Bobine à noyau de fer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Bobine à noyau de fer"

Transkript

1 1 Bobne à noyau de fer

2 Usage en contnu Bobne à noyau de fer Introducton I mpose H Pertes unquement dans les bobnages Usage en alternatf V mpose B Pertes dans le matérau 2

3 Bobne à noyau de fer Conventons v Φ f Φ c On fxe un sens de la tenson. Conventon récepteur Flux sut la règle d ampère Une f.e.m. est ndute dans l enroulement qu s oppose à la varaton de flux 3

4 Bobne à noyau de fer Conventons v e Φ f Φ c On fxe un sens de la tenson. Conventon récepteur Flux sut la règle d ampère e = + dφ dt 4

5 Bobne à noyau de fer Flux Flux Commun Total: Φ c = N. c Φ f Φ c Flux de Futes moyen: f = 1 N fk Pour 1 spre k k 5

6 Bobne à noyau de fer Flux Flux Commun Total: Φ c = N. c Φ f Φ c Flux de Futes Total: f = 1 N k fk Φ f = N. f Pour 1 spre en moyenne 6

7 Bobne à noyau de fer Flux Φ c Flux Total: Φ f Φ = N. c + l f. Qques % 7

8 Equatons générales v r e v = r. + e or e = dφ dt Φ = N. c + l f. 8

9 Equatons générales v r e v = r. + e or e = dφ dt Φ = N. c + l f. v = r. + l f. d dt + N d c dt 9

10 Equatons générales v = r. + l f. d N. = R c. c dt + N d c dt 10

11 Hypothèses de KAPP v = r. + l f. d dt + N d c dt Chute ohmque néglgeable devant la f.e.m ndute 11

12 Hypothèses de KAPP v = r. + l f. d dt + N d c dt Flux de fute néglgeable devant le flux commun 12

13 Hypothèses de KAPP v = r. + l f. d dt + N d c dt v = N d c dt r fable futes fables 13

14 Hypothèses de KAPP Expresson du flux v = N d c dt devent c = 1 N v.dt Tenson mpose le flux 14

15 Hypothèses de KAPP Expresson du flux c = 1 N v.dt = V 2 Nω sn( ω.t)+ 0 Flux rémanent. Néglgé par la sute 15

16 Hypothèses de KAPP Expresson du flux c = 1 N v.dt = V 2 Nω sn( ω.t) c = V 2 Nω Ampltude ( ) Pulsaton sn ω.t ω Retard π/2 sur v Tenson mpose le flux Machne à Flux Forcé M = V 2 Nω

17 Hypothèses de KAPP Expresson du flux M = V 2 Nω V = 4,44.N.f.S.B M Relaton de Boucherot 17

18 Hypothèses de KAPP Courant appelé Relaton de Hopknson N. = R c. c R c = 1 µ. l S Dépend du flux 18

19 Hypothèses de KAPP Courant appelé: constructon 19

20 Hypothèses de KAPP Courant appelé: constructon t 20 t

21 Hypothèses de KAPP Courant appelé: constructon t 21 t

22 Hypothèses de KAPP Courant appelé: constructon t 22 t

23 Hypothèses de KAPP Courant appelé: constructon t 23 t

24 Hypothèses de KAPP Courant appelé: constructon t 24 t

25 Hypothèses de KAPP Courant appelé: constructon t 25 t

26 Hypothèses de KAPP Courant appelé: constructon t 26 t

27 Hypothèses de KAPP Courant appelé: constructon t 27 t

28 Hypothèses de KAPP Courant appelé: constructon t 28 t

29 Hypothèses de KAPP Courant appelé: constructon t 29 t

30 Hypothèses de KAPP Courant appelé: constructon t 30 t

31 Hypothèses de KAPP Courant appelé: expresson t ( t)= I 2 cos 2k +1 2k k= 0 [ ] ( )ω.t ϕ 2k +1

32 Hypothèses de KAPP Pussance absorbée Courant non snusoïdal. ->Défnton de la pussance. p t ( )= v t ( ). t ( ) v( t)= V 2 cos( ω.t) ( t)= I 2k +1 2 cos ( 2k +1)ω.t ϕ 2k +1 k= 0 [ ] 32

