RELIABILITET : Pålitelighet? Troverdighet? Reproduserbarhet? Stabilitet? Konsistens?

Størrelse: px
Begynne med side:

Download "RELIABILITET : Pålitelighet? Troverdighet? Reproduserbarhet? Stabilitet? Konsistens?"

Transkript

1 RELIABILITET : Pålitelighet? Troverdighet? Reproduserbarhet? Stabilitet? Konsistens? I dagligtale og i ulike fremstillinger også innenfor psykologisk forskningsmetode, brukes slike begreper og reliabilitet ofte litt om hverandre. I tillegg vil man finne en rekke ulike definisjoner og fortolkninger av begrepet reliabilitet også innenfor test/målings tradisjonen. Vi kan ikke her gå inn på hele den diskusjonen, og holder oss til en definisjon som er forenelig med den oftest anvendte definisjonen innenfor klassisk test-teori.

2 Reliabilitet er den variasjonen i en måling (observert indikator, observerte skårer ) som kan forklares ved variasjon i et latent, ikke observerbart, fenomen ( sanne skårer ). Perfekt reliabilitet Ikke perfekt reliabilitet

3 Her kunne vi beregnet reliabiliteten ved en enkel lineær regresjonsanalyse: x = a + b*f + u R 2 fra den analysen ville være reliabiliteten til x! Men siden fenomenet (F) ikke er observerbart, kan selvsagt heller ikke reliabiliteten beregnes den må estimeres. Dersom vi tar utgangspunk t i at dersom vi har tre variabler: x, y og z som forholder seg slik til hverandre: Hvor u ene er uavhengige, tilfeldige feil, så vil r x,z være: r y,x * r y,z

4 Reliabilitetsmodellen: Hvor Ra og Rb er reliabiliteten til måling a og b. Dersom vi nå gjør et drastisk forutsetning kan vi løse estimeringsproblemet. Vi forutsetter at målingene a og b er like gode dvs. at de har samme reliabilitet (Ra=Rb). Denne antagelsen kalles parallel test antagelsen innen målingsteorien. Siden Ra og Rb er forklart varians kan vi selvsagt finne de tilsvarende korrelasjonene slik: r a = Ra og r b = Rb Vi vet fra forrige side at r a,b = r a * r b. Men siden vi nå har antatt at r a og r b er like, kunne vi like gjerne skrevet dette som: r a,b = r a * r a = Ra eller: r a,b = r b * r b = Rb. Korrelasjonen mellom målingene er altså et direkte estimat av reliabiliteten til måling a eller måling b! Så for å estimere reliabiliteten til en måling må vi skaffe oss en like god måling av samme fenomen.

5 Parallelle tester ( equivalent forms ): Vi lager gjerne et mål på F ved å summere responser på flere items og vi er interesserte i reliabiliteten til summen av disse. Vi kan konstruere en ny test som er like god som (parallell med) den første: Vi har da en sum av leddene fra første test (x) og av leddene fra andre test (y).

6 Og som vi har sett kan vi da estimere reliabiliteten til hver av de to testene (x og y) ved å korrelere summene x og y med hverandre. Dette er selvsagt en tidkrevende og kostbar metode for reliabilitetsestimering. Ille nok å lage en god test om en ikke skal lage to like gode.. Man fant imidlertid fort ut at her kunne man lage en tilnærming.

7 Split-half tilnærmingen. I stedet for å lage to komplette tester, kan man ta den ene testen man har og dele den i to halvdeler. Vi kan nå lage oss en sum x=x1+x3+x5 og en sum y=x2+x4+x6. Og estimere reliabiliteten til x eller y ved å korrelere x og y. Merk at ved denne tilnærmingen får man et estimat av reliabiliteten til en test som er halvparten så lang som den vi egentlig ønsker å bruke! Vi kan korrigere for dette ved å benytte Spearman-Brown s prophecy formula : Spearman-Brown's prophecy formula Hvor N ved split-half er 2 og ρ xx er reliabiliteten til en halv test (estimert ved split-half korrelasjonen). Et problem ved split-half strategien er at en test kan deles i to halvdeler på mange måter (fra en test med 20 items kan man for eksempel trekke ut ca ulike utvalg av størrelse n=10), og vi vil få litt ulike reliabilitetsestimater avhengig av hvordan vi deler testen i to.

