SIF5005 våren 2003: Maple-øving 2

Størrelse: px
Begynne med side:

Download "SIF5005 våren 2003: Maple-øving 2"

Transkript

1 SIF55 våren 3: Maple-øving Løsningsforslag. Oppgave : Funksjoner, partiellderiverte, gradienter Først tegner vi funksjonen fra oppgave 8 i hjemmeøving : > f:=(,)->ep(-^)*(^+); f := (, ) e ( ) ( + ) > plot3d(f(,),=-..,=-..); Og så den andre funksjonen det ble spurt om: > f:=(,)->^3-*^+^3; > D[](f); > D[](f); f := (, ) (, ) 3 (, ) + 3 > region:==-..,=-..: > plot3d(f(,),region); fplot:=%:

2 Både funksjonen og de to partiellderiverte i ett plott: > plots[displa3d]( > fplot, > plot3d(d[](f)(,),region), > plot3d(d[](f)(,),region));

3 Kan du se hvilken som er hvilken av dem? (Nei, det er ikke lett!) Det blir litt lettere om vi fargelegger de deriverte (og skalerer dem ned litt): > plots[displa3d]( > fplot, > plot3d(.*d[](f)(,),region,color=red), > plot3d(.*d[](f)(,),region,color=blue)); Men me lettere blir det å se på konturplott og gradienter: > plots[contourplot](f(,),region,filled=true,levels=); > fcplot:=%:

4 > plots[gradplot](f(,),region); fgplot:=%: > plots[displa](fcplot,fgplot,scaling=constrained);

5 Vi kan til og med kombinere todimensjonale konturplott med tredimensjonale bilder: > plan:=plottools[transform]((,)->[,,]): > plots[displa3d](fplot,plan(fcplot),plan(fgplot),scaling=constrain > ed);

6 Oppgave : Fra hjemmeøving 3 Oppgave 6: > f:=(,)->-^3+^+3*-^*+^/; f := (, ) Spør Maple om største og minste verdi for f, uten bibetingelser {} og der variablene er {,} (se hjelpesiden for etrema): > etrema(f(,),{},{,}, p ); { 3, 5 } Variabelen p inneholder de kritiske punktene (tre i tallet): > p; {{ = 3, = 9 }, { =, = }, { =, = }} 4 Her er en tegning, hvor vi skulle ha alle de kritiske punktene innenfor: > plots[contourplot](f(,),=-..,=-..3,scaling=constrained,contour > s=4,filled=true); 3 En kjapp liten liste over funksjonsverdiene i de kritiske punktene: > for in p do > print(subs(, f(,) =f(,))); > end; f( 3, 9 4 ) = 45 3 f(, ) = 5 f(, ) = 3 Ntt konturplott, hvor jeg selv velger nivåene slik at jeg får med detaljer rund de kritiske punktene:

7 > ct:=[seq(.*i,i=-..-),seq(.*i,i=..3)]: > plots[contourplot](f(,),=-..,=-..3,scaling=constrained,contours > =ct,filled=true,grid=[5,5]); 3 > plot3d(f(,),=-..,=-..3,aes=boed,view=-3..3,orientation=[5, > 7]); 3 3

8 3 Oppgave 3: Noen overraskelser med kritiske punkter 3. «One peak on a mountainside» Kilde: Eksamen 75 Matematikk B, > f:=(,)->3**ep()-^3-ep(3*): f(,) =f(,); f(, ) = 3 e 3 (3 ) e > etrema(f(,),{},{,}, p ); > p; {} {{ = RootOf(_Z + _Z + ), = ln( RootOf(_Z + _Z + ))}, { =, = }} RootOf betr en rot av polnomet gitt som argument. Vi vil gjerne ha det skrevet ut med rottegn: > convert({%},radical); {{{ =, = }, { = + I 3, = ln( I 3)}}} Bare ett reelt kritisk punkt, ser det ut til. Det andre er komplekst. > A=D[,](f)(,), B=D[,](f)(,), C=D[,](f)(,); > subs(%,a*c-b^); A = 6, B = 3, C = 6 7 Det er et lokalt maksimum. Globalt? Nei! Med = kan vi la gå mot og få vilkårlig store verdier. > region:==-...5, = : > plots[contourplot](f(,),region,grid=[5,5], > filled=true,contours=[seq(i,i=-8..-),seq(.*i,i=-9..9),seq(i,i=..5) > ]); > plot3d(f(,),region,grid=[5,5], > color=ep(f(,)/3.5),stle=patchcontour,aes=boed,view=-..5);

