DEL 1 Uten hjelpemidler
|
|
- Gunvor Brekke
- 5 år siden
- Visninger:
Transkript
1 DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med entimetermål og vinkelmåler Oppgave 1 Økningen i salget er 1000 øker per år. Da vil den prosentvise økningen fra et år til det neste være størst fra 2010 til 2011 siden vi da regner endringen i prosent av det minste tallet. Det gir % 25 % Fra 2010 til 2011 økte salget med 25 %. Oppgave 2 Til én person: 500 g 125 g Til ni personer: g 1125 g 4 Oppgave 3 Indeks år 1 pris år1 Indeks år 2 pris år x x 600 x 120 Indeksen for varen var 120 i Oppgave P (én jente og én gutt velges ut) Ashehoug Side 1 av 7
2 Oppgave 5 Pris per kiwi lir 10 kr : 4 2,50 kr og 20 kr :8 2,50 kr. Trond kan argumentere med at forholdet mellom pris og antall kiwi er konstant. Therese kan argumentere med at det ikke er sikkert at en kiwi koster 2,50 kr. Oppgave 6 a Lineær prisøkning vil si at prisen øker like mye per år. Fra 2006 til 2014 har prisen økt med 400 kr. 400 kr Da lir prisøkningen hvert år lik 50 kr. 8 Vi kan sette opp: f( x ) startpris + 50 antall år Det gir f( x) x, der x er antall år etter f (12) I 2018 vil varen koste 1200 kr. Oppgave 7 a Julie setter antall arn som er inne, lik x. Antall arn som er ute, er da 5x. Da tre arn kom ut, var det tre færre arn inne, altså x 3, Åtte ganger så mange arn ute som inne gir 8 antall arn inne antall arn ute 8( x 3) 5x+ 3 8( x 3) 5x + 3 8x 24 5x+ 3 8x 5x x 27 3x x 9 Antall arn i arnehagen lir da Oppgave 8 a Ved et annuitetslån er alle termineløp like store. Avdraget termineløpet renter Ved et serielån er alle avdrag like store. lånet Avdraget antall terminer mens antall arn ute var 5 x + 3. Ved et annuitetslån reduseres restlånet seinere, og det etyr at renteutgiftene lir større. Derfor må Siv totalt sett etale tilake til anken. De første årene i en låneperiode lir termineløpet ved serielån høyere enn ved annuitetslån. For unge i etaleringsfasen vil lønna i starten være lavest, men øker etter hvert. Det kan derfor være gunstig for noen å velge annuitetslån med lavere termineløp de første årene. Ashehoug Side 2 av 7
3 Oppgave 9 a Vi ruker pytagorassetningen. Lengden av katetene er 5,0 og 12,0. PQ PQ PQ Figur 1 er sammensatt av en likesidet trekant siden vinklene i trekanten er 60, og en halvsirkel. Omkretsen av figur 1 lir da 2πr ,5π 2 Figur 2 er sammensatt av en trekant og to halvsirkler. Omkretsen av figur 2 lir da 2 π 2,5 2 π 6 PQ π 2,5 +π ,5 π 2 2 Vi regner ut: omkretsen i figur 2 omkretsen i figur ,5π π ,5π 22 5,5π 9 + 3π ( ) 9+ 3π > 0 siden π 3,14. Figur 2 har størst omkrets. Ashehoug Side 3 av 7
4 DEL 2 Med hjelpemidler Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 1 a Antall som hadde logget seg på i løpet av en time, lir , Tiden før alle hadde logget seg på, lir 5,6 timer, dvs. 5 timer 36 minutter. Elektroniske rukere utgjør % 19,6 % Oppgave 2 a I GeoGera skriver vi Nullpunkt[f]. Nullpunktene er 0 og 15,5. I GeoGera skriver vi Ekstremalpunkt[f]. Toppunktet er (8,9, 4,6). Ved midnatt og ved halvfiretiden er det ikke snø på akken. Det er mest snø like før kl. 09. Da er det 4,6 m snø. Ashehoug Side 4 av 7
5 Oppgave 3 a Vi setter opp krysstaell. Regionavis Ikke regionavis Totalt Lokalavis 12 % 27 % 39 % Ikke lokalavis 20 % 41 % 61 % Totalt 32 % 68 % 100 % 12 P(husstanden aonnerer på lokalavisen gitt at den aonnerer på regionavisen) 0, P(akkurat én aonnerer på lokalavisen) 0,39 0, 61 0, , 435 Oppgave 4 a Siden trekantene ABC og EBD er formlike, kan vi sette opp DE BE AC AB DE 20,0 2, 4 4,0 DE 2, 4 20,0 2, 4 2, 4 4,0 DE 12,0 Lengden av DE er 12,0 m. BC AC BD DE BC 2, 4 16,8 BC 12, 0 BC(16,8 BC) 2, 4(16,8 BC) (16,8 BC) 12, 0 BC 0, 2(16,8 BC) BC 3,36 0, 2BC BC + 0, 2BC 3,36 1, 2BC 3,36 3,36 BC 2,8 1, 2 Lengden av BC er 2,8 m. DE 12,0 m 5 AC 2, 4 m Forholdet mellom to tilsvarende sider i trekant EBD og trekant ABC er Da er arealet av trekant BDE: 3,3 m 5 82,5 m. Ashehoug Side 5 av 7