33 Hypothèses de KAPP Pussance absorbée Courant non snusoïdal. ->Défnton de la pussance. p t ( )= v t ( ). t ( ) p t ( )= V 2 cos ω.t k= 0 ( ) I 2k +1 2 cos 2k +1 [ ] ( )ω.t ϕ 2k+1 33

34 Hypothèses de KAPP Pussance absorbée Valeur effcace du courant: I 2 = I I I 2k Pussance apparente: S 2 = V 2 I 2 = V 2 I V 2 I V 2 2 I 2k V 2 I 2 1 cos( ϕ 1 )+ V 2 I 2 1 sn( ϕ ) 1 P 2 Q 2 V 2 2 I k=1 2k +1 D 2

35 Hypothèses de KAPP Pussance absorbée Valeur effcace du courant: I 2 = I I I 2k Pussance apparente: S 2 = P 2 + Q 2 + D 2 Bobnage = pertes Joules Matérau = pertes Ferromagnétques 35

36 Pertes fer Hystéréss du matérau dw mag =.dφ 36

37 Pertes fer Hystéréss du matérau dw mag =.dφ > 0 37

38 Pertes fer Hystéréss du matérau dw mag =.dφ < 0 38

39 Pertes fer Hystéréss du matérau Compensaton des ares dw mag =.dφ < 0 39

40 Pertes fer Hystéréss du matérau dw mag =.dφ > 0 40

41 Pertes fer Hystéréss du matérau dw mag =.dφ < 0 41

42 Pertes fer Hystéréss du matérau Compensaton des ares dw mag =.dφ < 0 42

43 Pertes fer Hystéréss du matérau dw mag =.dφ > 0 43

44 Pertes fer Hystéréss du matérau Energe perdue en 1 parcours Perte lors d un parcours à fréquence f P H = f Are 44

45 Pertes fer Hystéréss du matérau On admet une forme emprque De l are P H = k H.f.B M 2 45

46 Pertes fer Courants de Foucault Inducton magnétque B = B M sn ω.t ( ) Lgne de courants de Foucault f.e.m. e F = d ndute par B: dt = S FB M.ω.cos( ω.t) Surface de la boucle de courant 46

47 Pertes fer Courants de Foucault p F Inducton magnétque B = B M sn ω.t ( ) Lgne de courants de Foucault f.e.m. e F = d ndute par B: dt = S FB M.ω.cos( ω.t) ( t)= e F Sot en pertes joules 2 r F Résstance de la lgne de courant 47

48 Pertes fer Courants de Foucault Inducton magnétque B = B M sn ω.t ( ) 48 p F Lgne de courants de Foucault f.e.m. e F = d ndute par B: dt = S FB M.ω.cos( ω.t) ( t)= e F Sot en pertes joules 2 2 r F = S F r F B 2 M.ω 2 cos 2 ( ω.t)

49 Pertes fer Courants de Foucault p F 2 ( t)= e F r F = S 2 F r F B 2 M.ω 2 cos 2 ( ω.t) 49

50 Pertes fer Courants de Foucault p F 2 ( t)= e F r F = S 2 F r F B 2 M.ω 2 cos 2 ( ω.t) P F = k F.B M 2.f 2 50

51 Pertes fer Pertes totales P Fer = k H.f.B M 2 + k F.f 2.B M 2 51

52 Bobne fctve équvalente Beson d un modèle lnéare 52

53 Bobne fctve équvalente Beson d un modèle lnéare Courant absorbé snusoïdal ( t)= I 2 cos( ω.t ϕ) Valeur effcace I = I = I I I n 53

54 Bobne fctve équvalente Beson d un modèle lnéare Courant absorbé snusoïdal ( t)= I 2 cos( ω.t ϕ) Pussance actve conservée Bobne réelle Valeur effcace I = I = I I I n Bobne fctve P = V.I 1 cos( ϕ ) 1 P = V.I cos( ϕ) 54

55 Bobne fctve équvalente Schéma équvalent R f L µ P Fer = V 2 55 R f Dsspent les pertes fer = k H.f.B 2 M + k F.f 2 2.B M V = 4,44.N. f.s.b M P Fer K 1+ 1 f

