Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 12. mars 2002

Like dokumenter
Modeller med skjult atferd

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

= 5, forventet inntekt er 26

BESLUTNINGER UNDER USIKKERHET

Teori om preferanser (en person), samfunnsmessig velferd (flere personer) og frikonkurranse

SØK400 våren 2002, oppgave 4 v/d. Lund

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3

Aksjeavkastningsparadoxet

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 2

OPPGAVER TIL SEMINARET I SØK400 MIKROØKONOMISK TEORI, TREDJE AVDELING, VÅREN 2002

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6

ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 22. februar Monopol

ECON2200 Obligatorisk Oppgave

Mikroøkonomien med matematikk

SØK400 våren 2002, oppgave 9 v/d. Lund

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 1

Dagens forelesning. Forelesning 10 og 11: Nåverdi og konsumentteori. Nåverdi og pengenes tidsverdi Konsumentteori del 1 (del 2 neste uke) Frikk Nesje

Arbitrasje og finansielle beslutninger. Kapittel 3

Econ 2200 H04 Litt om anvendelser av matematikk i samfunnsøkonomi.

Løsningskisse seminaroppgaver uke 11 ( mars)

Konsumentteori. Kjell Arne Brekke. Mars 2017

ECON2200: Oppgaver til for plenumsregninger

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte

Finansmarkedet. Forelesning november 2016 Trygve Larsen Morset Pensum: Holden, kapittel 13

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

Konsumentteori. Pensum: Mankiw & Taylor, kapittel 21. Arne Rogde Gramstad. Universitetet i Oslo a.r.gramstad@econ.uio.no. 13.

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Karine Nyborg, ECON3610/4610, høst 2008 Seminaroppgaver uke 46

ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 15. mars 2010

Viktige moment i CBA. 1) Risiko

Tillegg til kapittel 11: Mer om relasjoner

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5

Lukket økonomi (forts.) Paretooptimum Markedet

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

4.1 Vektorrom og underrom

Oppsummering: Innføring i samfunnsøkonomi for realister

Partielle ordninger, Zorns lemma og utvalgsaksiomet

Kap. 6 Ortogonalitet og minste kvadrater

4.1 Vektorrom og underrom

Veiledning oppgave 3 kap. 2 i Strøm & Vislie (2007) ECON 3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk

Emnenavn: Eksamenstid: 09:00 13:00 (4 timer) Faglærer: Roswitha M. King. Kontroller at oppgaven er komplett før du begynner å besvare spørsmålene.

Forelesning 10 og 11: Nåverdi og konsumentteori

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN

TMA4240 Statistikk H2015

Hvordan modellere et marked med heterogene produkter?

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

, alternativt kan vi skrive det uten å innføre q0

Oppsummering matematikkdel ECON 2200

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting

Arbitrasje og finansielle beslutninger. Kapittel 3

Mikroøkonomi - Superkurs

Notater nr 9: oppsummering for uke 45-46

Flere anvendelser av derivasjon

ECON1220 Høsten 2007 QUIZ

Konsumentteori. Grensenytte er økningen i nytte ved å konsumere én enhet til av et gode.

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Econ1220 Høsten 2006 Forelesningsnotater

Atferdsøkonomi og spillteori Illustrert ved ulikhetsaversjon i ultimatumspillet 1.

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007

Notat om Peanos aksiomer for MAT1140

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Kapitalverdimodellen

MAT feb feb feb MAT Våren 2010

Indifferenskurver, nyttefunksjon og nyttemaksimering

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel.

MAT1030 Diskret matematikk

Finansmarkedet + finanspolitikk (fra sist) Forelesning 1. november 2017 Trygve Larsen Morset Pensum: Holden, kapittel 13

Mikroøkonomi - Intensivkurs

Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind

MA2401 Geometri Vår 2018

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Notat med oppgaver for MAT1140

Konsumentteori. Pensum: Mankiw & Taylor, kapittel 21. Arne Rogde Gramstad. Universitetet i Oslo a.r.gramstad@econ.uio.no. 19.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Veiledning til Obligatorisk øvelsesoppgave ECON 3610/4610 høsten 2009

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

MAT1030 Forelesning 23

MAT jan jan jan MAT Våren 2010

Notat om kardinalitet for MAT1140 (litt uferdig)