6 Oppgave π r 2 1 4π 4 a V πrh+ π 2, 0 4, , Volumet av kula er 184,3 dm 3. Vi må regne ut overflaten av soppen. Vi setter radien i sylinderen lik r s, og radien i halvkula lik r k Oπ rs + 2π rh s + 4π rk +πrk π rs 2π rh s + 4π rk +πrk 2 2 O π + π +π π ,0 4,0 2 4,0 4, ,1 Overflaten av soppen er 201,1 dm 2 2,01 m 3. 2,01 0,34 6 Han trenger 0,34 liter maling. Oppgave 6 Indeks år 2012 leie Indeks år 2011 leie a ,4 leie 130, , Leie ,4 Månedsleia i 2012 var 8062 kr. Kommentar: Oppgaveteksten i denne oppgaven inneholder mest sannsynlig en trykkfeil det skulle nok stått nærmeste hele 100 kr i siste setning i den grå oksen. Indeks år 2013 leie Indeks år 2011 leie ,2 leie , , Leie ,4 Månedsleia i 2013 var 8234 kr. Da etalte Per til sammen i husleie for årene 2012 og 2013: 8062 kr kr kr Ashehoug Side 6 av 7
7 Oppgave 7 a Siden renta er 1,75 %, er vekstfaktoren 1,0175. Funksjonsuttrykket lir da F( x ) ,075 x, der x er antall år etter at spareeløpet le satt inn på kontoen. 3 F (3) , Arne vil ha kr i anken 1. januar Siden renta er 4,5 %, er vekstfaktoren 1,045. Beløpene på kr vil stå henholdsvis 3 år, to år og ett år i anken. Vi kan da sette opp , , , Eirik vil ha kr i anken 1. januar Vi regner ut skattefradraget som Eirik får , På tre år etaler Eirik kr mindre i skatt. d Arne tjener kr kr 4007 kr. Eirik tjener (81955 kr kr) kr 6955 kr kr kr. ( ) 100 % 448 % 4007 Eirik tjener 448 % mer enn Arne ved å velge BSU framfor høyrentekonto. Oppgave 8 Av grafen ser vi at hvis Jensen ruker 28 timer på joen, får han 1000 kr i timelønn. Prisen for joen lir da 1000 kr kr ,50 64 Dersom Jensen ruker 64 timer på joen, lir timelønna 437,50 kr. Ashehoug Side 7 av 7
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra et år til det neste
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2014
Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra
DetaljerEksamen MAT 1011 Matematikk 1P Hausten 2014
Eksamen MAT 1011 Matematikk 1P Hausten 2014 Oppgåve 1 (2 poeng) Diagrammet ovanfor viser kor mange bøker ein forfattar har selt kvart år dei fire siste åra. Når var den prosentvise auken i salet frå eit
DetaljerEksamen MAT 1011 Matematikk 1P Hausten 2014
Eksamen MAT 1011 Matematikk 1P Hausten 2014 Oppgåve 1 (2 poeng) Diagrammet ovanfor viser kor mange bøker ein forfattar har selt kvart år dei fire siste åra. Når var den prosentvise auken i salet frå eit
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Vi fordeler malingen på de små oksene: 8 8 3 4 8 : 1 3 3 3 3 Vi trenger 1 okser. Oppgave
DetaljerEksamen 24.11.2014. MAT1011 Matematikk 1P. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 24.11.2014 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 1 6 50 x x 6 50 x 300 Feilen lir 300 mm 30 cm. Oppgave 617 L 600L og 15,3L 15L 600 40
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 15 L 150 dl Til sammen 150 dl med dl i hvert glass gir: 150 glass 75 glass Oppgave Vi
DetaljerEksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall oservasjoner er et partall, slik som her, er medianen gjennomsnittet
Detaljer1P eksamen våren 2016 løsningsforslag
1P eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Ved kommunevalget i høst fikk et politisk parti
Detaljer1P kapittel 3 Geometri Løsninger til innlæringsoppgavene
1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km
DetaljerYF kapittel 9 Økonomi Løsninger til oppgavene i læreboka
YF kapittel 9 Økonomi Løsninger til oppgavene i læreoka Oppgave 901 a Vekstfaktoren er 100 % + 3,0 % = 103,0 % = 1,030. 5000 1, 030 = 5150 Etter ett år hadde Adrian 5150 kr på kontoen. 5150 1, 030 = 5304,50
DetaljerEksamen høsten 2017 Løsninger
DEL Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 3 0 5 000,0 0 5,0 0 5 + 3 ( ) 5 6 6 7 = = 0 = 0 = 0 0 =,0 0 0,5 5 0 5 3 Oppgave Skjæringspunktet
Detaljer( ) DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Px ( ) er altså delelig med ( x 2) hvis og bare hvis k = 8. f x x x. hx ( x 1) ( 1) ( 1) ( 1)
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x x x f ( x) = 6x+ 6 ( ) = 3 + 6 c 3 gx ( ) = 5ln( x x) 1 3 g ( x) = 5 3 ( x x )
Detaljer( ) 3. DEL 1 Uten hjelpemidler. Oppgave 1 Antall søsken i klassen er: = = 20
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Antall søsken i klassen er: 0 5 + 1 6 + 2 2 + 3 2 + 4 1 = 0 + 6 + 4 + 6 + 4 = 20 20