56 Bobne fctve équvalente Schéma équvalent R f L µ L µ.ω = V 2 56 Q = V 2 S 2 P 2 = V V I Absorbe la pussance réactve 2 ( ) 2 P 2 Q = V 2 L µ.ω

57 Bobne fctve équvalente Représentaton de Fresnel I a V R f L µ ϕ α I r I Angle d écart hystérétque 57

58 Bobne fctve équvalente Grandeurs magnétques Flux et nducton c = 1 N v.dt avec v( t)= V 2 cos( ω.t) B ( t)= B( t)= B M sn( ω.t) Inchangé 58

59 Bobne fctve équvalente Grandeurs magnétques Champ magnétque H l = N. avec ( t)= V 2 cos( ω.t ϕ) H ( t)= N I 2 l sn ω.t + π 2 ϕ 59

60 Bobne fctve équvalente Grandeurs magnétques Champ magnétque H l = N. avec ( t)= V 2 cos( ω.t ϕ) H ( t)= N I 2 l sn ω.t + π 2 ϕ = H M sn( ω.t + α) Snusoïdal Angle d écart hystérétque 60

61 Bobne fctve équvalente Cycle d hystéréss B ( t)= B( t)= B M sn ω.t H t ( ) ( ) ( )= H M sn ω.t + α B M snα Are = Energe volumque totale perdue par cycle. Perméablté magnétque devent alors complexe: µ = B H = B M e jα H M H M snα 61

62 Bobne fctve équvalente Lmtes du modèle Eléments du schéma valable à (V,f) donné Pussances actves non conservées. Bobne réelle Bobne fctve Q = V.I 1 sn( ϕ ) 1 Q = V.Isn( ϕ) 62

63 Bobne fctve équvalente Modèle fctf complet r l f R f L µ 63

64 Mesure des pertes Mesure drecte W On mesure P = r.i 2 + P Fer 64

65 Mesure des pertes Méthode d Epsten W N 1 N 2 Nécessté de 2 enroulements On mesure P = v et d v 2 = N 2 dt = N 2 ( v 1 r 1. 1 ) N 1 P = N 2.v 1 1 N 2 2.r 1 1 N 1 N 1 P = N 2 N 1 P tot N 2 N 1 P joule

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008 Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 8 EXERCICE 1 séries de FOURIER 1 si t α f t)= si α

Detaljer

1. Intégrales définies et indéfinies I. (a) Soit b > 0. Montrer que pour tout x > 0 la fonction. 2 b. F (x) = arctan bx. 1 (1 + bx) x. f(x) = x t dt.

1. Intégrales définies et indéfinies I. (a) Soit b > 0. Montrer que pour tout x > 0 la fonction. 2 b. F (x) = arctan bx. 1 (1 + bx) x. f(x) = x t dt. Chpitre 6 Clcul intégrl 6. Eercices. Intégrles définies et indéfinies I. () Soit b >. Montrer que pour tout > l fonction F () = b rctn b est une primitive de f() = ( + b). (b) Pour R clculer (c) Pour R

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERITETET I OO Det matematsk-naturvtenskapelge fakultet Eksamen : FY110 Elektromagnetsme Eksamensdag: 6. desember 01 Td for eksamen: 14:30 18:30 Oppgavesettet er på: sder Vedlegg: Formelark (3 sder)

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7) TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +

Detaljer

41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner

41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner 47 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner OPPGAVE. Den magnetiske ekvivalenten for den roterande maskina i figur. på oppgåve arket, er vist på figuren under.

