De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.
|
|
- Roald Hans-Petter Rønningen
- 9 år siden
- Visninger:
Transkript
1 Innledning til Matematikk Hans Petter Hornæs, Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter oppfatter dette som veldig teoretisk, og er utålmodige etter å komme i gang med konkret regning. Jeg har ikke helt funnet løsningen på dette, men vil i år prøve en hurtiggjennomgang basert på transparenter. Dette notatet er ment som forelesningsnotater til dette innledende stoffet, og er min versjon av det som tilsvarer lærebokas kapittel.., og starten på. (selv om litt andre temaer er vektlagt). Tallmengder. Denaturligetall De naturlige tall er tallsystemet for telling: N = {,,,,, 5,...} () Ikke alle lærebøker har med tallet blant de naturlige tall. De naturlige tall N har addisjon og multiplikasjon. Deterogså lineær ordning for N, dvs. at for to tall n og m gjelder nøyaktig en av relasjonene n<m, n = m eller n>m. De naturlige tall har ikke generelt subtraksjon og divisjon. F.eks. gir ikke 5 7 eller 5/7 naturlige tall som svar.. De hele tall Dette er både de negative og positive heltall: Z = {...,,,,,,,...} () De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.. De rasjonale tall De rasjonale tall er tallmengden av alle brøker mellom heltall. Nevneren kan ikke være. Q = { a/b a Z,b N \{ }} () Skrivemåten er ikke entydig, f.eks. er 6/9og/ det samme rasjonale tallet. Hvis brøken forkortes så mye som mulig og en eventuell minus settes i telleren, blir skrivemåten entydig. De rasjonale tall har de fire regningsartene og lineær ordning.
2 . Den reelle tall.. Tallinjen På grunn av den lineære ordninga kan vi naturlig tenke oss de rasjonale tall som punkter langs en uendelig lang rett linje: 5/ π Punktene for rasjonale tall ligger tett, det er uendelig mange av dem på et vilkårlig lite intervall. Likevel er det mange størrelser som naturlig representerer punkter på en rett linje som ikke kan skrives som rasjonale tall. Et eksempel finnes det ikke noe rasjonalt tall m/n slik at (m/n) =,altsåettallviønsker å kalle. Beviset for at ikke er noe rasjonalt tall finner du i læreboka, eksempel.5. (s. 58). Likevel representerer et helt konkret et punkt på tallinjen da det er lengden av diagonalen i et kvadrat med sidelengde. Tallet π, som er omkretsen av en sirkel med diameter, kan heller ikke skrives som en brøk melom heltall. Det samme gjelder svært mange andre tall vi trenger i matematikken. Tall som ikke kan skrives som en brøk kalles irrasjonale tall. De relle tall er et tallsystem som på en naturlig måte kan sies å fylle opp hele tallinjen... De reelle tall Selve konstruksjonen av de reelle tall er altfor komplisert til å komme inn på her. Stort sett klarer vi oss med to varianter av forståelsen av de reelle tall: Enten som alle punktene på tallinja (og mer generelt som en intuitiv forståelse av en sammenhengende kurve). Eller som desimaltall, med (i prinsippet) uendelig mange desimaler. For eksempel =...., 6/7 = , =.56. De reelle tall betegnes med R. De reelle tallene har de fire regningsartene og lineær ordning. Ved naturlige identifiseringer (som 5 = 5/ eller 5 = 5....) kan tallsystemene over betraktes som skrittvise utvidelser, N Z Q R. Vi skal seinere i Matematikk se på en ytterligere utvidelse, de komplekse tall C, som også inneholder et tall j slik at j =. Da kan ikke j være noe reellt tall, da for alle reelle tall. C har også de fire regningsartene, men ikke lenger lineær ordning. Dette tallsystemet kan identifiseres med hele planet. Uttrykt bl.a. ved skjæringssetningen, lærebokas setning.5.., side 97.