8 Cronbach s Alpha. Frem til begynnelsen av 1950-tallet var split-half strategien nærmest enerådende som strategi for estimering av reliabilitet innen testutvikling. I 1951 kom imidlertid Cronbach s artikkel: Coefficient Alpha and the internal structure of tests. Denne finner dere i fullversjon over hele internett. Bare å google. Litt også her: Cronbach's alpha Idag er denne strategien like dominerende som split-half var tidligere, men det tok litt tid. Som vi skal se krever beregning av Cronbach s Alpha tilgang til en computer dersom man ikke har svært få test-ledd da. Før vi ser på beregningen av Cronbach s Alpha ser vi på en liten simulering av målingsideen. Her så vi på en konkret simulering av reliabiliteten til en sum av parallelle målinger.

9 Cronbach s Alpha: Hvor K er antall testledd ( items ) og mr er reliabiliteten til det enkelte testledd estimert ved gjennomsnittskorrelasjonen mellom alle testledd. Ser dere på formelen for Spearman-Brown korreksjonen, ser dere at alpha er identisk med denne, men hvor antall splitter (typisk to) er erstattet med antall ledd i testen og reliabiliteten til den enkelte split er erstattet med reliabiliteten til det enkelte ledd. Cronbach viste da også at alpha er det estimat av reliabiliteten man vil få dersom man beregnet gjennomsnittet av alle de reliabilitetsestimater man kunne få ved å splitte en test i alle mulig halvdeler. I vårt konkrete tilfelle fra simuleringen: I formelen for alpha over har jeg benyttet standardisert alpha. Da er alle testledd standardisert med varians=1 (z-skårer). Benytter vi ustandariserte testledd vil vi måtte ta hensyn til at de kan ha ulik varians, og da bruker vi gjennomsnittlig varians og kovarians i stedet for korrelasjoner: Reliabiliteten til en måling sammensatt av flere testledd avhenger altså av: Reliabiliteten til det enkelte testledd (her estimert ved gjennomsnittkorrelasjonen mellom alle ledd) og Antall testledd

10 Sammenhengen mellom alpha, reliabiliteten til det enkelte ledd og antall ledd. Vi kan få høy reliabilitet enten ved å summere få ledd med høy reliabilitet eller mange ledd med lav reliabilitet. Som det fremgår av figuren vil vi kunne få høy reliabilitet selv om det enkelte ledd har en reliabilitet så lav som.10 dersom vi bare summerer 30 ledd. På den annen side: har det enkelte ledd en reliabilitet på.96 så trenger vi vel strengt tatt bare ett men minst to for å få estimert reliabiliteten

11 En avgjørende forutsetning ved estimering av reliabilitet ved alpha, er at man kan anta at leddene måler samme latente fenomen. Selv om dette ikke er tilfelle kan vi får en høy alpha. Vi ser på en simulering hvor vi vet at leddene er mål på to helt ukorrelerte latente fenomener: Som vi ser av simuleringen vil alpha bli helt tilfredsstillende selv med så lite som 10 ledd og hvor disse måler to helt ukorrelerte fenomener, siden gjennomsnittskorrelasjonen tross alt blir relativt høy. En høy alpha er altså ingen dokumentasjon av en-dimensjonalitet! Bruk av alpha som estimat av reliabiliteten til en sum av ledd forutsetter en-dimensjonalitet. Hvorvidt denne forutsetningen er rimelig bør alltid undersøkes. Et opplagt verktøy er da faktor-analysen. Pål vil komme tilbake til dette senere! Det finnes metoder for estimering av reliabilitet for mål som er en sum av mer eller mindre uavhengige forhold ( flerdimensjonale ), men det går vi ikke inn på her..

