DEL 1 Uten hjelpemidler
|
|
- Kari Klausen
- 5 år siden
- Visninger:
Transkript
1 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, ,5 4, , ( 4) 8 9, Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet. Én av de blå og tre av de svarte buksene passer ikke lenger. a) Tegn av tabellen nedenfor, og fyll inn tall i de hvite rutene. Blå bukser Svarte bukser Sum Bukser som passer Bukser som ikke passer Sum Siv tar tilfeldig én bukse fra skapet. b) Bestem sannsynligheten for at buksen passer. Vi ser at tabellen at hun har 6 bukser som passer, av ti totalt. 6 0,6 10 Sannsynligheten for at buksen passer er 0,6
2 Siv har tatt en bukse som passer. c) Bestem sannsynligheten for at denne buksen er blå. Vi ser at tabellen at av de 6 buksene som passer er blå. 0,5 6 Sannsynligheten for at denne buksen er blå er 0,5 Oppgave ( poeng) Skriv så enkelt som mulig x 18 ( x 9) x (x ) x x 6x 9 x 6x 9 ( x ) x Oppgave 4 ( poeng) Regn ut og skriv svaret så enkelt som mulig ( ) Oppgave 5 ( poeng) Løs likningen lg x 8 5lgx 1 lg x 5lg x 1 8 lg x 9 9 lg x lg x x 10 1 x 10 1 x 1000
3 Oppgave 6 ( poeng) En rett linje går gjennom punktene (1, ) og (, 5). Bestem likningen for linjen. Finner først stigningstallet: y 5 a x 1 Bruker så ettpunktsformelen: y y a( x x ) 1 1 y ( x 1) y x y x 4 y x 1 y x Likningen for linjen er y x 1 Oppgave 7 ( poeng) Løs likningssystemet x y x y 4 Bruker innsettingsmetoden: Likning 1 gir oss: y x Setter dette inn i likning, og får: x ( x ) 4 x x 4x 4 4 x 4x 0 x(4 x) 0 x 0 eller x 4 Setter så disse verdiene inn i likning 1, og får:
4 x 0 gir oss y 0 x 4 gir oss y 4 6 Likningssystemet har løsningene x 0 og y x 4 og y 6 Oppgave 8 (6 poeng) Funksjonen f er gitt ved f( x) x x, D f a) Bestem koordinatene til eventuelle ekstremalpunkter (topp- og bunnpunkter) på grafen til f ved regning. Finner først den deriverte f (x) x 6x Finner så ekstremalpunktene ved å sette f (x) 0 f (x) 0 x 6x 0 xx ( ) 0 x 0 x f (0) f () Grafen til f har toppunkt i (0,0) og bunnpunkt i (, -4) d) Forklar at f( x) x (x ), og bruk dette til å bestemme nullpunktene til f. Begge ledd i funksjonen f(x) x x inneholder sette en parentes rundt uttrykket og trekke f(x) x ( x ) x, ettersom (x) f x x x. Vi kan x utenfor parentesen, slik at vi får f (x) x ( x ) er lik 0 når x 0 og når x 0 x 0 når x 0 x 0 når x f har nullpunkt i (0,0) og (,0)
5 b) Lag en skisse av grafen til f. Oppgave 9 (1 poeng) Gitt ABC der Bestem cosc. B 90 og sina 7 Jeg lager først en skisse av trekanten: SinA betyr at forholdet mellom motstående side (BC) og hypotenus (AC) er lik 7 7. Cos C er lik forholdet mellom hosliggende side og hypotenus, sett fra vinkel B, men det blir også sidene BC og AC. Forholdet blir derfor det samme som for Sin A: CosC 7
