1P va ren 2015 Eksamen MAT 1011 matematikk 1P va ren 015 Oppgåve 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgåve ( poeng) a) Forklar at dei to trekantane over er formlike. Vinkelsummen i ein trekant

Detaljer

Eksamen 1T våren 2016

Eksamen 1T våren 2016 Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

1T eksamen våren 2017

1T eksamen våren 2017 1T eksamen våren 2017 Tid: 3 timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Rekn ut og skriv svaret på standardform 0,72 10 60 10 8 8

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2014

Eksamen MAT 1011 Matematikk 1P Hausten 2014 Eksamen MAT 1011 Matematikk 1P Hausten 2014 Oppgåve 1 (2 poeng) Diagrammet ovanfor viser kor mange bøker ein forfattar har selt kvart år dei fire siste åra. Når var den prosentvise auken i salet frå eit

Detaljer

Eksamen REA3026 S1, Våren 2013

Eksamen REA3026 S1, Våren 2013 Eksamen REA306 S1, Våren 013 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Løys likningane a) lg x 3 5 lg x 3 5 lg

Detaljer

S1 eksamen våren 2017 løysingsforslag

S1 eksamen våren 2017 løysingsforslag S1 eksamen våren 017 løysingsforslag Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (5 poeng) Løys likningane a) x 5x 0 xx ( 5) 0 x 0 x 5

Detaljer

Eksamen REA3026 S1, Hausten 2012

Eksamen REA3026 S1, Hausten 2012 Eksamen REA306 S1, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (5 poeng) Løys likningane a) 8 8 0 1 1 4 1 8 4 3

Detaljer

S1 eksamen våren 2016 løysingsforslag

S1 eksamen våren 2016 løysingsforslag S1 eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (4 poeng) Løys likningane a) x x 0 4 1 x 1 9 8 x 1 x x 1

Detaljer

Eksamen S1, Hausten 2013

Eksamen S1, Hausten 2013 Eksamen S1, Hausten 013 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Funksjonen f er gjeve ved Bestem f. f x 3x 3x 1, Df

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen

Detaljer

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

S1 eksamen våren 2018 løysingsforslag

S1 eksamen våren 2018 løysingsforslag S1 eksamen våren 018 løysingsforslag DEL 1 Utan hjelpemiddel Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (5 poeng) Løys likningane

Detaljer

1T eksamen høsten 2017 løsning

1T eksamen høsten 2017 løsning 1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2013

Eksamen MAT 1011 Matematikk 1P Hausten 2013 Eksamen MAT 1011 Matematikk 1P Hausten 01 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 0 % av sidene i boka. Kor mange sider er det i boka? Går «vegen om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)

Detaljer

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal

Detaljer

Eksamen S1 hausten 2015

Eksamen S1 hausten 2015 Eksamen S1 hausten 015 Oppgåve 1 (5 poeng) Løys likningane nedanfor a) x 3x 0 b) 4 3x1 17 c) x lg 3 lg Oppgåve (3 poeng) Skriv uttrykka så enkelt som mogleg a) 8a a b 3 1 ab b) x yx y y xy x x yx y Oppgåve

Detaljer

Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)

Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Eksamen 23.11.2015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til

Detaljer

Eksamen 1T våren 2015

Eksamen 1T våren 2015 Eksamen T våren 05 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve ( poeng) Rekn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgåve

Detaljer

Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram

Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgåve 1 ( poeng) Hilde skal kjøpe L mjølk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjer eit overslag og finn ut omtrent kor mykje ho må betale L mjølk:14,95 kr

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Eksamen REA3026 Matematikk S1

Eksamen REA3026 Matematikk S1 Eksamen REA306 Matematikk S1 Oppgåve 1 (3 poeng) Løys likningane a) x 6x 4 0 b) lg xlg lg4 x Oppgåve (3 poeng) ABC er rettvinkla. Eit punkt P på AC er plassert slik at PA AB PC CB. Vi set PC x og CB y.

