Komplekse tall. Kapittel 15

Størrelse: px
Begynne med side:

Download "Komplekse tall. Kapittel 15"

Transkript

1 Kaittel 5 Komlekse tall Utgangsunktet for all regning er de naturlige tallene N = {,,3,...,} Den berømte matematikeren Leoold Kronecker formulerte dette som Gud skate de naturlige tallene, resten er menneskets verk. De naturlige utvidelsene av de naturlige tallene er de hele tallene, hvor vi inkluderer negative tall og 0; Z = {..., 3,,,0,,,3,...,} og de rasjonale tallene, eller brøkene. Q = { m m,n Z} n Alle de rasjonale tallene har sin lass å tallinjen, men de utgjør ikke alle tallene å tallinjen. Det finnes masse hull, de såkalte irrasjonale tallene. Dette er tall som ikke kan skrives som en brøk, f.eks.. Proosisjon er ikke rasjonal. (Ho gjerne over dette beviset hvis du ikke er interessert): Bevis. Anta at kan skrives som en brøk, = m som er forkortet mest mulig, dvs. at m og n ikke har noen felles faktor. Hvis vi kvadrerer begge sider og ganger o, får vi n n = m som betyr at m må være et artall, vi skriver m = k. Setter vi dette inn i uttrykket over får vi n =(k) = 4k eller forkortet n = k Som betyr at n også må være et artall. Men vi antok at m og n ikke hadde noen felles faktor, så vi har fått en motsigelse. Det betyr at antagelsen vår om at kunne skrives som en brøk må ha vært feil. Altså er et irrasjonalt tall. Dette er et eksemel å en veldig utbredt måte for å bevise matematiske åstander. Det kalles et kontraositivt bevis, vi antar noe og viser at det fører til en motsigelse, noen som viser at antagelsen måtte være gal. Da går vi tilbake til hovedsoret vårt, de komlekse tallene. For å løse. gradslikninger bruker vi abcformelen. Gitt en.gradslikning ax + bx + c = 0 Da er løsningene til likningen gitt ved I likningen er a = og b = c = x = b ± b 4ac a x x = 0 og vi har løsninger x = ( ) ± ( ) 4 ( ) Men ser vi å likningen vil løsningen være gitt ved x x + = 0 x = ± 4 = ± = ( ± 5) 80