Detaljer

Laser vert : moins de plus de 300. Acheter Laser PRODUITS CHAUDS. Pointeur Laser étanche

Laser vert : moins de plus de 300. Acheter Laser PRODUITS CHAUDS. Pointeur Laser étanche Notre entreprise Livraison et Garantie Politique de retour Avis des clients Blog E-mail Search BIENVENUE LASER VERT LASER ROUGE LASER BLEU VIOLET POINTEUR LASER POWERPOINT Accueil CHARGEUR >> Laser Vert

Detaljer

Eksamen FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister. Nynorsk/Bokmål

Eksamen FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister.  Nynorsk/Bokmål Eksamen 19.11.2013 FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Oppgåve 1 Comment tu dépenses ton argent? Skriv ein liten tekst på to til fire setningar om

Detaljer

Løysingsforslag Kontinuasjonseksamen TFE4120 Elektromagnetisme 13. august 2004

Løysingsforslag Kontinuasjonseksamen TFE4120 Elektromagnetisme 13. august 2004 Løysinsforsla Kontinuasjonseksamen TFE4120 Elektromanetisme 13. auust 2004 Oppåve 1 a) Fiure 1: Ei telefonlinje som år parallelt med ei straumlinje. Det skraverte området er definert av kurva C 2. Innbyrdes

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS0 Svingninger og bølger. Eksamensdag: 7. juni 0. Tid for eksamen: kl. 4:0-8:0. Oppgavesettet er på: + sider. Vedlegg:

Detaljer

Løysingsforslag Kontinuasjonseksamen TFE4120 Elektromagnetisme 13. august 2004

Løysingsforslag Kontinuasjonseksamen TFE4120 Elektromagnetisme 13. august 2004 Løysinsforsla Kontinuasjonseksamen TFE4120 Elektromanetisme 13. auust 2004 Oppåve 1 a) Fiure 1: Ei telefonlinje som år parallelt med ei straumlinje. Det skraverte området er definert av kurva C 2. Innbyrdes

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Disjoncteurs sélectifs

Disjoncteurs sélectifs 233 Accessoires de SLS 235 Technique 236 231 de ligne principale Meilleure sécurité, installation rapide - avec les disjoncteurs SLS Hager Hager vous propose la solution optimale pour la protection des

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 13. august 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form

S S. Eksamen i SIF4022 Fysikk 2 7. desember 1999 LØYSINGAR. Oppgave 1. t Kraft opp: y x. Newtons 2. lov. gir. som er bølgjelikninga, av form Esamn i SIF4 Fsi 7. smb 999 LØYSINGAR Oppgav a S [ÃÃÃÃÃÃÃ[Ã [ S DVVHÃ ÃÂÃ [ÃÃ$NVHOHUDVMRQÃ t Kaft opp: S sinα -Ssinα S α S S Nwtons. lov gi som bølgjlininga, av fom S µ t µ S t v t m v bølgjfat som v v

Detaljer

Skinndybde. FYS 2130

Skinndybde. FYS 2130 Skinndybde. FYS 130 Vi skal se hvordan en elektromagnetisk bølge oppfører seg i et ledende medium. ølgeligningen for E-feltet i vakuum ble utledet i notatet om elektromagnetiske bølger: E E =εµ 0 0 Denne

Detaljer

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. august 2015 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

TECHNIQUE DE CHAUDIERE PAR BRUNNER. Kamin-Kessel 62/76. État: made in germany

TECHNIQUE DE CHAUDIERE PAR BRUNNER. Kamin-Kessel 62/76. État: made in germany TCHNIQU D CHAUDIR PAR BRUNNR KaminKessel 62/76 État: 30.04.2013 made in germany KaminKessel 62/76 S S securité départ 1/2" fil.ext. securité retour 1/2" fil.ext. porte battante avec isolation et lisiére

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155

Detaljer

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap kap14 1.11.1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien

Detaljer

Formelsamling Bølgefysikk Desember 2006

Formelsamling Bølgefysikk Desember 2006 Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Oppgåve 4 Vel éi av oppgåvene under, og skriv ein samanhengande tekst. a) «Il y a trop de sport dans les médias.» Synest du det er for mykje sport på TV og i avisene? Liker du best å sjå på sport på TV,

Detaljer

DYNAMIQUE. Etude des mouvements de tangage d une transmission de puissance d hélicoptère. x r 2. y r 2. x 1. y r y r

DYNAMIQUE. Etude des mouvements de tangage d une transmission de puissance d hélicoptère. x r 2. y r 2. x 1. y r y r e Cycle - ème année 8 Juin 5 DYNAIQUE Devoi de synhèse Elémens de coecions y y Eude des mouvemens de angage d une ansmission de puissance d hélicopèe. x y y x y y x, x,, x,, x cinémaique : Equaion de liaison

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:

Detaljer

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCouseWae http://ocw.mt.edu 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5 Please use the followng ctaton fomat: Maus Zahn, 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5. (Massachusetts

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.