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2014

Eksamen MAT 1011 Matematikk 1P Hausten 2014 Eksamen MAT 1011 Matematikk 1P Hausten 2014 Oppgåve 1 (2 poeng) Diagrammet ovanfor viser kor mange bøker ein forfattar har selt kvart år dei fire siste åra. Når var den prosentvise auken i salet frå eit

Detaljer

1P eksamen hausten Løysingsforslag

1P eksamen hausten Løysingsforslag 1P eksamen hausten 2017 - Løysingsforslag Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Ei vare kostar 640 kroner. Butikkeigaren

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 8.05.018 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.

Detaljer

Eksamen. 14. november MAT1006 Matematikk 1T-Y. Programområde: Alle programområde / programområder. Nynorsk/Bokmål

Eksamen. 14. november MAT1006 Matematikk 1T-Y. Programområde: Alle programområde / programområder. Nynorsk/Bokmål Eksamen 14. november 017 MAT1006 Matematikk 1T-Y Programområde: Alle programområde / programområder Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter,5 timar.

Detaljer

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

S1-eksamen hausten 2017

S1-eksamen hausten 2017 S1-eksamen hausten 017 Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (6 poeng) Løys likningane a) x x 80, a 1, b, c 8 b b 4ac 4 1 ( 8) 4 6

Detaljer

1T eksamen våren 2017 løsningsforslag

1T eksamen våren 2017 løsningsforslag 1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010

Detaljer

Geometri R1, Prøve 1 løysing

Geometri R1, Prøve 1 løysing Geometri R, Prøve løysing Del Tid: 60 min Hjelpemiddel: Skrivesaker Oppgåve Til høgre ser du ein sirkel med sentrum i S. B ligg på sirkelperiferien og punkta Aog Cer skjeringspunkt mellom sirkelen med

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034 10 b) Løs likningen x + 6x = 16 c) Løs ulikheten x x> 0 d) På tallinjen ovenfor har vi merket av 1 punkter. Hvert

Detaljer

Del 1. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (5 poeng) ( ) 2 e x. f x x x. Deriver funksjonene. Løs likningene

Del 1. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (5 poeng) ( ) 2 e x. f x x x. Deriver funksjonene. Løs likningene Del 1 Oppgave 1 (5 poeng) Deriver funksjonene a) b) f ( ) e g( ) ln e 1 c) h( ) 1 Oppgave (4 poeng) Løs likningene a) b) e 7e 8 0 ln( 5 1) ln(3 ) 0 Oppgave 3 (5 poeng) Gitt vektorene a, 3 og b 5, 3 a)

Detaljer

S1 eksamen våren 2017

S1 eksamen våren 2017 S1 eksamen våren 017 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (5 poeng) Løys likningane a) x 5x 0 x b) 310 3000 c) 4lg( x 15) 8 Oppgåve

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt

Detaljer

Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen S1 Va ren 2014 Løysing

Eksamen S1 Va ren 2014 Løysing Eksamen S1 Va ren 014 Løysing Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (3 poeng) Løys likningane a) x 3x 3 3 x x x x 3 3 3 0 x

Detaljer

S1 eksamen våren 2018

S1 eksamen våren 2018 S1 eksamen våren 018 DEL 1 Utan hjelpemiddel Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (5 poeng) Løys likningane a) x 5x + 1

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

Eksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.

Eksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag. Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1006

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen MAT1006 Matematikk 1T-Y. Nynorsk/Bokmål

Eksamen MAT1006 Matematikk 1T-Y. Nynorsk/Bokmål Eksamen 23.05.2016 MAT1006 Matematikk 1T-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del 2 Bruk av kjelder Eksamen varer i 4 timar. Del 1: 1,5 time Del 2: 2,5

Detaljer

1T eksamen våren 2017

1T eksamen våren 2017 1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave

Detaljer

Eksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål

Eksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål Eksamen 25.05.2012 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen 1T våren 2015 løsning

Eksamen 1T våren 2015 løsning Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003