6 Oppgave 10 ( poeng) En firkant har form som vist på figuren ovenfor. Vis at omkretsen av firkanten er 1 17 Vi mangler lengden av den korteste siden. Jeg kaller denne for k. Hvis vi trekker høyden også på den andre siden av trapeset, får vi to trekanter: Jeg bruker Pytagoras setningen på trekanten til høyre, for å finne lengden av den korteste kateten: x x x x x x 9 Jeg finner deretter den korteste kateten i trekanten til venstre: Til slutt bruker jeg Pytagoras setning for å finne den ukjente lengden, k, i trekanten til venstre: k k k k Den ukjente siden har lengde 17. Omkretsen av hele figuren blir da: O
7 DEL Med hjelpemidler Oppgave 1 (8 poeng) Funksjonen f gitt ved f( x) x 48x 16x 00 viser hvor mange tonn fisk fx ( ) det var i en fiskebestand x år etter år 000. a) Tegn grafen til f for x 0,10 Tegner grafen i GeoGebra:
8 b) Bestem grafisk når fiskebestanden var minst. Hvor mange tonn fisk var det i fiskebestanden da? Finner bunnpunktet i GeoGebra ved å skrive inn kommandoen Ekstremalpunkt[f(x)]: Fiskebestanden var minst ca. halvveis ut i 008. Den var da på 51, tonn c) Finn svarene i oppgave b) ved regning. Først deriverer jeg funksjonen:
9 f (x) x 48x 16x 00 f ( x) x 48x 16 0 f ( x) 9x 96x 16 Deretter setter jeg f ( x ) 0, og løser denne likningen i GeoGebra: Jeg får to x-verdier, og regner ut tilhørende y-verdier ved hjelp av GeoGebra: Bunnpunktet er den laveste y-verdien, så vi ser her at vi får samme svar som i b). Fiskebestanden var minst ca. halvveis ut i 008, og var da på 51, tonn d) Regn ut f (5). Bestem den momentane vekstfarten når x 5. Hva forteller disse to svarene om fiskebestanden? Jeg regner ut f(5) i GeoGebra: Den momentane vekstfarten finner jeg ved å regne ut f (5) i GeoGebra:
10 f(5) = 85 forteller oss at fiskebestanden var på 85 tonn i 005 f (5) = -9 forteller oss at fiskebestanden i 005 avtok med en hastighet på 9 tonn i år Oppgave (4 poeng) I en dam er det L vann. Vannmengden minker med 8 % hvert døgn. a) Hvor mye vann vil det være igjen i dammen etter ett døgn? Hvor mye vann vil det være igjen i dammen etter ti døgn? Når vannmengden minker med 8 % i døgnet får vi en vekstfaktor på 0,9. Vi kan dermed sette opp følgende funksjonsuttrykk: V (t) ,9 t t er tid (i døgn) og V er volum (i liter) Jeg regner så ut V (1) og V (10) : 1 V(1) , V (10) , Etter ett døgn er det liter igjen i dammen Etter ti døgn er det 8688 liter igjen i dammen b) Hvor mange døgn vil det gå før det er 5000 L vann igjen i dammen? Jeg setter V (t) 5000, og løser likningen i GeoGebra: Det vil gå litt over 16 og et halvt døgn før det er 5000 liter vann igjen i dammen Oppgave (6 poeng) En undersøkelse har vist at 0 % av alle syklistene i en by sykler uten lys i mørket. Vi velger tilfeldig ti syklister fra denne byen.