3 .. Intervaller Intervaller er viktige delmengder av de reelle tall. Åpent intervall: a, b = { R <aog >b} () Lukket intervall: [ a, b]={ R a og b } (5) Halvåpne intervall, f.eks., ] (reelle tall større enn og mindre eller lik ) Ubegrensede intervall, f.eks., (alle reelle tall større enn ) Unioner av intervall, f.eks.,, (tall med absoluttverdi mellom og ). Punkterte intervall, f.eks. R \{ } = R : Alle reelle tall forskjellig fra, eller R \{,, }. Reelle funksjoner. Definisjoner (uformelt) Generelt er en funksjon med navn f fra en mengde med navn A til en mengde med navn B en tilordningsregel slik at det til hvert element i mengden A er tilordnet et entydig element (kalt f()) i mengden B. Grafen til en funksjon er alle par av formen (, f()). Vi skal i første omgang konsentrere oss om funksjoner der A er de reelle tall R, eller en delmengde av typen beskrevet i avsnitt.., og B = R. Dette kalles reelle funksjoner. Grafen til en reell funksjon kan identifiseres med en delmengde av y planet, bestående av alle punkter påformen(, f()). Disse vil ofte utgjøre en helt eller delvis sammenhengende kurve. Mengden A kalles da domenet til funksjonen f, forkortet D f. Et annet navn på det samme er definisjonsområdet. Mengden B er kodomenet og vi setter ofte B = R selv om ikke alle verdier y R oppnåes som funksjonsverdier f(). Verdiene som faktisk oppnås som f() forminsten A kalles verdimengden (range på engelsk) til funksjonen f, forkortet V f. En mer formell definisjon kan lages ved å si at en funksjon f er en delmengde av A B, mengden av alle ordnede par (a, b), som er slik at hver a A forekommer i nøyaktig et slikt par.
4 . Funksjonsuttrykk Skal vi ha praktisk nytte av en funksjon må vi ha en håndterbar beskrivelse av hvordan tilordningen mellom og f() skjer Dette vil ofte (men ikke alltid) være en formel til å regne ut f() når er gitt. En slik formel skal vi kalle et funksjonsuttrykk... Eksempel, enkel formel Et eksempel er en funksjon som vi her sklal gi navnet f og som er gitt ved funksjonsuttrykket f() =. Dette gir en enkel oppskrift på hvordan funksjonsverdien f() finnes når er gitt: Multipliser med seg selv. For eksempel er f( ) = ( ) ( ) = 9. Det er ingenting i veien for åladefinisjonsområdet til denne funksjonen være alle reelle tall, D f = R (om ikke funksjonen hører til i en praktisk sammenheng der det er fysisk umulig eller meningsløst å sette inn for eksempel negative verdier av ). Siden et reelt tall kvadrert aldri blir negativt, mens alle ikke negative tall kan oppnås som for en passende, er vedimengden det ubegrensede intervallet V f =[,. Et plott av grafen til denne funksjonen, for i intervallet [, ]: - - Egentlig er f() = funksjonsuttrykket, ikke selve funksjonen. Selve funksjonen beskrives slik: f :. Som regel er dette skillet bare av filosofisk interesse i bruken i Matematikk. Det er likevel verdt åmerke seg at funksjoner i matamatikkprogrammet Maple defineres i henhold til notasjonen med pil. I definisjonen av begrepet funksjon ligger det at det skal finnes en entydig y = f() B tilordnet enhver A, men ikke nødvendigvis at det skal være noen enkel metode (for eksempel en formel) til å regne ut f() selvom er oppgitt. For eksempel kan vi godt definere en funksjon slik at f() =hvis er rasjonal og f() =hvis er irrasjonal. Det finnes (mange) kjente tall der matematikerne ikke er i stand til å avgjøre om Q eller R \ Q, og følgelig om f() = eller f() =.