Notasjon. Løsninger. Problem. Kapittel 7

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

5.8 Iterative estimater på egenverdier

MAT1030 Diskret Matematikk

Derivér følgende funksjoner med hensyn på alle argumenter:

Transkript:

Usikkerhet, disposisjon Denne og neste forelesning: o Et individs beslutninger under usikkerhet o Varian kapittel 11 De to forelesningene deretter: o Markeder under usikkerhet, finansmarkeder o Frikonkurranse; alle har samme informasjon o Varian kapittel 20 Seinere i kurset: o Markeder med få individer; strategisk atferd o Spillteori o Også: Aktørene kan ha forskjellig informasjon Beslutning under usikkerhet: Hva brukes teorien til? Grunnlag for alle de øvrige teoriene nevnt ovenfor Men også direkte anvendbar, f.eks.: o Individers valg mellom sikre og usikre sparealternativer; effekter på dette av endringer i priser, renter, inntekter, skatter... o Individers valg av forsikring; effekter på dette av endringer i rater, inntekter, skatter... o Individers deltakelse i pengespill; effekter på dette av endringer i nettogevinster, inntekter, avgifter... o Individers valg av utdanning med mer eller mindre usikre framtidsutsikter; effekter på dette av endringer i studieavgifter, inntekter, skatter... For hvert av disse problemene kan teorien si noe om effekter av individers holding til risiko; risikoaversjon, risikonøytralitet, risikotiltrekning 1

Teori for beslutninger under usikkerhet Kjent fra tidligere, Varian, Intermediate Microec.: o Aktører velger mellom usikre alternativer o Antar gjerne: For hvert alternativ kan det knyttes sannsynligheter til utfallene o Altså: Valg mellom sannsynlighetsfordelinger o For enkelhets skyld: Begrenser gjerne denne teorien slik at utfall dreier seg om mengden av (bare) ett konsumgode, evt. penger Eksempel: Valg mellom å plassere penger i banken eller i en aksje Hvis inflasjonen er usikker: Begge realavkastninger usikre Verdi om ett år av plassering kan f.eks. tenkes å være normalfordelt Aksjen gir høyere forventet verdi, men også høyere varians Ikke opplagt hva som er mest attraktivt Ofte gunstig å plassere noe i hvert alternativ, diversifisering o Men fullt mulig å utvide, slik at hvert utfall er en vektor av konsumgoder o Vanlig å foretrekke sikre(ste) alternativ framfor mer usikre: Risikoaversjon I eksempelet: Diversifisering kan være sikrere enn bare plassering i bank o Kan beskrives ved maksimering av forventet nytte, EuC [ ( )], der u er en konkav funksjon o Lineær u : Risikonøytralitet o Konveks u : Risikotiltrekning 2

Nytteforventningsteoremet Varian, Intermediate Microeconomics, gir bare en intuitiv begrunnelse for maksimering av EuC [ ( )] J. von Neumann og O. Morgenstern (1947) viste: o Utgangspunkt: Rimelige (?) aksiomer om beslutninger under usikkerhet o (Spørsmålstegnet betyr: Seinere omdiskutert) o Logisk resultat for et individ som oppfyller aksiomene: Eksisterer u -funksjon for dette individet slik at beslutningene treffes som om individet maksimerer EuC [ ( )] o (Slutning fra aksiomer til teorem: Udiskutabel) Skal se nærmere på beviset Beslutningene: Valg mellom lotterier Statisk teori; ikke noe tidsaspekt Utgangspunkt: Valg mellom noen få alternativer Hvert alternativ kalles et lotteri Utgangspunkt: Hvert lotteri har bare 2 mulige utfall Utfall f.eks. x og y, pengebeløp Sannsynligheter for utfallene f.eks. p og 1 p Notasjon: Lotteriet skrives p x (1 p) y Som i vanlig konsumteori: Gjør antakelser om konsumentenes valg mellom to slike lotterier o Foretrekker (strengt) enten det ene eller det andre, eller er indifferent o Refleksivitet og transitivitet (Varian, s. 95) 3