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 30 Vekstfaktoren er 1 1 0,30 0, 70. 100 N GV N V G 80 800 V 400 0,70 7 Varen kostet
DetaljerEksamen høsten 2017 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med entimetermål og vinkelmåler Oppgave 1 a Antall elever i klassen: 3 + 12 + 25 + 12 + 6 + 2 = 60 3 + 12 15 = = 0, 25 = 25 % 60
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a 4 ( ) f + f ( ) 4 1 g ( ) ln( ) u u 1 v ln( ) v ( ) ln( ) + g ln + + (ln 1) 1 c h
Detaljer1P eksamen våren 2016
1P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene.
DetaljerEksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: Tirsdag 13. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 014 Fag: MAT1001
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Melk: 2 14,95 2 15 30 Potet: 2,5 8,95 2,5 9 22,5 Ost: 0,5 89,95 0,5 90 45 Skinke: 0, 2 199
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x = x + x 3 5 f () x = 3 x+ 5 = 6x + 5 b gx = 3 ( x ) gu = 3 u 4 4 3 g () u = 34
DetaljerKvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013
Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente
DetaljerEksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
DetaljerEksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1001
Detaljer1P eksamen våren 2017 løsningsforslag
1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i
DetaljerEksamen våren 2008 Løsninger
Eksamen våren 008 Løsninger Eksamen våren 008 Løsninger Del Hjelpemidler: Vanlige skrivesaker, passer, linjal med cm-mål og vinkelmåler Oppgave a f x ( ) x ln = x f ( x) = x lnx+ x = xlnx+x x b c ( ) (
Detaljer( ) 3. DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Oppgave I gjennomsnitt har hver elev 1,25 søsken.
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Antall søsken i klassen er: 0 5+ 1 6+ 2 2+ 3 2+ 4 1= 0+ 6+ 4+ 6+ 4= 20 20 5 = = 1, 25
Detaljer1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
Detaljer1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
DetaljerUtvalgte løsninger. 138 Utvalgte løsninger + + = = + I = 400x. x =. 400 I a
18 Utvalgte løsninger Utvalgte løsninger 117 a 1 1 Hvis Anders stalet halvparten av lomsterpottene, Lana og Miriam, ville det totalt li 5 1 1 1 1 5 0 1 1 + + + 0 som er mer enn 1. Altså tar Miriam feil.
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerDel 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.
Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2
DetaljerEksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1001
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerEksamen REA3022 R1, Våren 2011
Eksamen REA30 R1, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) 500 8 er a) Vis at den deriverte til funksjonen
DetaljerEksamen 1T høsten 2015
Eksamen 1T høsten 015 DEL 1 Uten hjelpemidler Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 1,8 10 0,0005 = 1,8 10 5,0 10 = 9,0 10 1 1 4 8 Oppgave Vi bruker
DetaljerEksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall observasjoner er et partall, slik som her, er medianen gjennomsnittet
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 4,5 % 3,6 % 0,9 % Økningen hr vært på 0,9 prosentpoeng. 0,9 % 100 % 5 % 3, 6 % Økningen hr
DetaljerEksamen høsten Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1006
Detaljer1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerLøsningsforslag til Eksamen 2P vår 2008
Løsningsforslag til Eksamen P vår 008 Delprøve 1 OPPGAVE 1 a) Avlesning av grafen viser at 50 stoler koster 40.000 kroner. Gjennomsnittskostnaden per stol blir da: 40000 = 800 kroner. 50 b) c) = = 4,46
DetaljerEksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn
DetaljerEksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 2013 Fag: MAT1001
DetaljerR1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Ved kommunevalget i høst fikk et politisk parti 4,5 % av stemmene. Ved forrige kommunevalg fikk partiet 3,6 % av stemmene. a) Hvor mange prosentpoeng har økningen
DetaljerEksamen høsten Fag: MAT1001, Matematikk 1P-Y. Eksamensdato: 14. november Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 014 Fag: MAT1001,
Detaljer1P eksamen høsten 2018 løsning
1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.