2 Siden alle kvadrater er ositive tall vil vi normalt si at denne likningen ikke har noen løsning. Men før vi gir helt o tar vi et blikk tilbake i tid. På 500-tallet var det stor aktivitet i Italia omkring løsning av 3.gradslikninger. I likhet med.gradslikninger, så finnes det en formel for disse løsningene. Flere matematikere var med å utviklingen, fra Sciione del Ferros første resultater i 50 til Gerolamo Cardano sin endelige og fulle løsning i 545. Cardano satt lenge og lurte å et roblem han hadde med en sesiell likning. Dersom vi ser å 3.gradslikningen (x )(x )(x + 3)=x 3 7x + 6 = 0 så følger det umiddelbart at løsningene er x =, x = og x = 3. Et helt senttralt uttrykk i Cardanos formel er r ( q ) +( 3 )3 hvor = 7 og q = 6 er de to koeffisientene i likningen over. Setter vi dette inn i formelen får vi q ( 6 ) +( 3 7)3 = og Cardanos formel gir da at en av løsningene er gitt ved ( ) 3 0 +( 3 9 3) 3 Cardano visste at dette tallet ikke fantes. Samtidig visste han at formelen hans var riktig, og at likningen faktisk hadde tre løsninger;,, 3. Hans konklusjon var at selv om ikke 3 finnes, så tvinger løsningen av likningen oss til å forholde oss til 3 = 3. Siden dette kun var en størrelse vi bare tenkte oss til, og som ikke fantes å den vanlige tallinjen, ga han navnet imaginært tall (Ordet betyr noe vi forestiller oss). Størrelsen, som siden har fått betegnelsen i utgjør sammen med de reelle tall, og alle mulige regnekombinasjoner mellom disse, de komlekse tallene. Definisjon Mengden der i = C = {a + ib a,b R} kalles de komlekse tallene. La z = a + ib C være et komleks tall. Vi sier at (z)=a er realdelen til det komlekse tallet og (z)= b er imaginærdelen. Det gir z = (z)+i (z) og to komlekse tall er like hvis og bare hvis realdelene er like og imaginærdelene er like for de to tallene. Regneoerasjonene for de komlekse tallene følger helt vanlige rinsier; Eksemel Addisjon av komlekse tall: ( + i)+( + 3i)=( )+i( + 3)= + 4i og multilikasjon: ( + i) ( + 3i)=( )+ 3i + i( )+i 3i hvor vi har brukt at i =. = + 6i i + 3i = + 5i 3 = 5 + 5i Nå kan vi faktisk (med litt strev) regne ut Cardanos løsning og vi finner at ( ) 3 0 +( 3 9 3) 3 = Den generelle løsningen av 3.gradslikningen er for øvrig gitt som følger: Gitt en likning Ved å sette x = y x 3 + a x + a x + a 0 = 0 a 3 får vi den litt enklere likningen y 3 + y + q = 0 a hvor = a 3 og q = a3 7 La nå z ± = a a 3 + a 0. r q ± ( q ) +( 3 )3 3 og w er et komleks tall (6= ) slik at w 3 =. Da vil løsningene av likningen y 3 + y + q = 0 være gitt ved y = z + + z y = wz + + w z y 3 = w z + + wz Når vi regner med komlekse tall vil abc-formelen alltid gi oss løsninger av.gardslikninger. Men komlekse tall gir oss enda større muligheter. Vi kan faktisk finne løsninger til alle olynomiale likninger. Dette resultatet kalles algebraens fundamentalsats. Teorem La P(x) være et vilkårlig olynom med reelle (eller komlekse) koeffisienter. Da finnes det et komleks tall z 0 C slik at P(z 0 )=0. Det finnes mange forskjellige bevis for dette resultatet, og vi henviser til litteraturen for de som måtte være interessert. 8

3 5. Det komlekse lanet En naturlig måte å visualisere de komlekse tallene er som et reelt lan R. Et komleks tall z = a + ib svarer til unktet (a,b) R. Dette asser godt til den additive strukturen, siden og z + z =(a + ib )+(a + ib ) =(a + a )+i(b + b ) (a,b )+(a,b )=(a + a,b + b ) Vi sier at et komleks tall z = a + ib er å normalform. Når vi skal multilisere sammen komlekse tall kan det ofte være hensiktsmessig å skrive tallet å olarform, noe som svarer til å betrakte z = a + ib som et unkt (a,b) R og så angi dette unktet ved olarkoordinater (r,q). Overgangen mellom de to formene er som vanlig gitt ved a = r cosq, b = r sinq. Vi kaller r = z = a + b for absoluttverdien eller modulus av det komlekse tallet, mens vinkelen q kalles argumentet til z. Vi skal senere se at vi kan bruke skriveformen z = re iq for å uttrykke z å olarform. Merk at modulus av et komleks tall z alltid er et ikke-negativt tall. F.eks. vil det reelle tallet - å olarform være gitt ved (,). Vi har sett at addisjon av komlekse tall å normalform har en veldig enkel formel, mens det ikke finnes noen tilsvarende måte å addere to komlekse tall å olarform. Derimot har multilikasjon av komlekse tall en vakker formel når vi reresenterer dem å olarform; (r,q ) (r,q )=(r r,q + q ) som asser svært godt med skrivemåten z = re iq. Med denne notasjonen tar multilikasjon formen r e iq r e iq = r r e i(q +q ) som svarer resis til vanlig multilikasjon av otensfunksjoner. Vi kan gi et formelt argument for denne formelen ved å bruke summeformelene for cosinus og sinus. La Da har vi (a + ib )(a + ib ) =(r cosq + ir sinq )(r cosq + ir sinq ) = r r (cosq cosq + icosq sinq + isinq cosq + i cosq cosq ) = r r (cosq cosq cosq cosq + icosq sinq + isinq cosq ) = r r (cos(q + q )+sin(q + q )) Eksemel 5... La z = + i og z = i være to komlekse tall. På olarform har vi z = e i 4 z = e i Addisjon av tallene gjør vi å normalform; z + z =( + i)+i = + i mens multilikasjon enklest utføres å olarform; z z = e i 4 e i = e i 3 4 Ogave. a) Skriv tallene i, + 3 og - å olarform. b) Skriv tallene e i,e i og 3e 0i å normalform. Vi har sett at modulus av det komlekse tallet a + ib er gitt ved a + b. Vi har også (a + ib)(a ib)=a i b = a + b Det følger at a + ib = a + b = (a + ib)(a ib) For et komleks tall z = a + ib bruker vi betegnelsen komleks konjugert om a ib, og skriver z = a ib. Dermed har vi at z = zz Vi har følgende regneregler for komleks konjugasjon: La z,w C være to komlekse tall. Da har vi z ± w = z ± w z w = z w a + ib = r cosq + ir sinq a + ib = r cosq + ir sinq ( z w )= z w z = z 8