5 .. Eksempel, stykkevis definert funksjon Vi vil innimellom støte på funksjoner der det ikke er hensiktsmessig åprøveå finne en formel som gjelder i hele definisjonsområdet, men definere den med forskjellige funksjonsuttrykk på forskjellige deler av definisjonsområdet. For eksempel: f() = for < for for > Dette kalles delt funksjonsforskrift. Grafen til denne funksjonen ser slik ut, mellom = og =: Eksempel, ikke elementære funksjon Hva man aksepterer som en gyldig formel i et funksjonsuttrykk avhenger av matematisk bakgrunnskunnskap og erfaring, men for mange studenter er dette omtrent synonymt med det som kalles elementære funksjoner, som vi kommer tilbake til. Mange funksjoner som dukker opp lar seg imidlertid ikke beskrive med en slik formel. Et eksempel er funksjonen gitt ved f() = e t dt Dette integralet lar seg ikke løse i betydningen å sette det opp som et elementært funksjonsuttrykk uten integrasjonstegn. Geometrisk kan det tolkes som arealet av den biten av grafen til funksjonen gitt ved e t som ligger mellom y aksen og den vertikale linja t = : f() - - t 5
6 Det er vel intuitivt klart at dette må væreettallnå vi velger et tall for, og at det dermed definerer en funksjon. Deterogså mulig å regne ut funksjonsverdier som desimaltall, og det er ikke noe problem å behandle den og for eksempel plotte grafen. I figuren under er dette gjort i Maple: En variant av denne funksjonen er for eksempel svært viktig i faget Statistikk (Normalfordeling). Funksjoner definert på denne måten kalles integralfunksjoner. Andre varianter av funksjoner uten noen elementær funksjonsbeskrivelse dere vil støte på under studiet er gitt ved differensiallikninger, potensrekker eller implisitt funksjonsbeskrivelse... Eksempel, punktvis definert funksjon Mange funksjoner i praktiske anvendelser stammer fra gjentatte målinger eller observasjoner. For eksempel kan vi tenke oss at det gjøres målinger av vannstanden i Mjøsa (centimeter opp på enmålestav) hver uke et år. Vannstanden i centimeter er da en funksjon av tiden i uker (etter nyttår), og kan f.eks. se slik ut: Her har vi ingen formel for funksjonsuttrykket, og heller ikke eksakt kjennskap til funksjonsverdiene mellom måletidspunktene. Det finnes likevel mange metoder til å behandle slike funksjoner. Metodene avhenger av hvilken informasjon vi ønsker å trekke ut av datamaterialet. Vi kommer i liten grad inn på slike metoder i Matematikk, men grunnlaget for dem finnes i metoder vi utvikler og blir fortrolige med gjennom funksjoner med kjent formel. 6
7 Elementære funksjoner. Kontinuitet Hvis grafen til en funksjon danner en sammenhengende kurve, kalles funksjonen kontinuerlig. Hvis grafen består av et endelig antall sammenhengende kurvestykker, kalles funksjonen stykkevis kontinuerlig. Kontinuerlig funksjon Stykkevis kontinuerlig funksjon f() = /5 f() =( ) ( ) Dette er ikke noen presis definisjon, den sier ikke presist hva som menes med sammenhengende graf og gir heller ikke noe kriterium til å avgjøre om et funksjonsuttrykk gir sammenhengende graf. I første omgang skal vi likevel nøye oss med denne forståelsen av kontinuitet. Alle funksjoner vi skal behandle i Matematikk, og de fleste vi møter i praksis ellers også, er kontinuerlige eller stykkevis kontinuerlige.. Elementære funksjoner En gruppe funksjoner har fått betegnelsen elementære funksjoner. Hvilke funksjoner dette gjelder er nok tildels et resultat av historiske tilfeldigheter, men de passer nok bra med det studenter flest oppfatter som funksjoner som er gitt ved en vanlig formel. Disse funksjonene er vanligvis programmert inn på en litt avansert kalkulator. De elementære funksjonene er Litt mer presist: Hvis den delen av grafen som ligger innenfor et endelig intervall består av et enderlig antall kontinuerlige strykker. Funksjonen f gitt ved f() =for Q, f() =for R \ Q hopper ustanselig opp og ned mellom og,ogereteksempelpå en funksjon som ikke er kontinuerlig noe sted. 7
8 Funksjonstype Eksempler, funksjonsuttrykk Polynomer og konstantfunksjoner f() =, + 5 Rasjonale funkjsoner Rotfunksjoner, + + +, 5 (6) Eksponential- og logaritmefunksjoner e, ln() Trigonometriske funksjoner sin(), cos(), tan() Inverse trigonometriske funksjoner arctan(), arcsin() Samt alle funksjoner som kan dannes fra disse med et endelig antall gangers bruk av de fire regningsartene og funksjonssammensetning, f.eks sinh() = e e, =, ( ) +/( ) De elementære funksjonene er stort sett kontinuerlige, med mulig unntak av punkter som stammer fra: Brøker der nevneren er, inklusiv tan() = sin()/ cos() (som har assymptoter der cos() = ). Logaritmen satt sammen med en funksjon som har et nullpunkt, f.eks (ln(( ) ( +) ), som har assymptoter for = og =. Sammensatte funksjoner der den indre funksjonen vokser mot eller avtar mot, for eksempel ( ) +/( ), der det inni rottegnet vokser mot for = og = (grafen til denne er plottet som et eksempel på en stykkevis kontinuerlig funksjon). 5. april 8, Hans Petter Hornæs. 8
Hans Petter Hornæs,
Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter
DetaljerKomplekse tall og komplekse funksjoner
KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som
DetaljerEn (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).
Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom
DetaljerOppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en
DetaljerRepresentasjon av tall på datamaskin Kort innføring for MAT-INF1100L
Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne
DetaljerAnvendelser av derivasjon.