11 a) Bestem sannsynligheten for at minst én av de ti sykler uten lys i mørket. P(minst én uten lys) = 1 P(alle med lys) P(minst én uten lys) = 1 0,80 10 P(minst én uten lys) = 0,89 Sannsynligheten for at minst én sykler uten lys i mørket er 0,89 b) Bestem sannsynligheten for at bare den første, den fjerde og den tiende syklisten vi velger, sykler uten lys i mørket. 7 P(første, fjerde og tiende uten lys) 0, 0,8 0,0017 Sannsynligheten for at bare disse tre sykler uten lys er 0,0017 c) Bestem sannsynligheten for at nøyaktig tre av de ti sykler uten lys i mørket. Binomisk sannsynlighet (ikke lenger i læreplanen i 1T) Oppgave 4 ( poeng) Per, Pål og Espen har til sammen 198 mynter. Per har seks ganger så mange mynter som Pål og tre ganger så mange mynter som Espen. Hvor mange mynter har hver av de tre guttene? Jeg lar x være antall mynter Pål har. Da har Per 6x og Pål må ha x mynter. Det gir følgende likning: x 6x x 198 9x 198 x x Pål: mynter Per: 6 1 mynter Espen: 44 mynter Pål har mynter, Per har 1 mynter og Espen har 44 mynter
12 Oppgave 5 ( poeng) Vis at det finnes to ulike trekanter som tilfredsstiller de tre kravene nedenfor. En side i trekanten skal være 5,0 cm En side i trekanten skal være 8,0 cm Arealet av trekanten skal være 17,5 cm Jeg bruker arealsetningen: 1 A 5,0 8,0 sin v 1 5,0 8,0 sin v 17,5 Jeg løser så denne likningen i GeoGebra: I tillegg til denne løsningen, er også ,6 = 118,4 en løsning, ettersom sin( v) sin(180 v ) Både trekanten som har vinkelen 61,6 mellom sidene, og trekanten som har vinkelen 118,4 tilfredsstiller kravene Oppgave 6 (6 poeng)
13 Et område ABCDE har form som vist på figuren ovenfor. a) Bestem arealet av ABE ved regning. ABE er likebeint, så BE AE 6,0m E Bruker arealsetningen: 1 A 6,0 6,0 sin0 9 Arealet av ABE er 9,0m b) Bestem lengden CE ved regning. Bruker cosinussetningen: CE 9 9 cos(85, ) Regner ut i GeoGebra:
14 Jeg får to løsninger, men lengden kan ikke være negativ. Lengden CE er lik 9,m c) Bestem lengden BC ved regning. Bruker cosinussetningen: CE BC BE BC BE cos( B) 9,5 x 6,0 x 6,0 cos(8, ) Regner ut i GeoGebra: Jeg får to løsninger, men lengden kan ikke være negativ. Lengden BC er lik 7,8m Oppgave 7 (8 poeng)
15 En kjegle er innskrevet i en kule. Kulen har sentrum i S og radius R. Grunnflaten i kjeglen har radius r. Høyden i kjeglen er h y, der y er avstanden fra S til grunnflaten i kjeglen. Se skissen ovenfor. Sett r a) Hvor høy er kjeglen? Jeg bruker Pytagoras setning: R r y y y y y h y h 5 h 5,4 Høyden i kjegla er 5,4
16 1 Volumet av en kjegle er gitt ved V r h b) Bestem volumet av kjeglen ved regning. 1 V r h 1 V ( 5) Bruker GeoGebra: Volumet av kjegla er 1,9 Sett nå r x c) Vis at volumet av kjeglen da er gitt ved 1 f( x) x ( 9 x ) Jeg bruker først Pytagoras setning på trekanten: R r y x y y y x 9 x Deretter finner jeg høyden av kjegla uttrykt ved x: h y h 9 x Til slutt finner jeg et uttrykk for volumet av kjegla: 1 V r h 1 V x ( 9 x ) 1 f(x) x ( 9 x )
17 d) Hvor stor må radius og høyde i den innskrevne kjeglen være for at volumet av kjeglen skal bli størst mulig? Hvor stort blir volumet? Jeg tegner grafen til f(x) i GeoGebra, og finner så toppunktet ved å skrive inn kommandoen Ekstremalpunk[f(x),0,]. Jeg velger startverdi 0 og sluttverdi ettersom jeg ser av grafen at toppunktet ligger i dette intervallet: Toppunktet har koordinatene (.8,.51). Det betyr at: r x,8 h 9 x h 9.8 h 4 V,51 Radien må være,8 og høyden må være 4. Volumet blir da,5
18 Bildeliste Fisk: t/nb-no (1.1.01) Andre bilder, tegninger og grafiske framstillinger: Utdanningsdirektoratet
DEL 1 Uten hjelpemidler
Eksamen MAT1013 Matematikk 1T Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7,5 10 4,0 10 12 4 Oppgave 2 (4 poeng) Siv har fire blå og seks svarte bukser
DetaljerEksamen MAT1013 Matematikk 1T Hausten 2013
Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgåve (4 poeng) Siv har fire blå og seks svarte bukser i skapet. Éi av dei blå og tre av
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
DetaljerEksamen 1T våren 2016 løsning
Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3
DetaljerEksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