4 Ved å bruke de komleks konjugerte får vi formler for real- og imaginærdelene til et komleks tall z C gitt ved (z)= z + z (z)= z z i Vi har også en formel for den inverse til et komleks tall z = z zz = z z Merk at nevneren her er et reelt tall. Siden et komleks tall inneholder en kvadratrot (kvadratroten av -), og vi normalt ikke liker å ha kvadratrøtter i nevneren, sørger vi alltid for å fjerne komlekse tall fra nevneren i et svar ved å bruke formelen over. Eksemel i i = ( + 3i)( + i) ( i)( + i) = + 5i = + 5 i Eksemel Vi skal regne ut måten. Vi skriver -4 å olarform; Det gir kvadratrøtter 4 = 4e i e i = i e i + = e i 3 0 i 4 å denne Vi kan også regne ut kvadratrøtter av komlekse tall, f.eks. 3i. Eksemel Vi skriver 3i å olarform Kvadratrøttene er gitt ved 3i = 3e i 3e i 4 = 3(cos 4 + isin 4 ) = 3( + i ) Eksemel Vi skal løse likningen Ved abc-formelen har vi x + x + = 0 og 6 = ( + i) 3e i( 4 +) = 3(cos isin 5 4 ) x = ± 4 = ± 3 = ± i 3 Uttrykket D = b 4ac under rottegnet i abcformelen kalles diskriminanten til. gradslikningen. Dersom D > 0 har likningen to reelle røtter, dersom D = 0 så vil likningen ha to sammenfallende røtter (de to røttene er like), og dersom D < 0, så har likningen to komlekse røtter, og disse er komleks konjugerte av hverandre. Vi kan bruke olarformen til et komleks tall til å regne ut kvadratrøtter. Vi har sett at for z = re iq så har vi z =(re iq ) = r e i(q) Det betyr at Men det betyr også at ( re i q ) = re iq ( re i( q +) ) = re i(q+) = re iq siden e i() =. Vi har funnet to kvadratrøtter av z, og siden et tall ikke kan ha mer enn to kvdratrøtter betyr det at vi har funnet begge røttene. 5. Eulers formel = 3( i ) 6 = ( + i) Vi kan bruke formalismen rundt rekkeutvikling til å utlede en viktig formel innen komleks analyse. Selv om hele teorien for rekkeutvikling dreier seg om reelle tall og reelle funksjoner, kan vi driste oss til å late som om de også gjelder for komlekse tall. Så lenge rekkene konvergerer (og de gjør de i dette tilfellet) er det ingen formelle roblemer med følgende resonnement: Eksemel 5... Vi har rekkeutviklingen for eksonensialfunksjonen e x = + x +! x + 3! x3 + 4! x og for de trigonometriske funksjonene sinx = x 3! x 3 + 5! x5 7! x cosx =! x + 4! x4 6! x