Ukeoppgaver, uke 39, i Matematikk, Anvendelser av derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 39 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
DetaljerSeparable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En
DetaljerEKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
DetaljerOppfriskningskurs i matematikk Dag 2
Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på
DetaljerAnalyse og metodikk i Calculus 1
Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................
DetaljerOppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 1 Stine M. Berge 05.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 05.07.19 1 / 23 Introduksjon Informasjon: https://wiki.math.ntnu.no/oppfrisk/2019/start
DetaljerOppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-
DetaljerFunksjoner (kapittel 1)
Ukeoppgaver, uke 34 og 35, i Matematikk 0, Funksjoner og grenser. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 34 og 35 Funksjoner (kapittel ) Oppgave Figuren til øyre viser
DetaljerOppfriskningskurs i matematikk Dag 1
Oppfriskningskurs i matematikk Dag 1 Petter Nyland Institutt for matematiske fag Mandag 6. august 2018 Om meg Bachelor- og mastergrad i matematiske fag (2014, 2016) Doktorgradsstipendiat i matematikk (2016
DetaljerForelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
DetaljerEksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:
Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles
DetaljerTall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,
Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon
DetaljerEksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:
Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles
DetaljerSammendrag R1. Sandnes VGS 19. august 2009
Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
DetaljerSammendrag R1. 26. januar 2011
Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander
DetaljerFasit, Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy
DetaljerStudentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform
1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne
DetaljerAnalysedrypp I: Bevis, mengder og funksjoner
Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik
DetaljerNicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3
DetaljerTMA4100: Repetisjon før midtsemesterprøven
TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.
DetaljerFasit, Kap : Derivasjon 2.
Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe
DetaljerKrasjkurs MAT101 og MAT111
Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten
DetaljerFunksjoner, repetisjonsoppgaver.
Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke og Funksjoner, repetisjonsoppgaver. Oppgave Funksjoner
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).
DetaljerHeldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
DetaljerKontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100
Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte
DetaljerKURSHEFTE TIL FORKURS I MATEMATIKK
KURSHEFTE TIL FORKURS I MATEMATIKK Variant av Magnus Dehli Vigeland UNIVERSITETET I OSLO MATEMATISK INSTITUTT Innhold Oppvarming 3. Noen viktige tallmengder. Notasjon.................... 3. Mer om mengder.............................
Detaljer1.1 Tall- og bokstavregning, parenteser
MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på
DetaljerFasit til obligatorisk oppgave i MAT 100A
3. november, 000 Fasit til obligatorisk oppgave i MAT 00A Oppgave a) Grensen er et 0 0-uttrykk, og vi bruker l Hôpitals regel: ln cos π (ln ) (cos π ) ( sin π ) π b) Vi må først skrive uttrykket på eksponentiell
DetaljerNotater fra forelesning i MAT1100 mandag
Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a
DetaljerKapittel 1. Funksjoner. 1.1 Definisjoner
Kapittel 1 Funksjoner Kurset MAT1001 dreier seg kort sagt om å lage matematiske problemer av virkeligheten og deretter løse problemene. Hittil i kurset har vi allerede møtt mange problemer, og de har så
DetaljerEKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.
KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs
DetaljerLøsningsforslag øving 6
Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en
DetaljerOppgaveark Uke 37 (07/09-11/09) MAT111 - H09
Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.
DetaljerFunksjoner og andregradsuttrykk
88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter
DetaljerForelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner
Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.
DetaljerOPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag :
OPPGAVESETT MAT111-H16 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 9/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar
DetaljerUtforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra
Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet
DetaljerLøsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org
Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt
DetaljerFremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner
1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse
DetaljerSammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f
Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
Detaljer: subs x = 2, f n x end do
Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x
DetaljerFunksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden
DetaljerOPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :
OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar
DetaljerDesimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
DetaljerMatematikk for økonomi og samfunnsfag
Harald Bjørnestad Ulf Henning Olsson Svein Søyland Frank Tolcsiner Matematikk for økonomi og samfunnsfag 9. utgave Innhold Forord... 11 Kapittel 1 Grunnleggende emner 1.1 Tall og tallsystemer... 13 1.2
DetaljerLøsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
Detaljervære en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A
MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator
Detaljer1 Mandag 1. februar 2010
Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette
DetaljerLogaritmer og eksponentialfunksjoner
Logaritmer og eksponentialfunksjoner Harald Hanche-Olsen og Marius Irgens 20-02-02 Dette notatet ble først laget for MA02 våren 2008. Denne versjonen er omskrevet for MA02 våren 20. Du vil oppdage at mange
DetaljerEksamen R2 høst 2011, løsning
Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har
DetaljerÅRSPLAN MATEMATIKK 7. TRINN 2016/17
ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut
DetaljerEnkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015
Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8
DetaljerLøsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon
DetaljerKalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger.