Detaljer

1P eksamen våren 2016 løysingsforslag

1P eksamen våren 2016 løysingsforslag 1P eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 ( poeng) Ved kommunevalet i haust fekk eit politisk parti

Detaljer

Eksamen MAT1015 Matematikk 2P Våren 2013

Eksamen MAT1015 Matematikk 2P Våren 2013 Eksamen MAT1015 Matematikk 2P Våren 2013 DEL 1 Utan hjelpemiddel Oppgåve 1 (5 poeng) Ein kveld køyrde ein taxisjåfør 10 turar. Nedanfor ser du kor mange passasjerar han hadde med på kvar av turane. 1 5

Detaljer

R1 eksamen høsten 2015

R1 eksamen høsten 2015 R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)

Detaljer

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål

Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål Eksamen 1.11.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast

Detaljer

Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

1T eksamen våren 2018 løsningsforslag

1T eksamen våren 2018 løsningsforslag 1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

2P-Y eksamen våren 2016 løysingsforslag

2P-Y eksamen våren 2016 løysingsforslag 2P-Y eksamen våren 16 løysingsforslag Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4

Detaljer

1P eksamen hausten 2017

1P eksamen hausten 2017 1P eksamen hausten 2017 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (2 poeng) Ei vare kostar 640 kroner. Butikkeigaren vurderer å setje

Detaljer

Eksamen 1T, Høsten 2012

Eksamen 1T, Høsten 2012 Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgåve 1 (2 poeng) Nedanfor ser du kor mange sniglar Astrid har plukka i hagen kvar kveld dei ti siste kveldane. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet

Detaljer

DEL 2 med lommereknar, passar og gradskive

DEL 2 med lommereknar, passar og gradskive Alt du gjer, skal du skrive i dette heftet. Når det står kladderute, kan du velje om du vil skrive noko i ruta. Alle andre rekneruter er det meininga at du skal skrive noko i. LYKKE TIL! DEL 2 med lommereknar,

Detaljer

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Eksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.05.2013. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.05.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Eksamen S1 hausten 2014 løysing

Eksamen S1 hausten 2014 løysing Eksamen S1 hausten 014 løysing Tid: timar Hjelpemiddel: vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve 1 (3 poeng) Løys likningane a) x 10 xx 5 x x 10 x 5x 7x 10 0 7 49 40

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Hausten 2014

Eksamen MAT1005 Matematikk 2P-Y Hausten 2014 Eksamen MAT1005 Matematikk P-Y Hausten 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgåve (1 poeng) Prisen

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3

Detaljer

Eksamen MAT 1011 Matematikk 1P Hausten 2013

Eksamen MAT 1011 Matematikk 1P Hausten 2013 Eksamen MAT 1011 Matematikk 1P Hausten 2013 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 30 % av sidene i boka. Kor mange sider er det i boka? Oppgåve 2 (1 poeng) På eit kart er avstanden

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (0 poeng) a) Deriver funksjonene f = e 1) ( ) ) g( ) = 3 1 b) Vis at = 1 er en løsning av likningen 3 6 + 6= 0 Bruk polynomdivisjon til å finne de andre løsningene. c)

Detaljer

Eksamen MAT1005 matematikk 2P-Y va ren 2015

Eksamen MAT1005 matematikk 2P-Y va ren 2015 Eksamen MAT1005 matematikk P-Y va ren 015 Oppgåve 1 ( poeng) Dag Temperatur Måndag 4 C Tysdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Laurdag Tabellen over viser korleis temperaturen har variert i løpet

Detaljer

Eksamen MAT 1011 Matematikk 1P Va ren 2014

Eksamen MAT 1011 Matematikk 1P Va ren 2014 Eksamen MAT 1011 Matematikk 1P Va ren 2014 Oppgåve 1 (1 poeng) Ei husteikning har målestokk 1 : 50 På teikninga er ei dør plassert 6 mm feil. Kor stor vil denne feilen bli i verkelegheita når huset blir

Detaljer