12 Ønsker vi alltid høy alpha? I enkelte fremstillinger kan dere finne argumenter for at alpha ikke bør bli for høy. Dette er grunnet i at ledd i et måleinstrument alltid kan betraktes som et utvalg av ledd fra et univers av mulige ledd som alle er indikatorer på fenomenet. Dersom vi velger for homogene ledd risikerer vi å måle et begrep ( fenomen ) som er langt smalere definert enn vi egentlig ønsket. Å løse dette ved lavere alpha er jo imidlertid helt uforståelig. Det er jo det samme som å si at vi ønsker lavere reliabilitet. Det vi noen ganger ønsker er ikke lavere reliabilitet, men lavere homogenitet (eller indre konsistens dersom man definerer konsistens slik). Det vil gi lavere gjennomsnittskorrelasjon mellom leddene, men da bør vi også øke antall ledd slik at vi beholder en rimelig reliabilitet. Cronbach har diskutert også dette for eksempel i tilknytning til bandwidth-fidelity diskusjonen (for de som liker å google). Så svaret er vel egentlig JA vi ønsker alltid målinger med rimelig høy reliabilitet (og dermed høy alpha).

13 Er denne reliabilitetsmodellen egnet for alle måleinstrumenter? Her er svaret et definitivt NEI! Hele begrunnelsen for estimering av reliabilitet ved parallelle tester - og dermed nødløsningen split-half og Cronbach s alpha, er at vi kan anta at et latent, ikkeobserverbart fenomen reflekteres i observerbare indikatorer. Dette kalles en refleksiv modell. I noen situasjoner vil det være mer naturlig å tenke at vi definerer et fenomen som en sum av flere forhold ( symptomindekser vil ofte kunne forstås slik). Dette kalles en formativ modell. For slike vil parallelle tester ideen, og dermed estimering av reliabilitet ved split-half eller Cronbach s alpha ikke ha noen begrunnelse. Ved en definisjon av reliabilitet mer i retning av stabilitet eller reproduserbarhet vil estimering av reliabilitet ved test-retest kunne forsvares.

14 Andre reliabilitetsdesign: Test-retest. Stabilitet. Dersom dette skal være et estimat av reliabilitet forutsetter det at all manglende samvariasjon mellom test og retest skyldes tilfeldige målingsfeil. Er det en rimelig antagelse? Inter-skårer. Enighet. Dersom dette skal være et estimat av reliabilitet forutsetter det at all manglende samvariasjon mellom to eller flere skårere skyldes tilfeldige målingsfeil. Er det en rimelig antagelse?

15 Forholdet mellom reliabilitet og validitet. Vi har hele veien diskutert reliabilitet som forklart varians i indikatorer ( i) ved variasjon i latente fenomener F, og strengt tatt forenklet dette litt i overkant. Når vi har tilfredsstillende reliabilitet vet vi strengt tatt bare at vi har målt et eller annet på en tilfredsstillende måte. Vi vet fortsatt ikke hva vi egentlig har målt. Litt mer presist ville egentlig situasjonen se slik ut:

Eksamen PSYC2104 Kvantitativ metode A Vår 2019

Eksamen PSYC2104 Kvantitativ metode A Vår 2019 Eksamen PSYC2104 Kvantitativ metode A Vår 2019 Her er forslag til forhold som kunne vært med i en besvarelse. At man har fått med alt er selvsagt ikke nødvending for å bestå men jo mer jo bedre.. OPPGAVE

Detaljer

Høsten Skriftlig skoleeksamen, 23. Oktober, kl. 09:00 (3 timer). Sensur etter tre uker.

Høsten Skriftlig skoleeksamen, 23. Oktober, kl. 09:00 (3 timer). Sensur etter tre uker. Psykologisk institutt Eksamen PSY4020 - Anvendt kvantitativ forskningsmetode Eksamen PSYC3101 - Kvantitativ metode II (3. Semester) Eksamen PSYC3101 - Kvantitativ metode II (6. Semester) Høsten 2015 Skriftlig

Detaljer

Fra spørreskjema til skalaer og indekser

Fra spørreskjema til skalaer og indekser Fra spørreskjema til skalaer og indekser Forelesning 12 (1. time) 1 Måleprosessen Teoretisk definisjon Mål, skalaer Operasjonell definisjon Datamatrise Måleinstrument Virkligheten 2 Hva skal måles? Direkte

Detaljer

Repeated Measures Anova.

Repeated Measures Anova. Repeated Measures Anova. Vi bruker oppgave-5 som eksempel. I en evalueringsstudie av en terapeutisk intervensjon valgte man et pre-post med kontrollgruppe design. Alle personer ble undersøkt tre ganger

Detaljer

Oppgåver Oppgåvetype Vurdering Status. 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert

Oppgåver Oppgåvetype Vurdering Status. 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert PSYK113 0 Innføring i metode Kandidat 142 Oppgåver Oppgåvetype Vurdering Status Praktisk informasjon Dokument Ikke vurdert Levert 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert 2 DEL 2 Metode

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

ME Vitenskapsteori og kvantitativ metode

ME Vitenskapsteori og kvantitativ metode KANDIDAT 2586 PRØVE ME-417 1 Vitenskapsteori og kvantitativ metode Emnekode ME-417 Vurderingsform Skriftlig eksamen Starttid 18.05.2018 09:00 Sluttid 18.05.2018 13:00 Sensurfrist 08.06.2018 02:00 PDF opprettet

Detaljer

Noen Statistiske utfordringer ved analyse av PROM

Noen Statistiske utfordringer ved analyse av PROM Noen Statistiske utfordringer ved analyse av PROM Kyrre Breivik Uni Research Helse, RKBU-Vest RKBU-Vest Pasientrapporterte data Flere statistiske utfordringer ved analyse av PROM (f.eks. missing, validitet,

Detaljer

Kapittel 1 Vitenskap: grunnleggende antakelser

Kapittel 1 Vitenskap: grunnleggende antakelser Innholdsfortegnelse Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forskning...

Detaljer

Gjør gjerne analysene under her selv, så blir dere mer fortrolige med utskriften fra Spss. Her har jeg sakset og klippet litt.

Gjør gjerne analysene under her selv, så blir dere mer fortrolige med utskriften fra Spss. Her har jeg sakset og klippet litt. Gjør gjerne analysene under her selv, så blir dere mer fortrolige med utskriften fra Spss. Her har jeg sakset og klippet litt. Data fra likelonn.sav og vi ser på variablene Salnow, Edlevel og Sex (hvor

Detaljer

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39 Innhold Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forsk ning... 22

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 8. desember 2016 Eksamenstid: 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Vår 2015

Eksamen PSYC3101 Kvantitativ metode II Vår 2015 Eksamen PSYC3101 Kvantitativ metode II Vår 2015 Skriftlig skoleeksamen, fredag 27. mars kl. 09:00 (3 timer). Ingen hjelpemidler, utover forhåndsgodkjent ordbok, er tillatt under eksamen. Alle oppgavene

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: Psykologisk institutt 73 59 19 60 Eksamensdato: 23.5.2013 Eksamenstid (fra-til):

Detaljer

ME Vitenskapsteori og kvantitativ metode

ME Vitenskapsteori og kvantitativ metode KANDIDAT 2581 PRØVE ME-417 1 Vitenskapsteori og kvantitativ metode Emnekode ME-417 Vurderingsform Skriftlig eksamen Starttid 18.05.2018 09:00 Sluttid 18.05.2018 13:00 Sensurfrist 08.06.2018 02:00 PDF opprettet

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

KVANTITATIV METODE. Marit Schmid Psykologspesialist, PhD HVL

KVANTITATIV METODE. Marit Schmid Psykologspesialist, PhD HVL KVANTITATIV METODE Marit Schmid Psykologspesialist, PhD HVL 29.10.18 PLAN FOR DISSE TIMENE Generelt om kvantitativ og kvalitativ metode en oversikt Kausalitet Bruk av spørreskjema ved innhenting av kvantitative

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 22.05.2015 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

1. De fleste blir mer vennlige av å drikke alkohol Mange blir mer aggressive av å drikke alkohol

1. De fleste blir mer vennlige av å drikke alkohol Mange blir mer aggressive av å drikke alkohol EKSAMEN i PSYC3101/ PSY4510 Høst 2009 Kvantitative metoder II 15. desember kl. 09:00 (3 timer). Ingen hjelpemidler tillatt Alle oppgavene skal besvares OPPGAVE 1: a) Forklar hva som menes med begrepet

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Høsten 2013

Eksamen PSYC3101 Kvantitativ metode II Høsten 2013 Psykologisk institutt Eksamen PSYC3101 Kvantitativ metode II Høsten 2013 Skriftlig skoleeksamen, torsdag 17.oktober kl. 09:00 (3 timer). Sensur etter tre uker. Ingen hjelpemidler er tillatt under eksamen.

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Våren 2014

Eksamen PSYC3101 Kvantitativ metode II Våren 2014 Eksamen PSYC3101 Kvantitativ metode II Våren 2014 Skriftlig skoleeksamen, onsdag 19. mars kl. 09:00 (3 timer). Sensur etter tre uker. Ingen hjelpemidler er tillatt under eksamen. Alle oppgavene skal besvares

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 DATO: 12.12.12 Studiepoeng: 7,5 Sidetall bokmål 4 Tillatte hjelpemidler:

Detaljer

Definisjoner av begreper Eks.: interesse for politikk

Definisjoner av begreper Eks.: interesse for politikk Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 04.06.2014 Eksamenstid

Detaljer

PSYC 3101 KVANTITATIV METODE II Eksamen høst 2008

PSYC 3101 KVANTITATIV METODE II Eksamen høst 2008 Eksamen 7. november kl. 0900 200 Sensur: 8.2. kl. 4 Alle oppgavene skal besvares. PSYC 30 KVANTITATIV METODE II Eksamen høst 2008 OPPGAVE Vurdering av personlige egenskaper Et selskap som driver en nettside

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 91838665 Eksamensdato: Eksamenstid (fra-til): Hjelpemiddelkode/Tillatte

Detaljer

CHAPTER 11 - JORUN BØRSTING, ANALYZING QUALITATIVE DATA

CHAPTER 11 - JORUN BØRSTING, ANALYZING QUALITATIVE DATA CHAPTER 11 - JORUN BØRSTING, 2017. ANALYZING QUALITATIVE DATA I en solid kvalitativ analyse er man avhengig av presist definerte konsepter som kan brukes som kategorier for å utforske og sortere dataene

Detaljer

Her ser vi på noen egenskaper ved denne metoden som kan være nyttig for oss psykologer.

Her ser vi på noen egenskaper ved denne metoden som kan være nyttig for oss psykologer. Prinsipal Component Analysis (PCA): Prinsipal komponent analysen ble (som mange andre metoder vi benytter) oppfunnet av Karl Pearson i 1901, men uavhengig av ham videreutviklet av Hotelling rundt 1930.

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Institutt for psykologi Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato: 23. mai 2017 Eksamenstid:

Detaljer

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Institutt for psykologi Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: 73 59 19 60 Eksamensdato: 15. mai 2017 Eksamenstid: 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 08.12.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Noen momenter ved vurdering av eksamen PSY1010 PSYC1100 høsten 2018.

Noen momenter ved vurdering av eksamen PSY1010 PSYC1100 høsten 2018. Noen momenter ved vurdering av eksamen PSY1010 PSYC1100 høsten 2018. Generelt: Denne veiledningen peker på noen elementer som kan diskuteres i oppgavene. Den er ikke dekkende eller ment som en fullstendig

Detaljer

Endring over tid. Endringsskårer eller Ancova? Data brukt i eksemplene finner dere som anova-4-1.sav, anova-4-2.sav og likelonn.sav.

Endring over tid. Endringsskårer eller Ancova? Data brukt i eksemplene finner dere som anova-4-1.sav, anova-4-2.sav og likelonn.sav. Endring over tid. Endringsskårer eller Ancova? Data brukt i eksemplene finner dere som anova-4-1.sav, anova-4-2.sav og likelonn.sav. Analyse av endringsskårer (change scores). Vi så forrige gang på analyser

Detaljer

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal Forskningsmetoder Data: Måling og målefeil Frode Svartdal UiTø V-2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler:

Detaljer

Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind

Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering

Detaljer

Psykososiale målemetoder og psykometri.

Psykososiale målemetoder og psykometri. Psykososiale målemetoder og psykometri. Kliniske og psykososiale konstruksjoner: Spørreskjema, måleskalaer og målemetoder i teori og praksis. Kort om emnet De fleste kliniske forsknings-studier, uansett

Detaljer

Kap. 6.1: Fordelingen til en observator og stok. simulering

Kap. 6.1: Fordelingen til en observator og stok. simulering Kap. 6.1: Fordelingen til en observator og stok. simulering Data, observatorer og relaterte fordelinger. Stokastisk simulering. Illustrasjon: - Sammenligning av jury bedømmelser i idrett. Fra data til

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Forskningsmetoder Måling, målefeil Frode Svartdal UiTø V-2011 Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler: Kjønn,

Detaljer

Eksplorerende faktor-analyse.

Eksplorerende faktor-analyse. Eksplorerende faktor-analyse. Noen forutsetninger: Vi bruker alltid variabler som er standardiserte med gjennomsnitt=0 og standardavvik=1: obs Y X zy zx Regresjonsanalyser: 1 18.93 21.85-0.50 0.71 2 18.41

Detaljer

Eksamen STK2400, 6/ Løsningsforslag

Eksamen STK2400, 6/ Løsningsforslag Eksamen STK2400, 6/12-07 - Løsningsforslag Arne ang Huseby December 19, 2007 Oppgave 1 I denne oppgaven skal vi se på et binært monotont system (C, φ) med komponentmengde C = {1,..., 5} og strukturfunksjon

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

Ove Edvard Hatlevik, dr polit UNIVERSITETET I OSLO

Ove Edvard Hatlevik, dr polit UNIVERSITETET I OSLO Ove Edvard Hatlevik, dr polit UNIVERSITETET I OSLO Om utvikling av tester og bruk av testresultat 11/11/2006 Oslo Utgangspunkt: Osloprøven i digital kompetanse for 5. trinn (år 2008) Rammeverk: læreplan

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 73 59 19 60 Eksamensdato: 10.12.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

Diskusjonsoppgaver Hvilke fordeler oppnår man ved analytisk evaluering sammenliknet med andre tilnærminger?

Diskusjonsoppgaver Hvilke fordeler oppnår man ved analytisk evaluering sammenliknet med andre tilnærminger? Definisjonsteori Hva er de tre hovedtilnærmingene til evaluering? Nevn de seks stegene i DECIDE. (blir gjennomgått neste uke) Gi et eksempel på en måte å gjøre indirekte observasjon. Hva ligger i begrepene

Detaljer

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal Hypotesetesting: Prinsipper Frode Svartdal UiTø Januar 2014 Frode Svartdal Alt dette er mat for hypotesetesting! Utgangspunkt En antakelse begrunnet i teori Dissonansteori: Hvis, så. En vanlig oppfatning

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 73 59 19 60 Eksamensdato: 11.12.2013 Eksamenstid (fra-til):09:00 13:00

Detaljer

FORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER

FORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER INF1500 H 2015 Magnus Li NOEN GRUNNLEGGENDE KONSEPTER VITENSKAPELIG METODE Hva? - Som vi har sett har mennesket en persepsjon som er gjennstand for subjektivitet og snarveier. For å kunne finne ut hva

Detaljer

Kræsjkurs i STAT101. Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen:

Kræsjkurs i STAT101. Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen: Kræsjkurs i STAT101 Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen: Legg vekt på å forstå hva formlene brukes til, det vil si når, og hvordan? Lær sammenhengen mellom fordelingene og tema i

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato: 30. mai 2016 Eksamenstid (fra-til):

Detaljer

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator

Detaljer

Måling av medarbeidere som immaterielle verdier: Hvorfor, hva og hvordan?

Måling av medarbeidere som immaterielle verdier: Hvorfor, hva og hvordan? Måling av medarbeidere som immaterielle verdier: Hvorfor, hva og hvordan? Forum for Kunnskapsbedrifter 2. februar 2005 Oslo Børs, 1. amanuensis, Dr. Oecon/PhD Handelshøyskolen BI Måling av ikke-finansielle

Detaljer

Gjør kort rede for seks av de åtte begrepene. Bruk inntil ½ side på hvert begrep.

Gjør kort rede for seks av de åtte begrepene. Bruk inntil ½ side på hvert begrep. Sensurveiledning SOS1002, høst 2012 Opgave 1 Gjør kort rede for seks av de åtte begrepene. Bruk inntil ½ side på hvert begrep. a) Type I feil er sannsynligheten for å forkaste en sann nullhypotese i en

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfunnsfag Institutt for økonomi og administrasjon Statistiske metoder Bokmål Dato: Torsdag 19. desember Tid: 4 timer / kl. 9-13 Antall sider (inkl. forside): 8 Antall oppgaver: 3 Oppsettet

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Kp. 9.8 Forskjell mellom to forventninger

Kp. 9.8 Forskjell mellom to forventninger andeler I analysene skal vi se på situasjonene der σx og σ Y er kjente; normalantakelse a σx og σ Y er ukjente men σ X = σ Y ; normalantakelse og b σx og σ Y er ukjente og σ X σ Y ; normalantakelse 3 og

Detaljer

Seminar 7: Måling og datainnsamling i samfunnsvitenskap. Forelesning om temaet, 2 timer Studentpresentasjoner, 1 time

Seminar 7: Måling og datainnsamling i samfunnsvitenskap. Forelesning om temaet, 2 timer Studentpresentasjoner, 1 time Måleprosessen Teoretisk definisjon Mål, skalaer TIØ11 Kvantitativ metode Seminar 7: Måling og datainnsamling i samfunnsvitenskap Operasjonell definisjon Måleinstrument Datamatrise 1 Virkligheten 4 Plan

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

Kapittel 2. Utforske og beskrive data. Sammenhenger mellom variable Kap. 2.1 om assosiasjon og kryssplott forrige uke. Kap. 2.2, 2.3, 2.

Kapittel 2. Utforske og beskrive data. Sammenhenger mellom variable Kap. 2.1 om assosiasjon og kryssplott forrige uke. Kap. 2.2, 2.3, 2. Kapittel 2 Utforske og beskrive data Sammenhenger mellom variable Kap. 2.1 om assosiasjon og kryssplott forrige uke. Kap. 2.2, 2.3, 2.4 denne uken To kryssplott av samme datasett, men med forskjellig skala

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

Veiledning for utarbeidelsen av økonomiske analyser som fremlegges for Konkurransetilsynet

Veiledning for utarbeidelsen av økonomiske analyser som fremlegges for Konkurransetilsynet Rev.dato: 16.12.2009 Utarbeidet av: Konkurransetilsynet Side: 1 av 5 Innhold 1 BAKGRUNN OG FORMÅL... 2 2 GENERELLE PRINSIPPER... 2 2.1 KLARHET OG TRANSPARENS... 2 2.2 KOMPLETTHET... 2 2.3 ETTERPRØVING

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Høsten 2014

Eksamen PSYC3101 Kvantitativ metode II Høsten 2014 Eksamen PSYC3101 Kvantitativ metode II Høsten 2014 Skriftlig skoleeksamen, mandag 27.oktober - kl. 09:00 (3 timer). Sensur etter tre uker. Ingen hjelpemidler, utover forhåndsgodkjent ordbok, er tillatt

Detaljer

168291/S20: Transport av farlig gods på veg, sjø og bane. Jørn Vatn Prosjektleder SINTEF

168291/S20: Transport av farlig gods på veg, sjø og bane. Jørn Vatn Prosjektleder SINTEF 168291/S20: Transport av farlig gods på veg, sjø og bane Jørn Vatn Prosjektleder SINTEF 1 Tema for presentasjon Kan risikoanalysen benyttes som bevisføring for at en løsning er bedre enn en alternativ

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Veiledning Tittel: Veiledning for utarbeiding av økonomiske analyser Dok.nr: RL065

Veiledning Tittel: Veiledning for utarbeiding av økonomiske analyser Dok.nr: RL065 Veiledning Tittel: Dok.nr: RL065 Rev.nr: 02 Utarbeidet av: Konkurransetilsynet Side: 1 av 5 INNHOLD 1 Bakgrunn og formål... 2 2 Generelle prinsipper... 2 2.1 Klarhet og transparens... 2 2.2 Kompletthet...

Detaljer

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1 MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 DATO: 14.01.2012 Studiepoeng: 7,5 Sidetall bokmål

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

EKSAMENSOPPGAVER STAT100 Vår 2011

EKSAMENSOPPGAVER STAT100 Vår 2011 EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test

Detaljer

Appendiks 5 Forutsetninger for lineær regresjonsanalyse

Appendiks 5 Forutsetninger for lineær regresjonsanalyse Appendiks 5 Forutsetninger for lineær regresjonsanalyse Det er flere krav til årsaksslutninger i regresjonsanalyse. En naturlig forutsetning er tidsrekkefølge og i andre rekke spiller variabeltype inn.

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

Statistisk analyse av observasjonspunktene i ALLE MED

Statistisk analyse av observasjonspunktene i ALLE MED Statistisk analyse av observasjonspunktene i ALLE MED Inger Kristine Løge Innledning Utviklingen av ALLE MED er et resultat av et samarbeidsprosjekt mellom Senter for atferdsforskning (nå Læringsmiljøsenteret),

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Medarbeiderundersøkelsen 2014

Medarbeiderundersøkelsen 2014 10. NOVEMBER 2014 Medarbeiderundersøkelsen 2014 Regresjonsanalyser Analyse Analysen er en måte å finne ut hvilke nærværsfaktorer i undersøkelsen som har sterkest sammenheng med resultatfaktorene Analysene

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

Oppgavesett nr. 5. MAT110 Statistikk 1, Et transportfirma har et varemottak for lastebiler med spesialgods, se figur 1.

Oppgavesett nr. 5. MAT110 Statistikk 1, Et transportfirma har et varemottak for lastebiler med spesialgods, se figur 1. Innleveringsfrist: mandag 19. mars kl. 16:00 (version 01) Oppgavesett nr. 5 MAT110 Statistikk 1, 2018 Oppgave 1: ( logistikk ) Et transportfirma har et varemottak for lastebiler med spesialgods, se figur

Detaljer

I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive.

I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive. Geometri og måling I dette undervisningsopplegget skal elevene bruke forhold og kunnskap om geometriske figurer til å innrede en vegg med plakater og ei dartskive. ARTIKKEL SIST ENDRET: 27.10.2015 Hovedområde

Detaljer

Digitaltesten 2 - en diagnostisk test. Ellen Gard

Digitaltesten 2 - en diagnostisk test. Ellen Gard Digitaltesten 2 - en diagnostisk test Digitaltesten Et samarbeidsprosjekt mellom Vox og Norsk Test AS Vox tildeler tester og sertifiserer tilbydere Norsk Test drifter testen fra sin server Test Test =

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt

Detaljer