Detaljer1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
Detaljer1T eksamen våren 2018 løsningsforslag
1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1
DetaljerEksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål
Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål
Detaljer1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerEksamen 1T våren 2016
Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerLøsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1
Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5
DetaljerEksamen MAT1013 Matematikk 1T Våren 2012
Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 2013 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerEksamen 1T, Høsten 2010
Eksamen 1T, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Løs likningssystemet xy4 3x y 8 xy4 3xy8 4x
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT03 Matematikk T Høsten 04 Oppgave ( poeng) Regn ut og skriv svaret på standardform 50000000000,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng)
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Utan hjelpemiddel Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgåve (1 poeng) Løys likningssystemet x3y7 5xy8 Vel å løyse likninga
Detaljer1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt
DetaljerEksamen 1T våren 2016 løysing
Eksamen T våren 06 løysing Oppgåve ( poeng) Rekn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av
DetaljerEksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
DetaljerNY Eksamen 1T, Høsten 2011
NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)
DetaljerLøsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen
Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerEksamen MAT1013 Matematikk 1T Hausten 2014
Eksamen MAT1013 Matematikk 1T Hausten 01 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgåve (1 poeng) Løys likninga 16 lg lg16
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4
DetaljerEksamen 1T, Høsten 2011
Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye
DetaljerDEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DetaljerEksamen REA3022 R1, Våren 2011
Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (14 poeng) a) Skriv så enkelt som mulig x x 5 10x 5 b) Løs likningen x 1 3 1 c) Skriv så enkelt som mulig a a 1 4 3 4 a 3 a d) Gitt ABC ovenfor. AB 5,0, AC 3,0 og BC 4,0.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningssystemet 5x y x y 9 Oppgave ( poeng) Skriv så enkelt som mulig x x x 1 Oppgave 3 ( poeng) Løs ulikheten x x 3 10 Oppgave 4 ( poeng) Løs likningen
DetaljerEksamen MAT 1011 Matematikk 1P Hausten 2013
Eksamen MAT 1011 Matematikk 1P Hausten 01 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 0 % av sidene i boka. Kor mange sider er det i boka? Går «vegen om 1»: 150 1% 5 0 100% 5 100 500
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Detaljer1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4
3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgåve ( poeng) Rekn ut og skriv svaret så enkelt som mogleg
DetaljerEksamen 1T, Høsten 2010
Eksamen 1T, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Løs likningssystemet xy4 3x y 8 b) Løs
DetaljerEksamen høsten Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1006
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerS1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
DetaljerEksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
DetaljerEksamen REA3022 R1, Høsten 2010
Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x
Detaljer1T eksamen våren 2018
1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs
DetaljerEksamen høsten 2017 Løsninger
DEL Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 3 0 5 000,0 0 5,0 0 5 + 3 ( ) 5 6 6 7 = = 0 = 0 = 0 0 =,0 0 0,5 5 0 5 3 Oppgave Skjæringspunktet
Detaljer1T eksamen våren 2018 løysingsforslag
1T eksamen våren 018 løysingsforslag DEL 1 Utan hjelpemiddel Tid: Del 1 skal leverast inn etter timar. Hjelpemiddel: Del 1 Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve
DetaljerFunksjoner 1T, Prøve 1 løsning
Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?