Spesielle forutsetninger om preferanser over lotterier Først tre relativt ukontroversielle antakelser: (L1) Indifferens mellom et lotteri der ett utfall har sannsynlighet 1 og det å motta samme utfall med full sikkerhet: 1 x 0 y x (L2) Rekkefølgen spiller ingen rolle: p x (1 p) y (1 p) y p x (L3) Det er tillatt å la ett eller begge utfall i et lotteri være et annet lotteri (evt. to andre lotterier), og i så fall er det bare netto-sannsynlighetene som betyr noe: q ( p x (1 p) y) (1 q) z = ( qp) x ( q qp) y (1 q) z (der vi ender opp med et lotteri med tre ulike utfall) Den siste av disse tre viser også hvordan lotterier med mer enn to utfall kan reduseres (ved å gå motsatt vei) til lotterier med færre utfall, der hvert utfall er nye lotterier. Eksistens av nyttefunksjon De tre antakelsene (L1) (L3) sier noe om hvordan lotterier skal tolkes Fra forrige side: Komplette, transitive og refleksive preferanser Kan representere preferansene med nyttefunksjoner For hvert individ knytte et nyttetall til hvert lotteri, slik at når et lotteri gir høyere nytte enn et annet, så betyr det at lotteriet med høyere nytte foretrekkes Disse funksjonene er ikke entydig bestemt Monoton transformasjon gir en like gyldig nyttefunksjon for individet Ulike individer vil vanligvis ha ulike preferanser, derfor ulike nyttefunksjoner 4

De fire aksiomene som gir nytteforventningsteoremet Under visse betingelser: Nyttefunksjonene som beskriver beslutninger under usikkerhet, kan skrives på en helt spesiell form, kalt forventet nytte For et individ som oppfyller fire aksiomer (U1) (U4), eksisterer en funksjon u slik at individets nyttefunksjon kan skrives som EuC [ ( )] (U1) Kontinuitet: For alle xyz,, er mengden av de p [0,1] som oppfyller p x (1 p) y z, en lukket mengde, og det samme gjelder mengden av de p [0,1] som oppfyller z p x (1 p) y (U2) Hvis x y, så gjelder også p x (1 p) z p y (1 p) z (U3) Det fins et beste utfall, b, og et verste utfall, w (U4) For lotterier med b og w som utfall: Ett slikt lotteri foretrekkes framfor et annet slikt lotteri hvis sannsynligheten for b er større Kommentarer til aksiomene (U2) er det mest kontroversielle Sier at uansett i hvilken sammenheng x og y blir plassert, så vil indifferensen mellom dem bli beholdt Paret av beste og verste utfall, ( bw,, ) vil gjelde for et spesielt individ, men vanligvis være ulikt for andre individer 5

Konstruksjon avu -funksjonen For et individ som oppfyller aksiomene: Kan nå konstruere u -funksjonen basert på et gitt par ( bw, ) La ub ( ) = 1, uw ( ) = 0 For ethvert annet utfall eller lotteri, z, la uz ( ) = pz, der p z er definert ved pz b (1 pz) w z Forklaring: Siden alle andre utfall eller lotterier, z, oppfyller enten w z b eller w z b, vil det alltid være mulig å oppnå indifferens mellom z og et lotteri mellom b og w ved å velge en passende p [0,1] Varian viser mer i detalj at p z alltid eksisterer og er entydig bestemt Siden p z er definert ut fra preferansene, vil funksjonen uz ( ) = pz vanligvis være ulik for ulike individer Men selv for samme individ vil uz ( ) = pz få en ny definisjon dersom nye alternativer blir tilgjengelig slik at b eller w (eller begge) endres u -funksjonen har de lovede egenskapene Varian viser videre at u -funksjonen har de to lovede egenskapene: o Den har egenskapen til en nyttefunksjon, ux ( ) > uy ( ) hvis og bare hvis x y o Nytten av et lotteri er lik forventningen til nytten av de to utfallene, u( p x (1 p) y) = pu( x) + (1 p) u( y) 6