DetaljerBasisoppgaver til 1P kap. 3 Geometri
Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate
DetaljerEksamen 1P, Høsten 2011
Eksamen 1P, Høsten 2011 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Bjørn skal lage havregrøt. Han har 6 dl
DetaljerEksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål
Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en
DetaljerOppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000
GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.
DetaljerEksamen 19.05.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Hjelpemidler
DetaljerMatematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm
Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m
DetaljerEksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1001
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1P våren 2011
Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsredden: 6 C ( 6 C) = 6 C+ 6 C= 12 C Gjennomsnittet: 2 C+ 0 C + ( 4 C) + (
DetaljerNY Eksamen 1T, Høsten 2011
NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen våren 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =
DetaljerEksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerEksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgave 1 ( poeng) Hilde skal kjøpe L melk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. L melk:14,95 kr 15
DetaljerFasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets
DetaljerINNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
DetaljerScooter/moped Motorsykkel Thales
Eksamen 20.05.2011 MAT0010 Matematikk 10. årstrinn (Elever) Del 2 Scooter/moped Motorsykkel Thales Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt. Del 1 og Del 2 skal
DetaljerEksamen MAT 1011 Matematikk 1P Våren 2013
Eksamen MAT 1011 Matematikk 1P Våren 01 Oppgåve 1 ( poeng) Hilde skal kjøpe L mjølk,5 kg poteter 0,5 kg ost 00 g kokt skinke Gjer eit overslag og finn ut omtrent kor mykje ho må betale L mjølk:14,95 kr
DetaljerEksamen S2 høsten 2016 løsning
Eksamen S høsten 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f 5 f 3 5 b) g 5 1 7 5 7 1 70 1
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerLøsningsforslag til Eksamen 2P vår 2010 14 1 0,86 100
Delprøve 1 OPPGAVE 1 a) 41,5 liter avrundet til 40 liter. 509,6 kroner avrundet til 500 kroner. 500 50 5 1,5 40 4 Ved å gjøre overslag ser vi at Liv må ha bensinbil. b) 4 3 3 3 1 16 5 4 3 5 16 1 5 5 3
DetaljerEksamen våren Fag: MAT1001 Matematikk 1P-Y. Eksamensdato: Tirsdag 13. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 2014 Fag: MAT1001
Detaljer1P eksamen våren 2018 løsningsforslag
1P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerEksamen MAT 1011 Matematikk 1P Va ren 2015
Eksamen MAT 1011 Matematikk 1P Va ren 015 Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 45,1 % 5 0 b) 0 % 5 100 Oppgave ( poeng) a) Forklar at de to trekantene ovenfor er formlike. Vinkelsummen i en trekant
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 45,1 0, 451 45,1 % 100 5 4 5 0 0 % 5 4 5 100 Oppgve Vinkelsummen i en treknt er 180. Vi regner
DetaljerÅrsprøve i matematikk for 9. trinn Kannik skole
Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men
DetaljerDEL 1 Uten hjelpemidler
Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge
Detaljer1P eksamen våren 2016 løysingsforslag
1P eksamen våren 016 løysingsforslag Tid: timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 ( poeng) Ved kommunevalet i haust fekk eit politisk parti
Detaljer1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
Detaljer1P eksamen våren 2017
1P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i begre. I hvert
DetaljerKapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?
Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DetaljerEksamen 25.05.2010. MAT0010 Matematikk Elever (10. årstrinn) Del 1. Del 1 + ark fra Del 2. Bokmål
Eksamen 25.05.2010 MAT0010 Matematikk Elever (10. årstrinn) Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:
DetaljerLøsning eksamen 1P våren 2010
Løsning eksamen 1P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylt diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509, 62
DetaljerØvingshefte. Geometri
Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)
DetaljerFaktor terminprøve i matematikk for 10. trinn
Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.
Detaljer1T eksamen våren 2017 løysingsforslag
1T eksamen våren 017 løysingsforslag Tid: timer Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform 0,710
Detaljer1P eksamen høsten 2017
1P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren vurderer å sette opp
DetaljerEksamen R2 høsten 2014
Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave
DetaljerEksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70
DetaljerEksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerTall i arbeid Påbygging terminprøve våren 2012
Tall i areid Påygging terminprøve våren 2012 DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Skriv tallene på standardform. 1 0,000
Detaljer