5 Setter vi inn ix for x i rekkeutviklingen for e x,får vi e ix = + ix +! (ix) + 3! (ix)3 + 4! (ix) dvs. at vi har = + ix! x 3! ix3 + 4! x4 + 5! ix =(! x + 4! x4...) + i(x 3! x 3 + 5! x5...) = cosx + isinx e ix = cosx + isinx Setter vi inn x = i dette uttrykket får vi det osiktsvekkende uttrykket som kalles Eulers formel. e i = Ogave. Løs likningene a) x + 9 = 0 b) x + x + = 0 c) 3x 4x + = 0 d) 4 x + 7 = 0 Ogave 3. Skriv følgende komlekse tall å normalform a) (3 + i)+( + 4i) b) (3 + i)(4 3i) c) i 5 + i + d) (3 + i) Ogave 4. Skriv følgende komlekse tall å normalform a) +i i b) 3 i +i c) d) 3+i (+i)(3 i) +i e) 4+7i +5i 4i f) +i 3 Ogave 5. Løs likningene med hensyn å z: a) z( + i)=3 i b) (z + i)( i)= + 3i c) z + i = 3 +i Ogave 6. Finn reelle tall x og y som asser i likningen a) x i + iy i+3 = +i b) x +i + y i = Ogave 7. Skriv de komlekse tallene å olarform: a) i b) + 3i c) 3 3i d) 3 + i Ogave 8. Skriv de komlekse tallene å normalform: a) (4, 3 ) b) (5, ) c) (3, 3 4 ) d) (4,3) Ogave 9. Regn ut otensene ved ågå via olarformen til de komlekse tallene: a) (3 + 3i) 8 b) ( )00 Ogave 0. La z = cosq + i sinq. Vis at a) z + z = cosq b) z + z = cos(q) Ogave. a) La w C være et komleks tall, z 6=, slik at w 3 =. Vis at + w + w = 0. b) Regn ut ( + w )( w) + w Ogave. Vis at dersom z er løsning av en olynomial likning med reelle koeffisienter, så er også z en løsning av den samme likningen.. 84

6 Ogave 3. La z,w C. Vis at z w + z + w = ( z + w ) Ogave 4. Finn alle komlekse tall z C som tilfredsstiller a) z = b) z + = z c) z + i 3 = z + 3i Ogave 5. Finn alle komlekse tall z C som tilfredsstiller a) z + z = 6 b) z 4iz + 6 = 0 c) 3iz (3 + i)z = + i 85

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d Lsningsforslag til utvalgte ogaver i kaittel I dette kaittelet har mange av ogavene et mindre teoretisk reg enn i de foregaende kaitlene, og jeg regner derfor med at lrebokas eksemler og fasit er dekkende

Detaljer

Et Komplekst tall på kartesisk(standard), polar(eksponentialform) og trigonometrisk form

Et Komplekst tall på kartesisk(standard), polar(eksponentialform) og trigonometrisk form Kapittel Komplekse tall.1 Kompleksetall-Oppsummering Kvadratroten av 1 må være en løsning til ligningen x = 1, om den finnes. Tallet i kalles den imaginære enheten og er det vi trenger for å definere de

Detaljer

Oppgavehefte om komplekse tall

Oppgavehefte om komplekse tall Oppgavehefte om komplekse tall Tore August Kro, tore.a.kro@hiof.no 11. august 009 1 Aritmetikk Eksempel 1.1 Vi skriver komplekse tall på kartesisk form z = a + ib. Tenk på i som et symbol som oppfyller

Detaljer

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall Kapittel Komplekse tall Oppfinnelsen av nye tallsystemer henger gjerne sammen med polynomligninger x + 4 0 har ingen positiv løsning, selv om koeffisientene er positive tall Vi må altså inn med negative

Detaljer

Komplekse tall: definisjon og regneregler

Komplekse tall: definisjon og regneregler Komplekse tall: definisjon og regneregler Eugenia Malinnikova, NTNU, Institutt for matematiske fag 22. august 2011 Komplekse tall fra Wikipedia Et komplekst tall er tall på formen x + iy, der x og y er

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Geometri i rommet. Kapittel Vektorer i R 3. Lengden av v er gitt ved

Geometri i rommet. Kapittel Vektorer i R 3. Lengden av v er gitt ved Kaittel 5 Geometri i rommet I dette kaitlet skal vi konsentrere oss om isometrier i R. Det er stort sammenfall mellom teoriene i og dimensjoner, og mange av resultatene fra forrige kaittel er gyldig også

Detaljer

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall 4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x <