Kalkulus 1 Grenser Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Vi sier at funksjonen f(x) har en grense f(a)
Detaljer. Følgelig er csc 1 ( 2) = π 4. sinθ = 3
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)
DetaljerForkurshefte i matematikk variant 1
Forkurshefte i matematikk variant 1 2014 Inger Christin Borge Matematisk institutt, UiO (Plan for kurset: se side 3) Forord Velkommen til Universitetet i Oslo (UiO), og til forkurs i matematikk! Dette
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
DetaljerÅRSPLAN MATEMATIKK 7. TRINN 2017/18
ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten. Kunne avgjøre hvilken brøk som er størst
DetaljerOppgaver. Innhold. Algebra R1
Oppgaver Innhold.1 Faktorisering... Polynomdivisjon.... Omforme og forenkle sammensatte rasjonale funksjoner og andre symbolske uttrykk... 6 Rasjonale uttrykk som inneholder andregradspolynomer... 6 Rasjonale
DetaljerTall og mengder. Per G. Østerlie. 30. september 2013
Tall og mengder Per G. Østerlie 30. september 2013 1 Introduksjon Nå skal vi se på hva mengder og intervaller er og hvilke symboler vi benytter. Vi starter med å se på tall og hvordan vi kan dele opp i
DetaljerEmnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
Detaljerlny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 2 Avsnitt 3.7 95 Vi antar at > 0 og får Avsnitt 3.8 6 a) 2π/3 b) π/4 c) 5π/6 ln = (ln) 2 = 2ln = 2ln = 2ln ln.
DetaljerMAT1030 Forelesning 10
MAT1030 Forelesning 10 Mengdelære Roger Antonsen - 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære Oversikt Vi har nå innført de Boolske operasjonene, union snitt komplement
DetaljerVelkommen til eksamenskurs i matematikk 1
Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:
DetaljerKvadrattall og KVADRATROT FRA A TIL Å
Kvadrattall og KVADRATROT FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til kvadrattall og kvadratrot K - 2 2 Grunnleggende om kvadrattall og kvadratrot K - 2 3 Kvadrattall
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret
DetaljerRepetisjon i Matematikk 1: Derivasjon 2,
Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,
DetaljerOppfriskningskurs i matematikk Dag 3
Oppfriskningskurs i matematikk Dag 3 Petter Nyland Institutt for matematiske fag Onsdag 8. august 2018 Dagen i dag Tema 4 Polynomer: Faktorisering, røtter, polynomdivisjon, kvadratiske ligninger og rasjonale
DetaljerFunksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.
DetaljerKapittel 5: Mengdelære
MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) MAT1030 Diskret
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,
DetaljerTempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra
Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette
DetaljerNOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN
NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner
DetaljerTMA 4140 Diskret Matematikk, 4. forelesning
TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA
DetaljerKomplekse tall: definisjon og regneregler
Komplekse tall: definisjon og regneregler Eugenia Malinnikova, NTNU, Institutt for matematiske fag 22. august 2011 Komplekse tall fra Wikipedia Et komplekst tall er tall på formen x + iy, der x og y er
DetaljerKonfidensintervall for µ med ukjent σ (t intervall)
Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har
Detaljerwith plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi
with plots Maple har en rekke innebygde funksjoner. Kommandoen plot brukes til å tegne grafen til en funksjon, og kommandoene eval og evalf brukes til å beregne funksjonsverdier for en funskjon. Den første
DetaljerMengder, relasjoner og funksjoner
MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030
DetaljerKontinuitet og grenseverdier
Kontinuitet og grenseverdier Avdeling for lærerutdanning, Høgskolen i Vestfold 5. januar 2009 1 Innledning Kontinuitetsbegrepet For å motivere og innlede til kontinuitetsbegrep skal vi først undersøke
DetaljerKapittel 1 Koordinatsystemet. godt Kommentarer. Kan. ganske godt. Kan. Kan litt. Kompetanseoversikt i matematikk, 4. trinn for: Klasse/gruppe:
Kapittel 1 Koordinatsystemet Kommentarer finne rutehenvisningen til en rute i et rutenett, og finne ruta til en oppgitt rutehenvisning finne koordinatene til et punkt i et koordinatsystem i første kvadrant,
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
Detaljer