9 Det er en lokal fjelltopp på en fjellside. Når vi følger åsrggen ned fra fjelltoppen, kan vi gå uendelig langt uten å forlate denne åsrggen - og alltid nedoverbakke. Bakom er det en dal som alltid går oppover, men heller ikke den ender noe sted. 3.. Hvordan fant de på dette? Eksemplet er sikkert laget ved å starte med 3 3 3, som har et maksimum i [, ] og et sadelpunkt i origo. Deretter erstattes med e, som fltter sadelpunktet ut til det uendelig fjerne. > g:=(,)->3**-^3-^3; > plots[contourplot](g(,),=-..,=-..,filled=true,scaling=constra > ined,contours=4,grid=[5,5]); 3. Twin peaks, no saddle Jeg har hentet eksemplet fra en melding i Usenet: From: clear@zimmer.csufresno.edu (Sean Clear) Subject: Re: Crititical Points of Polnomials Newsgroups: sci.math.research Date: 7 Mar 998 :35:35 GMT Organization: California State Universit, Fresno Also see the problem "Two Mountains without a Valle", proposed and solved b Ira Rosenholz, Mathematics Magazine, Vol 6, No, Feb 987 p.48, referenced in Anton s Calculus book, which gives an analtic solution. > f:=(,)->-(^-)^-(^*--)^: f(,) =f(,); > etrema(f(,),{},{,}, p ); > p; f(, ) = ( ) ( ) {}

10 {{ =, = }, { =, = }} (En nærmere undersøkelse viser at de begge er lokale maksimumspunkter. Vel, det er forresten opplagt, for funksjonsverdien i de kritiske punktene er, mens funksjonen ellers alltid er negativ! Burde det ikke da være et sadelpunkt et sted? Nei! > region:==-..,=-..: > plot3d(f(,),region, > grid=[5,5],orientation=[5,7],view=-5.., > color=ep(f(,)),stle=patchcontour,scaling=unconstrained,aes=boxed) > ; Oppgave 4: Flater i kule- og slinderkoordinater 4. Kulekoordinater Kulekoordinater er i Maple gitt som (ρ, θ, φ). Man kan lage parametriske flater med disse koordinatene, eller plotte ρ som funksjon av θ og φ. Her er figuren til oppgave 5 fra hjemmeøving : > plot3d(-cos(phi),theta=..*pi,phi=..pi,coords=spherical, > aes=normal,scaling=constrained);

11 Kanskje litt lettere å se om man skjærer bort halve flaten: > plot3d(-cos(phi),theta=..pi,phi=..pi,coords=spherical, > aes=normal,scaling=constrained,orientation=[-3,55]); Og kanskje sammenligner med kardioiden, som foreslått:

12 > plot([-cos(theta),theta,theta=..*pi],coords=polar,scaling=constrai > ned); Slinderkoordinater Slinderkoordinater er i Maple gitt som (r, θ, z). Man kan lage parametriske flater med disse koordinatene, eller plotte r som funksjon av θ og z. Hvis vi vil tegne en flate der z er gitt som funksjon av r og θ, for eksempel z = r, må vi altså bruke parametrisk plott: > plot3d([r,theta,r^],r=...5,theta=..*pi,coords=clindrical,aes=n > ormal); > pplot:=%:

13 Dette var et rotasjonslegeme om z-aksen. Vil vi lage det samme rotasjonslegemet om -aksen eller -aksen er det bare å transformere plottet vi nettop laget: > zbtt:=plottools[transform]((,,z)->[z,,]): > zbtt:=plottools[transform]((,,z)->[,z,]): > plots[displa3d](zbtt(pplot),scaling=constrained,aes=normal);

14 Her kommer figuren til oppgave 4 fra hjemmeøving : > plots[displa3d](zbtt(pplot),zbtt(pplot),aes=normal,scaling=cons > trained);

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Teori. Eksempel 1 (E.P ) En funksjon av to variable z f x, y har kritisk punkt der hvor z. 0 samtidig. Kritiske punkter kan være et.