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x < Lsningsforslag til utvalgte ogaver i kaittel 2 I seksjon 2.1 far du velse i a lse ulikheter hvor tallverdier inngar (ogave 2.1.5) og enkel trening i a fre matematiske resonnementer ved a kombinere bruk

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

ANNENGRADSLIGNINGER OG PARABELEN

ANNENGRADSLIGNINGER OG PARABELEN ANNENGRADSLIGNINGER OG PARABELEN Espen B. Langeland realfagshjornet.wordpress.com espenbl@hotmail.com 9.mars 017 Dagens artikkel omhandler annengradsligninger, og deres grafer parabler. 1 Annengradsligninger

Detaljer

n-te røtter av komplekse tall

n-te røtter av komplekse tall . 29. august 2011 Eksponentialform Forrige gang så vi at e iθ = cos θ + i sin θ Dette kan vi bruke til å gjøre polarfremstillingen av komplekse tall mer kompakt: z = a + ib = r(cos θ + i sin θ) = re iθ

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

KAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at :

KAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at : KAPITTEL - ALGEBRA. Regnerekkefølger og regneregler Legg først merke til at: 2( ) = 2 ( ) = 6, ab = a b = b a = ba og a a = a 2 Legg spesielt merke til at : a 2 = a a, ( a) 2 = ( a) ( a) = a 2 og ( a)

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Geometri i planet. Kapittel Geometrisk tolkning av lineære avbildninger

Geometri i planet. Kapittel Geometrisk tolkning av lineære avbildninger Kaittel 4 Geometri i lanet I dette og det neste kaitlet skal vi studere vektorrom i og dimensjoner, dvs. R og R. Vi har valgt å kalle kaitlene geometri i lan eller rom fordi vi i utgangsanktet skal bruke

Detaljer

Skoleprosjekt Algebra Mat4010

Skoleprosjekt Algebra Mat4010 Skoleprosjekt Algebra Mat4010 Narve Elling Johnsen 27. mars 2014 1 Innhold 1 Annengradsligninger Vi sier ofte at annengrads ligninger har enten to, en eller ingen reelle løsninger. Vi kan bruke abc formelen

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

Hans Petter Hornæs,

Hans Petter Hornæs, Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31, Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området

Detaljer

Første utkast til et notat for MA1102 våren Kom gjerne med tilbakemeldinger! Målsetningen med dette avsnittet er å motivere Eulers formel

Første utkast til et notat for MA1102 våren Kom gjerne med tilbakemeldinger! Målsetningen med dette avsnittet er å motivere Eulers formel Første utkast til et notat for MA110 våren 009. Kom gjerne med tilbakemeldinger! 1 Komplekse tall Målsetningen med dette avsnittet er å motivere Eulers formel e iθ = cosθ +i sinθ (1) og se litt hvordan

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

KOMPLEKSE TALL. hvor x og y er reelle tall. x = Re z og y = Im z

KOMPLEKSE TALL. hvor x og y er reelle tall. x = Re z og y = Im z KOMPLEKSE TALL. Innledning og definisjoner Mengden av komplekse tall danner en utvidelse av den reelle tallmengden. Denne utvidelsen skjer ved at vi innfører en ny størrelse (et tall) i som er slik at

Detaljer

KURSHEFTE TIL FORKURS I MATEMATIKK

KURSHEFTE TIL FORKURS I MATEMATIKK KURSHEFTE TIL FORKURS I MATEMATIKK Variant av Magnus Dehli Vigeland UNIVERSITETET I OSLO MATEMATISK INSTITUTT Innhold Oppvarming 3. Noen viktige tallmengder. Notasjon.................... 3. Mer om mengder.............................

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5. Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 2004. Hans Petter Hornæs Versjon per 26.10.04.

Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 2004. Hans Petter Hornæs Versjon per 26.10.04. Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 004. Hans Petter Hornæs Versjon per 6.10.04. I Matematikk 10 er en kort innføring i komplekse tall pensum. Dette er dekket i Lorentzen,

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Mandag 3. august 05 før forelesningen :30 Antall oppgaver: 5 Løsningsforslag Uttrykk følgende komplekse tall både

Detaljer

Forord Dette er en samling lsningsforslag som jeg orinnelig utarbeidet til grueundervisningen i kurset MATA ved Universitetet i Oslo hsten. Den vil de

Forord Dette er en samling lsningsforslag som jeg orinnelig utarbeidet til grueundervisningen i kurset MATA ved Universitetet i Oslo hsten. Den vil de K A L K U L U S Lsningsforslag til utvalgte ogaver fra Tom Lindstrms lrebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Coyright c Klara Hveberg Forord Dette er en samling lsningsforslag

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Hva man må kunne i kapittel 2 - Algebra

Hva man må kunne i kapittel 2 - Algebra Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.

Detaljer

Indreprodukt. Kapittel Et generelt indreproduktbegrep

Indreprodukt. Kapittel Et generelt indreproduktbegrep Kaittel 6 Indrerodukt Skalarroduktet av vektorer er et nyttig verktøy. Vi har sett at det kan brukes til å regne ut lengder av vektorer og å fastslå om vektorer står vinkelrett å hverandre. I tillegg har

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 5.6 5 La ABC være en trekant, og la m A,m B og m C være midtnormalene på de

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Forkurshefte i matematikk variant 1

Forkurshefte i matematikk variant 1 Forkurshefte i matematikk variant 1 2014 Inger Christin Borge Matematisk institutt, UiO (Plan for kurset: se side 3) Forord Velkommen til Universitetet i Oslo (UiO), og til forkurs i matematikk! Dette

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan Løsningsforslag til utvalgte oppgaver i Kalkulus Øyvind Ryan. november 4 Innhold Kapittel 3 Seksjon.................................. 3 Seksjon.................................. 3 Seksjon.4.................................

Detaljer

Funksjoner i flere variable

Funksjoner i flere variable Kaittel 8 Funksjoner i flere variable Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er ågå gjennom den samme analysen vi gjorde

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT00 Kalkulus Eksamensdag: Fredag 9. oktober 205 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark, formelsamling.

Detaljer

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i. Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Onsdag. februar 05 før forelesningen :30 Antall oppgaver: LØSNINGSFORSLAG Skriv følgende komplekse tall både på kartesisk

Detaljer

Oppfriskningskurs i matematikk Dag 3

Oppfriskningskurs i matematikk Dag 3 Oppfriskningskurs i matematikk Dag 3 Petter Nyland Institutt for matematiske fag Onsdag 8. august 2018 Dagen i dag Tema 4 Polynomer: Faktorisering, røtter, polynomdivisjon, kvadratiske ligninger og rasjonale

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile 1 Kroppsutvidelser og geometriske konstruksjoner 1.1 Hva har kroppsutvidelser med geometriproblemer å gjøre? Avsnitt 29: Kroppsutvidelser Stoff: Utvidelseskropper

Detaljer

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo K A L K U L U S Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Forord Dette er en samling løsningsforslag som jeg opprinnelig

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

OPPGAVESETT MAT111-H16 UKE 34

OPPGAVESETT MAT111-H16 UKE 34 OPPGAVESETT MAT111-H16 UKE 34 Avsnittene (og appendiksene) viser til utgave 8 av læreboken, som er like i utgavene 7 og 6 når ikke annet er oppgitt. Gruppene starter opp i uke 35. Hver student er satt

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. For å kunne skrive det komplekse tallet følgende endringer foretas på uttrykket. 3 3, hvor 3 og 3 på formen, hvor og, må For å kunne skrive det komplekse tallet på polarformen, må vi først finne

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Cauchys sats og Abels bevis for uløsbarheten av 5. gradslikningen

Cauchys sats og Abels bevis for uløsbarheten av 5. gradslikningen Cauchys sats og Abels bevis for uløsbarheten av 5. gradslikningen Faglig-pedagogisk dag, 3. januar 2006 Arne B. Sletsjøe Matematisk institutt Universitetet i Oslo Cauchys sats (Journal de L école polytechnique,

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall

Detaljer

HJEMMEOPPGAVER (utgave av 12-7-2005):

