Hypotesetesting, del 4

Like dokumenter
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

MOT310 Statistiske metoder 1, høsten 2011

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

Hypotesetesting, del 5

MOT310 Statistiske metoder 1, høsten 2012

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

Estimering 2. -Konfidensintervall

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

TMA4240 Statistikk Høst 2015

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

TMA4240 Statistikk Høst 2016

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

Løsningsforslag Oppgave 1

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

Kapittel 8: Estimering

TMA4240 Statistikk Høst 2009

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

TMA4245 Statistikk Eksamen mai 2017

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Estimering 1 -Punktestimering

TMA4245 Statistikk Eksamen august 2015

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

ÅMA110 Sannsynlighetsregning med statistikk, våren

Kap. 9: Inferens om én populasjon

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

Løsningsforslag ST2301 øving 3

Estimering 1 -Punktestimering

Statistikk og økonomi, våren 2017

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oversikt over konfidensintervall i Econ 2130

TMA4240/4245 Statistikk 11. august 2012

Oppgaver fra boka: X 2 X n 1

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

Kap. 9: Inferens om én populasjon

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

ECON240 Statistikk og økonometri

TMA4240 Statistikk Eksamen desember 2015

Oversikt over konfidensintervall i Econ 2130

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Modeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x

Econ 2130 Forelesning uke 11 (HG)

TMA4240 Statistikk Høst 2016

STK1100 våren 2017 Estimering

TMA4240 Statistikk 2014

TMA4245 Statistikk Eksamen 9. desember 2013

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

TMA4240 Statistikk H2010

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

Mer om utvalgsundersøkelser

Oversikt over konfidensintervall i Econ 2130

Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

ST1201 Statistiske metoder

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

ST1201 Statistiske metoder

TMA4240 Statistikk Høst 2016

Løsningsforslag til eksamen i STK desember 2010

TMA4245 Statistikk Vår 2015

Transkript:

Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi

t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La σ 2 = = 1 1 i=1 X i X) 2,og T = X μ Def. Studet s t-fordelig: Dersom X 1,...,X,er u.i.f. tilf. var. der X i er ormalfordelt med forvetig μ og varias σ 2, i =1,...,,såerT Studet s) t-fordelt med 1 frihetsgrader: T t 1) t-fordelig Obs: I de beskreve situasjoe har vi: X μ σ 2 N, 1) og X μ t 1) x) f1x) f2x) f15x) N, 1)-tetthet -4-2 2 4-4 -2 2 4 t-tettheter

t-fordelig Egeskaper til t-fordelige: x) f1x) f2x) f15x) -4-2 2 4 t-fordelige er avhegig av atall frihetsgrader ). De blir mer og mer lik N, 1)-fordelige år atall frihetsgrader øker. symmetrisk omkrig tygre haler e N, 1)-fordelige t-tabell!! t-fordelig Kvatiler i t-fordelige: Def. t α,d Dersom T er Studet s) t-fordelt med d frihetsgrader, defieres tallet t α,d ved at P T >t α,d )=α. Skisse av td)-fordelig; arealet P T > t α,d )=α er farget. Tilsvarer z α i N, 1)-fordelige.)

t-test Situasjo der vi bruker t-test: Målemodelle m/ormalatakelse og ukjet varias, σ 2 : måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable EX i )=μ og VarX i )=σ 2, i =1,..., X i ormalfordelt og σ 2 ukjet. Obs. 1: X i ormalfordelt t-test Obs. 1: X i ormalfordelt Obs. 2: lite Dersom er stor, treger vi ikke bry oss med t-fordelig.) Obs. 3: Målemodell 3

t-test Eksempel: 1 blodsukkeriholdmåliger: 4.1, 5.1, 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Øsker å teste H : μ =4. mot H 1 : μ>4. Vi atar at: De =1måligee: x 1,...,x ; ka betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable, der EX i )=μ og VarX i )=σ 2, i =1,...,, og der X i er ormalfordelt og σ 2 er ukjet. Variase,σ 2, estimeres med: σ 2 = = 1 1 i=1 X i X) 2 t-test Vil teste: H : μ =4 mot H 1 : μ>4 Uder H er teststørrelse, ullfordelig) T = X 4 1 t9) jf. def. av t-fordelig) Forkaster H dersom μ = X peker klart i retig av at H 1 er korrekt. Test sig.ivå α): Forkast H dersom T t α,9 Fork.omr.: t α,9, ) -3-2 -1 1 2 3 ) t9) tetthet stiplet: N, 1))

t-test Gjeomførig av test på 5% ivå: Sig.ivå, α =.5. Frat-tabell: t.5,9 =1.83 Data: Gj.s. = 4.35, emp. varias = 183) Utfall av: X 4 1 : 4.35 4 183 1 =1.962 Side 1.962 >t.5,9 =1.83 utfallet av teststørrelse er i forkastigsområdet), ka vi forkaste H. Dataee tyder på at virkelig blodsukkerihold, μ, er større e 4. μ, målemodell, ormalatakelse, ukjet varias, lite Geerelt, t-tester Målemodelle: måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable EX i )=μ og VarX i )=σ 2, i =1,..., X i ormalfordelt og σ 2 ukjet. Målemodell 3 Estimator for variase: = σ 2 = 1 1 i=1 Xi X ) 2