Detaljer1T 2014 vår LØSNING 9 1 2 6 0 4 1 3 ( 3 2 ) 1 1 = 3. 3 + x = 5 x = 2. + 8x + c = 16 DEL EN. Oppgave 1: Oppgave 2: Oppgave 3: Oppgave 4: Oppgave 5:
1T 014 vår LØSNING Contents Oppgaven som pdf Tråd om denne oppgaven på Matteprat Enda en tråd om denne oppgaven på Matteprat Løsning laget av Nebu DEL EN Oppgave 1:, 5 10 15 3, 0 10 5 7, 5 10 15+( 5) 7,
Detaljer1T eksamen hausten 2017
1T eksamen hausten 017 Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 10 5000 0,15 Oppgåve
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs
DetaljerEksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1006
DetaljerEksamen R2 Høsten 2013 Løsning
Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerEksamen MAT1013 Matematikk 1T Våren 2012
DEL 1 Utan hjelpemiddel Oppgåve 1 (18 poeng) a) Rekn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Rekn ut og skriv svaret på standardform 5 6 5,510 6,010 11 1 33,0 10
DetaljerEksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
Detaljer1T eksamen hausten 2017 Løysing
1T eksamen hausten 017 Løysing Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 105000 0,15
DetaljerEksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Detaljer1T eksamen våren 2017 løysingsforslag
1T eksamen våren 017 løysingsforslag Tid: timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform 0,710
DetaljerS1 eksamen våren 2016
S1 eksamen våren 016 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg 7 Oppgave (4 poeng)
DetaljerEksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
DetaljerEksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
DetaljerEksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
DetaljerLøsningsforslag heldagsprøve våren 2010 1T
Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y
DetaljerEksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerEksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
DetaljerR1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DetaljerOppgaver i funksjonsdrøfting
Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på
DetaljerEksamen REA3022 R1, Våren 2010
Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) 8 v 6 Bruk trekanten ovenfor til å bestemme sinv. Oppgave ( poeng) Skriv så enkelt som mulig 4x 4 x x 1 Oppgave 3 ( poeng) Løs ulikheten x 4x 1 0 Eksamen MAT1013
DetaljerOm oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1T høsten 2015
Eksamen 1T høsten 015 DEL 1 Uten hjelpemidler Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 1,8 10 0,0005 = 1,8 10 5,0 10 = 9,0 10 1 1 4 8 Oppgave Vi bruker
DetaljerR1 eksamen høsten 2016 løsningsforslag
R eksamen høsten 06 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) fx 4x 5 b) g(
DetaljerEksamen 1T våren 2016
Eksamen 1T våren 016 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av 1 punkt. Kvart av tala nedanfor
DetaljerEksamen REA3022 R1, Våren 2012
Eksamen REA30 R, Våren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) a) Deriver funksjonene gitt ved ) f 3 5 4 f 5 ) 3
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen REA3026 S1, Høsten 2012
Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
Detaljer1P, Funksjoner løsning
1P, Funksjoner løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene. j : y
Detaljer1P eksamen høsten 2018 løsning
1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
DetaljerEksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:
DetaljerEksamen MAT 1011 Matematikk 1P Hausten 2013
Eksamen MAT 1011 Matematikk 1P Hausten 2013 Oppgåve 1 (1 poeng) Per har lese 150 sider i ei bok. Dette er 30 % av sidene i boka. Kor mange sider er det i boka? Oppgåve 2 (1 poeng) På eit kart er avstanden
DetaljerEksamen S1 høsten 2015 løsning
Eksamen S1 høsten 015 løsning Oppgave 1 (5 poeng) Løs likningene nedenfor a) x 3x 0 x(x3) 0 x 0 x 3 0 3 x 0 x b) 3x1 17 4 x lg 3 1 34 lg 3 x1 34 3x 1 lg 34lg 3x 1 lg lg 34 lg lg 3x 1 34 3 x 33 3 3 x 11
DetaljerHeldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen S1 høsten 2014
Eksamen S1 høsten 2014 Tid: 2 timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) 2x 10 xx 5 b) x lg 3 5 2 Oppgave 2 (1 poeng)
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen
DetaljerR1 eksamen våren 2018
R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4
DetaljerEksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy
DetaljerEksamen 1T våren 2015
Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave
DetaljerS1 eksamen våren 2017 løsningsforslag
S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0
DetaljerEksamen MAT 1011 Matematikk 1P Va ren 2015
Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant
Detaljer