HJEMMEOPPGAVER (utgave av 12-7-2005): HJEMMEOPPGAVER (utgave av 12-7-2005: Ogave 1 til 31. januar: La f 1, f 2,... være Fibonacci tallene, det vil si f 1 f 2 1 og f n f n 1 + f n 2 for n 3. Vis: (1 f 1 + f 2 + + f n f n+2 1. (2 f n+1 f n 1

Detaljer

MAT1030 Forelesning 17

MAT1030 Forelesning 17 MAT1030 Forelesning 17 Rekurrenslikninger Roger Antonsen - 18. mars 009 (Sist oppdatert: 009-03-18 19:3) Forelesning 17 Forrige gang ga vi en rekke eksempler på bruk av induksjonsbevis og rekursivt definerte

Detaljer

Oppfriskningskurs i matematikk Dag 1

Oppfriskningskurs i matematikk Dag 1 Oppfriskningskurs i matematikk Dag 1 Petter Nyland Institutt for matematiske fag Mandag 6. august 2018 Om meg Bachelor- og mastergrad i matematiske fag (2014, 2016) Doktorgradsstipendiat i matematikk (2016

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Løysingsforslag for øving 13

Løysingsforslag for øving 13 Institutt for fysikk 014 TFY4108 Fysikk Løysingsforslag for øving 13 Ogåve 1. (a) de Broglie foreslo at ein artikkel med bevegelsesmengd = mv har bølgjelengd E = /(m)+u blir = m(e U) så = h/ m(e U). Dermed:

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

MAT Grublegruppen Uke 37

MAT Grublegruppen Uke 37 MAT00 - Grublegruppen Uke 37 Jørgen O. Lye Bemerkning: Mye av stoffet i dette notatet er å finne i Kalkulus, kapittel. Dette kapittelet er leselig etter man vet hva følger er, men er ikke pensum før i

Detaljer

Il UNIVERSITETET I AGDER

Il UNIVERSITETET I AGDER Il UNIVERSITETET I AGDER FAKULTETFOR TEKNOLOGIOG REALFAG EKSAMEN Emnekode: Emnenavn: MA913 Tall og algebra Dato: 7. desember 2011 Varighet: 09.00 15.00 Antall sider inkl. forside 7 Tillatte hjelpemidler:

Detaljer

Litt topologi. Harald Hanche-Olsen

Litt topologi. Harald Hanche-Olsen MA2104 2006 Litt topologi Harald Hanche-Olsen hanche@math.ntnu.no De reelle tall En grunnleggende egenskap ved de reelle tall, som skiller dem fra de rasjonale tall, er kompletthetsaksiomet. Det har flere

Detaljer

Oppgaver. Innhold. Algebra R1

Oppgaver. Innhold. Algebra R1 Oppgaver Innhold.1 Faktorisering... Polynomdivisjon.... Omforme og forenkle sammensatte rasjonale funksjoner og andre symbolske uttrykk... 6 Rasjonale uttrykk som inneholder andregradspolynomer... 6 Rasjonale

Detaljer

z = a + jb Mål Komplekse tall: Sum og produkt Komplekse tall

z = a + jb Mål Komplekse tall: Sum og produkt Komplekse tall Mål IN3190/4190 Digital signalbehandling Andreas Austeng og Stine Hverven (INF3470/4470, H18). Repetisjon av komplekse tall og trigonometri Beherske komplekse tall. Beherske trigonometriske funksjoner.

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen

Detaljer

Gruppeteori. Kapittel Symmetrigrupper

Gruppeteori. Kapittel Symmetrigrupper Kaittel 7 Grueteori Grueteori handler om å studere gruer, det vil si mengder med en velidg sesifikk, men likevel enkel, struktur. Den mest sentrale delen av definisjonen av en grue er en binær oerasjon.

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 3 Stine M. Berge 07.08.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 07.08.19 1 / 19 Polynomer Polynomer er de enkleste funksjonene Definert og kontinuerlig

Detaljer

OPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08

OPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08 OPPGAVESETT MAT111-H17 UKE 34 Settet inneholder oppgaver fra stoffet omhandlet på forelesning uke 34, og består av seminaroppgaver, gruppeoppgaver og og obligatoriske oppgaver. Avsnittene og appendiksene

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

Løsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Vår 25.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer

Detaljer