Detaljer

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.

Detaljer

KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

Positive dispersion: 2 n. λ 2 > 0. ω 2 > 0, Negative dispersion: ω < 0, 2 n

Positive dispersion: 2 n. λ 2 > 0. ω 2 > 0, Negative dispersion: ω < 0, 2 n Positive dispersion: 2 n ω 2 > 0, 2 n λ 2 > 0 Negative dispersion: 2 n ω < 0, 2 n 2 λ < 0 2 φ(z,ω) = k ( n ω )z E( z,t)= 1 2π E ( z = 0,ω )e iωt iφ z,ω e ( ) dω φ(z,ω) = k ( n ω )z φ( ω )= φ 0 + ω ω 0

Detaljer

Advanced Quantum Field Theory (Version of November 2015) Jorge Crispim Romão

Advanced Quantum Field Theory (Version of November 2015) Jorge Crispim Romão Advanced Quantum Feld Teory (Verson of November 015) Jorge Crsm Romão Pyscs Deartment 015 Aendx D Feynman Rules for te Standard Model D.1 Introducton To do actual calculatons t s very mortant to ave all

Detaljer

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;

Detaljer

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:

Detaljer

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8. Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.

Detaljer

EKSAMEN i TFY4108 FYSIKK

EKSAMEN i TFY4108 FYSIKK Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:

Detaljer

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,

BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0, BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:

Detaljer

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011

Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00 NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 11. desember 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.

Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser. Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

Løsningsforslag til øving

Løsningsforslag til øving 1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel

Detaljer

De viktigste formlene i KJ1042

De viktigste formlene i KJ1042 De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene

Detaljer

AB a donc OM = = 2 2

AB a donc OM = = 2 2 ENP de CONSANINE CLASSE PREPARAOIRE/1 ère ANNEE/ PHYSIQUE 1/ UEF11 016/017 D SERIE : CINEMAIQUE DU POIN MAERIEL & MOUVEMEN RELAIF Exercice 1 : 1/ OM = xi + yj = (t 4t + 7)i + (t ) j x t 4t 7 t 4t 4 3 (t

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO BOKMÅL UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultetet Eksamen i: FYS30 Svingninger og bølger. chaptertvungne Eksamensdag: 4. svingninger juni 04. og resonans Dummy Tid for eksamen:

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Jon Anreas Støvneng Telefon: 7 59 6 6 / 41 4 9 0 LØSNINGSFORSLAG TIL EKSAMEN I FY100 ELEKTRISITET OG MAGNETISME

Detaljer

PASSIVE KOMPONENTER. Realisering av Resistans - Passive løsninger

PASSIVE KOMPONENTER. Realisering av Resistans - Passive løsninger Realisering av Resistans - Passive løsninger L W R ρ N, Resitivitiet: ρ resistans / N Antall Hjørne 0.56 Brønn Metall / Polysilisium SiO 2 Diffusjon Polysilisium Metall Substrat AO 0V. Realiseringer med

Detaljer

m15/1/aynor/hp2/nor/tz0/xx Monday 11 May 2015 (morning) Lundi 11 mai 2015 (matin) Lunes 11 de mayo de 2015 (mañana) 2 hours / 2 heures / 2 horas

m15/1/aynor/hp2/nor/tz0/xx Monday 11 May 2015 (morning) Lundi 11 mai 2015 (matin) Lunes 11 de mayo de 2015 (mañana) 2 hours / 2 heures / 2 horas m15/1/aynor/hp2/nor/tz0/xx Norwegian A: language and literature Higher level Paper 2 Norvégien A : langue et littérature Niveau supérieur Épreuve 2 Noruego A: lengua y literatura Nivel superior Prueba

Detaljer

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014 TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte

Detaljer

COLONIES FRANÇAISES Emissions Générales SPECIMEN PAGE 1

COLONIES FRANÇAISES Emissions Générales SPECIMEN PAGE 1 SPECIMEN PAGE 1 1859-'65. - Aigle impérial. 1871-'72. - Napoléon III. 7 8 9 10 1 c. vert-olive 2 c. vert-jaune 30 c. brun 80 c. rose 1871. - Cérès. 1872-'77. - Cérès. A - Grands chiffres dans les angles

Detaljer

KONTINUASJONSEKSAMEN I EMNE SIF4005 FYSIKK Mandag 7. august 2000 kl. kl

KONTINUASJONSEKSAMEN I EMNE SIF4005 FYSIKK Mandag 7. august 2000 kl. kl Side 1 av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Inst. for fysikk, Gløshaugen Professor Bjørn Torger Stokke 735 93434 KONTINUASJONSEKSAMEN

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

Eksamen FY1006/TFY mai løsningsforslag 1

Eksamen FY1006/TFY mai løsningsforslag 1 Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store

Detaljer

Potenser og rotstørrelser m m n m n a m n n n n m n m n n. cos x sin x 1, sin x (1 cos(2 x)), cos x (1 cos(2 x)), x x x x x x

Potenser og rotstørrelser m m n m n a m n n n n m n m n n. cos x sin x 1, sin x (1 cos(2 x)), cos x (1 cos(2 x)), x x x x x x Progr for llefg Høgskole i ør-trødelg FORMELARK 05 Mtetikk/Fysikk Eeuer TALM3003 Poteser og rotstørrelser,, ( b) b, ( ),, b b,, b b ( ) Trigooetri cos si, si ( cos( )), cos ( cos( )), 0 si( y) si cos y

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2

MEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2 TFY4106 Fysikk Eksamen 9. juni 2016 (Foreløpig versjon pr 7. mai 2016.) FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes

Detaljer

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på: Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn

Detaljer

Eksamensoppgåve i TFY4108 Fysikk

Eksamensoppgåve i TFY4108 Fysikk Institutt for fysikk Eksamensoppgåve i TFY4108 Fysikk Fagleg kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 18 desember 2013 Eksamenstid (frå-til): 9-13 Hjelpemiddelkode/Tillatne

Detaljer

Kuleflate rundt ladning q. Elektrisk fluks gjennom et lite areal da defineres ved. da som gjelder uansett fasong på den lukkede flaten A.

Kuleflate rundt ladning q. Elektrisk fluks gjennom et lite areal da defineres ved. da som gjelder uansett fasong på den lukkede flaten A. Oppsummeing Eektisitet og magnetisme Side 1 av 6 ouombs ov q 1 q q 1 q ----------------, > gi fastøtning (adninge med ikt fotegn), < gi titekning 4πε ˆ hvo ε 8.85 1-1 /Nm e dieektisitetskonstanten i vakuum

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Oppsummert: Kap 1: Størrelser og enheter

Oppsummert: Kap 1: Størrelser og enheter Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk

Detaljer

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess

Detaljer

Kosmiske strenger. Håkon Enger. Kosmiske strenger p.1/23

Kosmiske strenger. Håkon Enger. Kosmiske strenger p.1/23 Kosmiske strenger Håkon Enger Kosmiske strenger p.1/23 Innhold Spontant symmetribrudd Kosmiske strenger p.2/23 Innhold Spontant symmetribrudd Gravitasjonseffekter av strenger Kosmiske strenger p.2/23 Innhold

Detaljer

Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0

Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0 Kap. 4+5 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ (N2-ot) stive legeme:

Detaljer

Kap. 14 Mekaniske svingninger

Kap. 14 Mekaniske svingninger Kap. 14 21.11.213 Kap. 14 Mekaniske svingninger Mye som svinger i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter

Detaljer

Equations fondamentales de la mécanique linéaire de la rupture

Equations fondamentales de la mécanique linéaire de la rupture //5 Aee A Equatios fodaetales de la écaique liéaie de la uptue A. Zeghloul MMAE appels d élasticité plae octio d Ai e vaiables coplees epésetatio des déplaceets et des cotaites Epessio du toseu des effots

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME

Detaljer

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6. NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Merk: Hver deloppgave teller like mye. Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY417 Fysikk

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer