Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal
|
|
- Baard Helgesen
- 8 år siden
- Visninger:
Transkript
1 Hypotesetesting: Prinsipper Frode Svartdal UiTø Januar 2014 Frode Svartdal
2 Alt dette er mat for hypotesetesting! Utgangspunkt En antakelse begrunnet i teori Dissonansteori: Hvis, så. En vanlig oppfatning Belønning øker prestasjon Noe vi tror er feil Læring kan bare skje hvis vi forstår læringsbetingelsene Motstridende funn a) Forventning om belønning øker motivasjon vs. b) Forventning om belønning reduserer motivasjon
3 Utgangspunkt II Ikke veldig interessant. Alle vet dette! Hypotesen må ha interesse! Belønning øker motivasjon Noen ganger vil belønning redusere motivasjon Interessant!
4 Hypotesetesting: Generelt Hvordan testes hypoteser? Formulere en testbar påstand (f.eks. en implikasjon fra en teori) Gjennomføre en relevant undersøkelse (eksperiment, observasjon, ) Avgjøre om resultatet støtter hypotesen Statistisk Innholdsmessig
5 Eksempel: Dissonansteori (Festinger) Dissonans = ubehagelig aktivering som følge av konflikt Eksempel: Jeg røyker Jeg vet at det er farlig å røyke Dissonans
6 Dissonansteori: Festinger A Lesson In Cognitive Dissonance
7 Eksempel: Dissonansteori Festinger & Carlsmith, 1959 Utfører kjedelig oppgave i en time Får betalt lite vs. mye Sier til nestemann at oppgaven var artig (dvs. lyve) Mening om oppgaven måles
8 Eksempel: Dissonansteori Festinger & Carlsmith, 1958 Dissonans-betingelse: (a) Du utfører kjedelig oppgave i en time (b) Du får lite betalt Dissonans (c) Din mening om jobben måles Hypotese?
9 Eksempel: Dissonansteori Festinger & Carlsmith, 1958 Dissonans-betingelse: (a) Du utfører kjedelig oppgave i en time (b) Du får bra betalt (c) Din mening om jobben måles Hypotese? Ikke dissonans
10 Festinger & Carlsmith, 1958 Oppfatning av oppgaven Ikke dissonans Dissonans Oppfatning av oppgaven korrigert for effekten av dissonans
11 Hypotesetesting Design og prosedyre OK: Fp-er er tilfeldig fordelt i gruppene (dvs. variasjon mellom fp-er er ikke systematisk relatert til manipulasjonen) eksperimentsituasjonen er den samme for alle prosedyren er den samme for alle
12 Hypotesetesting: Statistisk R HØY-gruppe LAV-gruppe Uavhengig variabel Høy betaling: FP mottar 100 kr Lav betaling: FP mottar 10 kr Avhengig variabel Vurdering av oppgaven ( ): -0,1 Vurdering av oppgaven ( ): 1,4
13 Hypotesetesting: Statistisk Uavhengig variabel Avhengig variabel Eksperimentgruppe Høy betaling Snittskåre: -0,1 R Kontrollgruppe Lav betaling Snittskåre: 1,4 Ingen forskjell Tid Ingen forskjell?
14 Hypotesetesting: Statistisk Eksempel: Eksperiment med to grupper Nullhypotesen: Utvalgene kommer fra samme populasjon. Vi sjekker: Hvor sannsynlig er det at den observerte forskjellen mellom utvalgene kan oppstå, gitt at utvalgene kommer fra samme populasjon? Forskningshypotesen: Utvalgene kommer ikke fra samme populasjon.
15 Hypotesetesting: Statistisk Hvis den observerte forskjellen er svært usannsynlig, forkaster vi 0-hypotesen Grense: 5 av 100 tilfeller (0,05) Avvisning av 0-hypotesen innebærer en indirekte aksept av forskningshypotesen Forskningshypotesen bevises IKKE
16 Hypotesetesting: Statistisk Statistisk konklusjons-validitet: Er konklusjonen vi trekker fra utvalget holdbar? Trusler: Lav power: Vi oppdager ikke en mulig effekt. Typisk årsak: for få deltakere Brudd på statistiske forutsetninger Fisking i data: Vi leter etter effekter Lite reliable mål Lite reliable prosedyrer
17 Hypotesetesting: Statistisk Eksperimentgr. mean = -0,1 Kontrollgr. mean = 1,4 Hvordan kan man avgjøre om den observerte forskjellen, er så stor at vi må forkaste 0-hypotesen? Statistisk test som sammenligner to gruppegjennomsnitt t-test: Hvor stor er variasjonen mellom gruppene (gruppeforskjell)? Hvor stor er variasjonen innen gruppene? Hvor mange deltakere har vi i hver gruppe?
18 Hypotesetesting: Statistisk Populasjon Randomisert utvelgelse Generalisering YTRE VALIDITET Utvalg Randomisert fordeling Eksp.gr. Kontr.gr. Resultat INDRE VALIDITET Funn
19 Hypotesetesting: Innholdsmessig Er hypotesen rimelig? Er operasjonaliseringene av variablene rimelige? Høy = 100 kr Lav = 10 kr Er oppgaven som blir utført faktisk kjedelig? Er undersøkelsen gjennomført på en betryggende måte (design)? Er det nok med bare 2 nivåer av UV (100 vs. 10)? Hva med en kontrollgruppe som ikke får betalt? Foreligger det trusler mot vår slutning om effekt (confounding variabler)? Viktig!! Har vi kontroll over relevante variabler? Er deltakere tilfeldig fordelt til grupper (randomisering)? Kritisk for eksperimenter!!! Finnes det alternative fortolkninger av funnet????
20 Hypotesetesting Mao: Selv om vi får støtte for vår hypotese statistisk, betyr ikke dette automatisk at hypotesen støttes teoretisk Statistisk hypotesetesting: Mekanisk prosess Teoretisk hypotesetesting: Kompleks slutning
21 Dataanalyse Beskrive en variabel (et sett av skårer) Eksempel: Gjennomsnitt Beskrive relasjoner mellom to variabler Eksempel: Korrelasjon (r) Beskrive relasjoner mellom flere sett av skårer (konsistens) Cronbachs alfa Bestemme om to gruppegjennomsnitt er signifikant forskjellige Eksempel: T-test Bestemme om flere gruppegjennomsnitt er signifikant forskjellige Eksempel: Variansanalyse
22 Hypotesetesting: p og effektstørrelse To viktige aspekter ved et funn: Signifikans: Hvor reliabelt er funnet? Hvis vi gjentar undersøkelsen, vil vi få samme utfall? Effektstørrelse: Hvor stor effekt snakker vi om? Er (et signifikant) utfall praktisk/teoretisk interessant?
23 Hypotesetesting: p og effektstørrelse Signifikans Hvor reliabelt er funnet? Jo svakere et funn er, desto flere deltakere trengs for å påvise det som signifikant Ikke nødvendigvis noen styrke ved en undersøkelse at man har mange deltakere Aspirin redusert risiko for hjerteinfarkt deltakere trengs for å påvise effekten Mørketid vinterdepresjon deltakere
24 Hypotesetesting: p og effektstørrelse Effektstørrelse Cohen: The degree to which a phenomenon exists. Hvor sterkt slår effekten ut? Hvor sterk er sammenhengen? Signifikans (p) sier ikke nødvendigvis så mye om styrke Samme effektstørrelse kan bety ulike ting i ulike kontekster: Redusert fart: Nesten null betydning for den enkelte; 15 menneskeliv spart i løpet av et år i Norge
25 Hypotesetesting: Falsifikasjon To utfall mulig: Vi aksepterer 0-hypotesen ( gruppene kommer fra samme populasjon ) forskningshypotesen forkastes Vi forkaster 0-hypotesen ( gruppene kommer ikke fra samme populasjon ) forskningshypotesen støttes
26 Hypotesetesting Wason (1977): Falsifiserende vs. bekreftende strategi i hypotesetesting Bekreftende evidens er forenlig med et stort antall hypoteser eller teorier Falsifiserende evidens vil utelukke i alle fall noen hypoteser Dvs.: Falsifiserende evidens er ofte mer informativ om verden enn bekreftende evidens
27 Hypotesetesting Faktisk Vår beslutning Aktivering fører til bedre læring Aktivering fører ikke til bedre læring Aktivering fører faktisk ikke til bedre læring Type 1-feil Vi forkaster 0-hypotesen når vi egentlig skulle beholdt den OK Aktivering fører faktisk til bedre læring OK Type 2-feil Vi aksepterer 0-hypotesen når vi egentlig skulle forkastet den
28 Hypotesetesting Type 1-feil Vi har vært for snille akseptert noe vi egentlig skulle forkastet Løsning: Skjerp kravet til hva som aksepteres (p = ). Alfanivå Problem: Vi kan bli for strenge, slik at vi øker sjansen for Type 2-feil
29 Hypotesetesting Type 2-feil Vi har vært for strenge forkastet noe vi egentlig skulle akseptert Løsning: Øk power i undersøkelsen gjør det mer sannsynlig at vi vil oppdage en effekt hvis den er der (i praksis: øk antall deltakere)
30 Hypotesetesting i praksis Faktisk Dommeren: Uskyldig Skyldig Tiltalte er skyldig Type 1-feil Forkaster 0-hypotesen når hun egentlig skulle beholdt den JUSTISMORD Tiltalte er ikke skyldig OK Type 2-feil Aksepterer 0-hypotesen når hun egentlig skulle forkastet den OK
31 Hypotesetesting i praksis Faktisk Frisk Kreft Legen: Du har kreft Du er frisk Type 1-feil Forkaster 0-hypotesen når hun egentlig skulle beholdt den IKKE SÅ FARLIG OK OK Type 2-feil Aksepterer 0-hypotesen når hun egentlig skulle forkastet den KATASTROFE
Eksperimentelle design
Eksperimentelle design Frode Svartdal UiTø April 2015 Frode Svartdal Eksperimentelle design Design = plan for en undersøkelse, her eksperiment Eksperimenter har som hensikt å dokumentere at variabler har
DetaljerOppsummering & spørsmål 20. april Frode Svartdal
Oppsummering & spørsmål 20. april 2016 Frode Svartdal Nullhypotese og sånt 119 deltakere Folk som svarer på en test for prokrastinering 40 Histogram of IPS 35 30 25 No of obs 20 15 10 5 0 0.5 1.0 1.5 2.0
DetaljerStatistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015
Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT mars 2015 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med
DetaljerStatistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016
Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT april 2016 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med
DetaljerForskningsmetoder i menneske-maskin interaksjon
Forskningsmetoder i menneske-maskin interaksjon Kapittel 2- Eksperimentell forskning Oversikt Typer atferdsforskning Forskningshypoteser Grunnleggende om eksperimentell forskning Signifikanstesting Begrensninger
DetaljerInnhold. Del 1 Grunnleggende begreper og prinsipper... 39
Innhold Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forsk ning... 22
DetaljerPSY 1002 Statistikk og metode. Frode Svartdal April 2016
PSY 1002 Statistikk og metode Frode Svartdal April 2016 GANGEN I HYPOTESETESTING 1. Formuler en hypotese «Man får bedre karakterer hvis man leser pensum» 2. Formuler motstykket, nullhypotesen H 0 «Man
Detaljer6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
DetaljerVerdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerKapittel 1 Vitenskap: grunnleggende antakelser
Innholdsfortegnelse Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forskning...
DetaljerForskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1
Forskningsmetoder Måling, målefeil Frode Svartdal UiTø V-2011 Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler: Kjønn,
DetaljerVerdens statistikk-dag.
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerIntroduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
DetaljerTMA4240 Statistikk H2010 (20)
TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerForskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal
Forskningsmetoder Data: Måling og målefeil Frode Svartdal UiTø V-2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler:
DetaljerHypotesetesting. mot. mot. mot. ˆ x
Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
DetaljerTMA4240 Statistikk H2010 (19)
TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting
DetaljerEKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL
NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 DATO: 14.01.2012 Studiepoeng: 7,5 Sidetall bokmål
DetaljerFORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER
INF1500 H 2015 Magnus Li NOEN GRUNNLEGGENDE KONSEPTER VITENSKAPELIG METODE Hva? - Som vi har sett har mennesket en persepsjon som er gjennstand for subjektivitet og snarveier. For å kunne finne ut hva
DetaljerSTUDIEÅRET 2013/2014. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Fredag 25. april 2014 kl. 10.00-12.00.
STUDIEÅRET 2013/2014 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Fredag 25. april 2014 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:
DetaljerEksamen PSY1011/PSYPRO4111: Sensorveiledning
Eksamen PSY1011/PSYPRO4111 1. Hva vil det si at et instrument for å måle angst er valid? Hvordan kan man undersøke validiteten til instrumentet? 2. Hva vil det si at et resultat er statistisk signifikant?
DetaljerSTUDIEÅRET 2014/2015. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Mandag 13. april 2015 kl. 10.00-12.00.
STUDIEÅRET 2014/2015 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Mandag 13. april 2015 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:
Detaljer2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.
H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.
DetaljerKapittel 9 og 10: Hypotesetesting
Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
DetaljerEffektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%
Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.
DetaljerKan vi stole på resultater fra «liten N»?
Kan vi stole på resultater fra «liten N»? Olav M. Kvalheim Universitetet i Bergen Plan for dette foredraget Hypotesetesting og p-verdier for å undersøke en variabel p-verdier når det er mange variabler
DetaljerEksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi
Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato: 30. mai 2016 Eksamenstid (fra-til):
DetaljerDefinisjoner av begreper Eks.: interesse for politikk
Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et
DetaljerSlutninger fra data FRODE SVARTDAL UIT 2015
Slutninger fra data FRODE SVARTDAL UIT 2015 Tre viktige sider 1) Verifikasjon Hvordan man sikrer seg at funn er holdbare 2) Generalisering I hvilken grad gjelder et funn ut over den situasjon der funnet
DetaljerSTUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 25. august 2015 kl. 10.00-12.00.
STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 25. august 2015 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden
DetaljerKVANTITATIV METODE. Marit Schmid Psykologspesialist, PhD HVL
KVANTITATIV METODE Marit Schmid Psykologspesialist, PhD HVL 29.10.18 PLAN FOR DISSE TIMENE Generelt om kvantitativ og kvalitativ metode en oversikt Kausalitet Bruk av spørreskjema ved innhenting av kvantitative
DetaljerFra idé til publikasjon
Forskningsprosessen Fra idé til publikasjon Frode Svartdal UiTø Januar 2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Forskningsprosessen 16.01.2014 FRODE SVARTDAL 2 De skritt man tar for å sikre at påstander
Detaljer1 10-2: Korrelasjon. 2 10-3: Regresjon
1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en
DetaljerRepeated Measures Anova.
Repeated Measures Anova. Vi bruker oppgave-5 som eksempel. I en evalueringsstudie av en terapeutisk intervensjon valgte man et pre-post med kontrollgruppe design. Alle personer ble undersøkt tre ganger
DetaljerKapittel 10: Hypotesetesting
Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting
DetaljerNoen momenter ved vurdering av eksamen PSY1010 PSYC1100 høsten 2018.
Noen momenter ved vurdering av eksamen PSY1010 PSYC1100 høsten 2018. Generelt: Denne veiledningen peker på noen elementer som kan diskuteres i oppgavene. Den er ikke dekkende eller ment som en fullstendig
DetaljerEksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi
Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 22.05.2015 Eksamenstid (fra-til): 09:00 13:00
DetaljerKrysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.
SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan
DetaljerHypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:
Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerEksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder
Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013
DetaljerKapittel 9 og 10: Hypotesetesting
Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
DetaljerEksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi
Institutt for psykologi Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato: 23. mai 2017 Eksamenstid:
DetaljerStatistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
DetaljerDatamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerSammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt
SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan
Detaljer1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver
1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to
DetaljerForelesning 10 Kjikvadrattesten
verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en
DetaljerStatistikk En måte å beskrive og analysere fenomener kvantitativt Eva Denison
Statistikk En måte å beskrive og analysere fenomener kvantitativt Eva Denison Formål Kunnskap om statistikk som verktøy for kritisk vurdering av studier Agenda Kort oversikt Beskrivende statistikk Statistisk
DetaljerI dag. Problemstilling. 2. Design og begreper. MEVIT januar Tanja Storsul
2. Design og begreper MEVIT 2800 24. januar 2012 Tanja Storsul I dag Problemstilling Forskningsdesign Enheter, variabler, verdier Reliabilitet og validitet Univers, utvalg og generalisering Kvalitative
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
DetaljerEksamensoppgave i PSY1011/4111 Psykologiens metodologi
Psykologisk institutt Eksamensoppgave i PSY1011/4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 11. desember 2015 Eksamenstid (fra-til): 09:00-13:00
Detaljer3. Multidimensjonale tabeller. SOS1120 Kvantitativ metode. Årsaksmodeller. Forelesningsnotater 8. forelesning høsten 2005
SOS1120 Kvantitativ metode 3. Multidimensjonale tabeller Forelesningsnotater 8. forelesning høsten 2005 Per Arne Tufte Hva skjer når vi inkluderer flere uavhengige variabler i en tabellanalyse? Årsaksmodeller
DetaljerHva er evidens? Eva Denison
Hva er evidens? Eva Denison Agenda Begreper Kunnskap Evidens Forskning «Kvalitet» hos evidens Bruk av evidens i folkehelse Gruppeoppgave 5 minutter Hva betyr «kunnskap» og «evidens» for deg i din arbeidshverdag?
DetaljerKræsjkurs i STAT101. Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen:
Kræsjkurs i STAT101 Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen: Legg vekt på å forstå hva formlene brukes til, det vil si når, og hvordan? Lær sammenhengen mellom fordelingene og tema i
DetaljerKomplekse intervensjoner Metodiske utfordringer. Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune
Komplekse intervensjoner Metodiske utfordringer Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune DISPOSISJON Intervensjonsforskning og helsefag Komplekse intervensjoner Metodiske
DetaljerForkaste H 0 "Stikkprøven er unormal" Akseptere H 0 "Stikkprøven er innafor normalen" k kritisk verdi. Utgangspunkt for H 0
* 6.2. Hypotesetest i normalfordeling med kjent σ v.h.a. kritisk verdi (fra i går) Overordnet mål med hypotesetest i normalfordeling: vurdere en påstand om µ ("er den påståtte verdien for µ riktig, eller
DetaljerProsjektbeskrivelsen består av
Kvantitative hovedoppgaver: prosjektbeskrivelsen og litt om metode og utforming Knut Inge Fostervold Prosjektbeskrivelsen består av Vitenskapelig bakgrunn og problemformulering (ca 2 sider) Design og metode
DetaljerProsjektbeskrivelsen består av
Kvantitative hovedoppgaver: prosjektbeskrivelsen og litt om metode Knut Inge Fostervold Prosjektbeskrivelsen består av Vitenskapelig bakgrunn og problemformulering (ca 2 sider) Design og metode (ca 2-3
DetaljerSTUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl
STUDIEÅRET 2012/2013 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 27. august 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden
DetaljerEksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi
Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 08.12.2014 Eksamenstid (fra-til): 09:00 13:00
DetaljerIntroduction to the Practice of Statistics
David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 3: Producing Data Copyright 2005 by W. H. Freeman and Company Produsere data Kap 1: Utforske gitte data
DetaljerForelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling
Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling
DetaljerKontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerEksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi
Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato:15. desember 2016 Eksamenstid:
DetaljerSupplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013
1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for
DetaljerSensorveiledning SOS1120 vår
Sensorveiledning SOS1120 vår 2003 1 Oppgave 1: a) MÅL: Test av evne til å vurdere samsvaret (validiteten) mellom en operasjonell definisjon og en teoretisk variabel. Spørsmålet måler et sentralt aspekt
DetaljerOppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
DetaljerAnalyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger
Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives
Detaljer2. Forskningsdesign og sentrale begreper. I dag. Forskningsdesign: Valg i forskningsprosessen. MEVIT 2800 25. januar 2011.