μ, målemodell, ormalatakelse, ukjet varias, lite. t-test, esidig. Test sig.ivå α) for: H : μ = μ mot H 1 : μ<μ Forkast H dersom X μ t α, 1 Fork.omr.:, t α, 1 ) α -3-2 -1 1 2 3 ) Skisse av t-fordelig og forkastigsområde. Test sig.ivå α) for: H : μ = μ mot H 1 : μ>μ Forkast H dersom X μ t α, 1 Fork.omr.: t α, 1, ) ) α Skisse av t-fordelig og forkastigsområde. μ, målemodell, ormalatakelse, ukjet varias, lite. t-test, tosidig. Geerelt; tosidig t-test: Vil teste: H : μ = μ mot H 1 : μ μ Teststørrelse: T = X μ, Nullfordelig: t 1) Test m/sig.ivå α): Forkast H dersom T t α/2, 1 eller T t α/2, 1 Fork.område:, t α/2, 1 ) t α/2, 1, ) ) α/2 α/2-3 -2-1 1 2 3 t tetthet og forkastigsområde. )

μ, målemodell, ormalatakelse, ukjet varias, lite. t-test, tosidig. Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger i kg/mm 2 ): 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; estimert varias empirisk varias): 689.4 Ma er iteressert i om hardhete er forskjelig fra 3 kg/mm 2. Tyder resultatee på at hardhete er ulik 3? Målemodell med ormalatakelse; ukjet varias. Estimator for variase: = σ 2 = 1 1 i=1 Xi X ) 2 Forvetige, μ: virkelig hardhet Vil teste: H : μ = 3 mot H 1 : μ 3 μ, målemodell, ormalatakelse, ukjet varias, lite. t-test, tosidig. Vil teste: H : μ = 3 mot H 1 : μ 3 Uder H er teststørrelse, ullfordelig) T = X 3 6 t5) Forkaster H dersom μ = X peker klart i retig av at H 1 er korrekt. Test sig.ivå α): Forkast H dersom T t α/2,5 eller T t α/2,5-3 -2-1 1 2 3 Skisse av t5)-fordelig.

μ, målemodell, ormalatakelse, ukjet varias, lite. t-test, tosidig. Gjeomførig av test på 5 %ivå: Sig.ivå, α =.5 α/2 =.25; t.25,5 =2.57 Data: Utfall av: X 3 6 : 322.8 3 689.4 6 =2.13 Side 2.13 t.25,5 =2.57 og 2.13 t.25,5 = 2.57), ka vi ikke forkaste H. Det er ikke grulag i dataee for å hevde at virkelig hardhet, μ, er ulik 3 kg/mm 2. -3-2 -1 1 2 3 Obs.: Jf. koklusjo med kjet varias: forkast H ; z.25 =1.96. Oversikt, del 4 t-fordelig, t-test, t-itervall

t-itervall Med målemodell 1 ormalatakelse og kjet varias): 1 α) 1% kofidesitervall for μ er: σ X z 2 α/2, X + z α/2 Dette er basert på: ) σ 2 1. kjet verdi av σ 2 2. Z = X μ σ 2 N, 1) ormalatakelse) Med målemodell 3 ormalatakelse og ukjet varias) må vi basere oss på t-fordelige. t-itervall Med målemodell 3 ormalatakelse og ukjet varias): 1 α) 1% kofidesitervall for μ er S X t 2 α/2, 1, X + t α/2, 1 ) Dette er basert på 1. σ 2 estimeres med σ 2 = = 1 1 i=1 2. Normalatakelse og X i X) 2, 3. T = X μ t 1)

t-itervall, Eksempel: 1 blodsukkeriholdmåliger: 4.1, 5.1, 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Øsker et 95% kofidesitervall for virkelig blodsukkerihold. Vi atar at: De =1måligee: x 1,...,x ; ka betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable, der EX i )=μ og VarX i )=σ 2, i =1,...,, og der X i er ormalfordelt og σ 2 er ukjet. μ: virkelig blodsukkerihold Variase, σ 2, estimeres med: σ 2 = = 1 1 i=1 X i X) 2 t-itervall, =1; 95% α =.5 t α/2, 1 = t.25,9 =2.262 Et 95% kofidesitervall for virkelig blodsukkerihold, μ, ) S er gitt ved: X 2.262 2 1, X +2.262 1 Isatt data Gj.s. = 4.35, emp. varias = 183), blir utreget itervall: ) ) 183 183 4.35 2.262 1, 4.35 + 2.262 1 = 3.95, 4.75

t-itervall, begruelse Jf.: Geerell defiisjo av kofidesitervall: Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee): θ Dersom L og U L <U) er to fuksjoer av X 1,...,X, som er slik at: ) 1 α = P L θ U, sier vi at det utregete itervallet l, u) er et 1 α) 1% kofidesitervall for θ. t-itervall, begruelse Obs. 1: Det utregete itervallet l, u): Framkommer år vi setter dataverdiee x 1,...,x i i fuksjoee L og U. Obs. 2: Evetuelt tilærmede itervall For t-itervallet er: L = X t α/2, 1 og U = X + t α/2, 1

t-itervall, begruelse ) X t α/2, 1, X + t }{{ α/2, 1 }}{{ } L U er et 1 α) 1% kofidesitervall for μ, fordi 1 α = P = P t α/2, 1 X μ S 2 X t α/2, 1 }{{} L ) = P L μ U t α/2, 1 ) ) S 2 μ X + t α/2, 1 }{{} U Kofidesitervall, Målemodell 1; 1 α) 1% kofidesitervall for μ er ) σ X z 2 α/2, X + z σ 2 α/2 Målemodell 2; til. 1 α) 1% kofidesitervall for μ er ) S X z 2 α/2, X + z α/2 Biomisk modell; til. 1 α) 1% kofidesitervall for p er ) p1 p) p1 p) p z α/2, p + z α/2 Målemodell 3; 1 α) 1% kofidesitervall for μ er S X t 2 α/2, 1, X + t α/2, 1 )