Entydighet av u -funksjonen I vanlig konsumentteori v/full sikkerhet: Nyttefunksjoner entydige opp til en monotont voksende transformasjon Betyr at hvis f er en strengt voksende funksjon, og uc ( ) representerer preferansene til et individ, så vil f[ u( C )] representere akkurat samme preferanser Glem dette når nytteforventningsteoremet gjelder I stedet: Nyttefunksjoner entydige opp til en voksende lineær transformasjon (evt. med konstantledd) (lineær m/konstantledd kalles affin) At funksjonen uc ( ) ikke er helt entydig bestemt, har å gjøre med at b eller w kan endres Hvis f er en strengt voksende funksjon, og EuC [ ( )] representerer preferansene til et individ, så kan vi ikke regne med at E{ f[ u( C )]} representerer samme preferanser Opplagt: Vi vet at krumningen til u -funksjonen er nært knyttet til preferansene under usikkerhet Krumningen vil vanligvis være forskjellig for u() og f[ u ()] Men hvis f er lineær, blir krumningen den samme o Riktignok blir den andrederiverte forskjellig hvis f har stigningstall forskjellig fra 1 o Skal se seinere at krumningen blir den samme i en viss, relativ forstand Samme rankering av lotterier: EuC [ ( 1)] > EuC [ ( 2)] hvis og bare hvis EauC [ ( 1) + b] > EauC [ ( 2) + b] (så lenge ab, er konstanter og a > 0) 7

Risikoaversjon Vanlig å anta at folk er risikoaverse Kan defineres ved at EuC [ ( )] < uec [ ( )] Men dette følger ikke av aksiomene og nytteforventningsteoremet Kan virke rimelig; kan testes empirisk Enkelte typer atferd i strid med risikoaversjon: Vanlige pengespill, der arrangøren har forventet positiv nettogevinst Deltakerne har forventet negativ nettogevinst, og usikkerheten omkring utfallene skulle gjøre pengespillet enda mindre attraktivt enn å bli avkrevd det forventede tapet som en sikker betaling Risikoaversjon betyr konkav u -funksjon ux ( 2) ux ( 1) x 1 E( X ) = 1 1 x + x 2 2 1 2 8 x 2

Eksempel på beslutning under usikkerhet Enkel variant av to alternativer for plassering av en gitt formue, w (Varian, Intermediate, kap. 12 app.) Det ene alternativet har bare to mulige utfall: o Verdi x(1 + r g ) i det gunstigste utfallet o Verdi x(1 + r b ) i det minst gunstige Det andre alternativet har ingen risiko, men gir heller ingen avkastning o Verdi w x uansett Samlet framtidig formue blir W = ( w x) + x(1 + r ) = w+ xr, der r er stokastisk, og vil få ett av utfallene r g eller r b Sannsynligheten for r g er π, for r b er 1 π Forventet nytte blir E[ u( W )] = πu( w+ xrg ) + (1 π) u( w+ xrb ) Forventet nytte er funksjon av x (men Varian skriver dette som Eu [ ( x )], som er misvisende så lenge han bruker samme funksjon u ) Førsteordensbetingelse for maksimum blir πu'( w+ xrg) rg + (1 π ) u'( w+ xrb) rb = 0 Andreordensbetingelse for maksimum blir 2 2 πu''( w+ xrg) rg + (1 π) u''( w+ xrb) rb < 0 Andreordensbetingelsen oppfylt hvis u konkav Hvordan kan førsteordensbetingelsen bli oppfylt? Ved første øyekast: Uttrykket på venstre side er alltid positivt? Kan det tenkes at vi aldri oppnår noen indre løsning på maks.-problemet (der f.o.b. må være oppfylt)? 9

Eksempel forts. Varian (Intermediate Microec.) viser videre: Nødvendig betingelse for å ønske x > 0 er at forventet avkastning er positiv, d.v.s. π rg + (1 π ) rb > 0 Ser deretter på skattlegging av avkastningen Samme skattesats t på nettoavkastningen enten utfallet er gunstig eller mindre gunstig Hvordan påvirkes optimalt valg av x? Forutsetter nå hele veien at f.o.b. er oppfylt: πu'( w+ xθrg) θrg + (1 π) u'( w+ xθrb) θrb = 0, der θ 1 t To omformuleringer av f.o.b.: o Kan forkorte bort de θ -ene som står utenfor u '-funksjonen o Kaller dessuten den optimale løsningen når det er skattlegging for ˆx, mens den optimale * løsningen uten skattlegging kalles x * * Kan vise at xˆ = x /(1 t) x / θ : * * x x πu'( w + θrg) rg (1 π) u'( w θrb) rb 0 θ + + θ = er oppfylt hvis og bare hvis * * πu'( w+ x rg) rg + (1 π) u'( w+ x rb) rb = 0 Konklusjon: Økt skatt på den risikable avkastningen gir høyere investering i det risikable alternativet 10