2. Forskningsdesign og sentrale begreper MEVIT 2800 25. januar 2011 Tanja Storsul I dag Forskningsdesign Enheter, variabler, verdier Reliabilitet og validitet Univers, utvalg og generalisering Kvalitative
DetaljerOppgåver Oppgåvetype Vurdering Status. 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert
PSYK113 0 Innføring i metode Kandidat 142 Oppgåver Oppgåvetype Vurdering Status Praktisk informasjon Dokument Ikke vurdert Levert 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert 2 DEL 2 Metode
DetaljerEcon 2130 uke 16 (HG)
Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling
Detaljerβ(µ) = P(akseptere H 1 µ)
Sentrale begreper for hypotesetesting Begrep Nullhypotesen H 0 Definisjon/forklaring Utrykker "status quo"/"situation normal"/"ting er slik produsenter påstår"/"alt er greit" Signifikansnivå α Sannsynligheten
DetaljerTema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014
Kvalitativ og kvantitativ forskningsmetode IA mandag 5/9-2014 Johan Håkon Bjørngaard, Professor Institutt for samfunnsmedisin johan.h.bjorngaard@ntnu.no Name, title of the presentation Forskningsmetode
DetaljerFra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: Signifikansnivå α. evt.
Fra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: H 0 : µ = µ 0 H 1 : µ < µ 0 eller µ > µ 0 Signifikanssannsynlighet p Angir sannsynligheten for å få en X som er
DetaljerGrunnleggende statistikk. Eva Denison 25. Mai 2016
Grunnleggende statistikk Eva Denison 25. Mai 2016 Agenda Hva er statistikk, og hvorfor trenger vi det? Beskrivende statistikk Statistisk analyse Meta-analyse Hva er statistikk? En måte å kvantitativt beskrive
DetaljerRegional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU
Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013 Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Effektiv forskning Dette møtet skal handle om å gjøre forskningsarbeidet vårt effektivt
DetaljerUtvalgsstørrelse, styrke
Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,
DetaljerEKSAMEN 4016/4016N VITENSKAPSTEORI OG NATURSYN. Tid : 1 time (9-10)
1 Høgskolen i Telemark EKSAMEN 4016/4016N VITENSKAPSTEORI OG NATURSYN 11.02.2014 Tid : 1 time (9-10) Målform : Sidetall : Hjelpemiddel : Merknader: Vedlegg : Bokmål 5 sider med forsiden Ingen Det skal
DetaljerMer om hypotesetesting
Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen
DetaljerOppgaver til Studentveiledning 3 MET 3431 Statistikk
Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011
DetaljerH 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting
Hypotesetesting H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Rettsvesen hypotese Tiltalte er uskyldig inntil det motsatte er bevist. Hypoteser H 0 : Tiltalte er uskyldig H 1 :
DetaljerOppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
Detaljer1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet
1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe
DetaljerSOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005
SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000
DetaljerHypotesetesting av λ og p. p verdi.
Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerKurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis. Hege Kornør og Ida-Kristin Ørjasæter Elvsaas
Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis 16.mars 2007 Hege Kornør og Ida-Kristin Ørjasæter Elvsaas Nasjonalt kunnskapssenter for helsetjenesten
DetaljerDenne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
DetaljerUtfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
DetaljerOppgåver Oppgåvetype Vurdering Status. 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert
PSYK113 0 Innføring i metode Kandidat 123 Oppgåver Oppgåvetype Vurdering Status Praktisk informasjon Dokument Ikke vurdert Levert 1 DEL 1 Vitenskapsteori Skriveoppgave Manuell poengsum Levert 2 DEL 2 Metode
Detaljeri x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
DetaljerInferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
Detaljer