Teori. Eksempel 1 (E.P ) En funksjon av to variable z f x, y har kritisk punkt der hvor z. 0 samtidig. Kritiske punkter kan være et. Teori En funksjon av to variable z f x, y har kritisk punkt der hvor z x maksimalpunkt, sadelpunkt eller minimalpunkt. La a z x, b z x y, c z y, a c b Dersom , a < har

Detaljer

y(x + y) xy(1) (x + y) 2 = x(x + y) xy(1) (x + y) 3

y(x + y) xy(1) (x + y) 2 = x(x + y) xy(1) (x + y) 3 Løsning Øvingsoppgaver Funksjoner i ere variabler MET 1180 Matematikk April 017 Oppgave 1. (a) Vi har at f = 3 og f = +. Hessematrisen blir dermed 6 (b) Ved kvotientregelen har vi at f = f = og de andreordens

Detaljer

TMA4105 Matematikk 2 Vår 2008

TMA4105 Matematikk 2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

SIF5005 våren 2003: Maple-øving 3

SIF5005 våren 2003: Maple-øving 3 SIF55 våren 3: Maple-øving 3 Løsningsforslag. Oppsett Her importerer vi noen navn vi skal bruke senere, så vi slipper å si plots[spacecurve], etc. > with(plots,displa,displa3d,tubeplot,spacecurve,fieldplot,fieldplot3

Detaljer

cappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1

cappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1 7. Funksjoner av to variable Df FIGUR 7. FIGUR 7. FIGUR 7. Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 FIGUR 7. FIGUR 7.5 FIGUR 7.6 Matematikk for økonomi og samfunnsfag 9. utgave kapittel

Detaljer

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ = SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1. NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt

Detaljer

5 z ds = x 2 +4y 2 4

5 z ds = x 2 +4y 2 4 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

SIF5005 våren 2003: Maple-øving 1

SIF5005 våren 2003: Maple-øving 1 SIF våren : Maple-øving Løsningsforslag. Oppgave. Litt grunnleggende Maple Hvordan får du hjelp i Maple med en funksjon når du kjenner navnet? Det raskeste er slik: >?simplify Tips for å lese hjelpesider:

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 3 Løsningsforslag Øving 7 9.4.5 La A = (,, 3) og B = (,, ). Finn vektorrepresentasjonen til

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

x t + f y y t + f z , og t = k. + k , partiellderiverer vi begge sider av ligningen x = r cos θ med hensyn på x. Da får vi = 1 sin 2 θ r sin(θ)θ x

x t + f y y t + f z , og t = k. + k , partiellderiverer vi begge sider av ligningen x = r cos θ med hensyn på x. Da får vi = 1 sin 2 θ r sin(θ)θ x TMA4105 Matematikk 2 Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Alle oppgavenummer refererer til 8. utgave av Adams & Essex Calculus:

Detaljer

4 ( ( ( / ) 2 ( ( ( / ) 2 ( ( / 45 % + 25 ( = 4 25 % + 35 / + 35 ( = 2 25 % + 5 / 5 ( =

4 ( ( ( / ) 2 ( ( ( / ) 2 ( ( / 45 % + 25 ( = 4 25 % + 35 / + 35 ( = 2 25 % + 5 / 5 ( = MA Brukerkurs i matematikk B Eksamen 8. mai 6 Løsningsforslag Oppgave a) Viser at! # $ ved å vise at #!!# ' (. Nedenfor er matrisemultiplikasjonen #! vist (du må vise at!# gir det samme). ( + + + / ( +

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Velkommen til MA1103 Flerdimensjonal analyse

Velkommen til MA1103 Flerdimensjonal analyse Velkommen til MA1103 Flerdimensjonal analyse Foreleser: 14. januar 2013 Kursinformasjon Nettside: wiki.math.ntnu.no/ma1103/2013v/start Foreleser: (mariusi@math.ntnu.no) Start emne i epost med MA1103 Treffetid:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y

(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2 Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 5 1.3.5: Vi ønsker å finne de første ordens deriverte til funksjonen f definert ved f(, y) arctan(y/). Først finner vi den deriverte med ensyn på, ved å betrakte

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

MA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1

MA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1 MA000 Brukerkurs i matematikk B Eksamen 8. mai 06 Løsningsforslag Oppgave a) Viser at B = A ved å vise at AB = BA = I. Nedenfor er matrisemultiplikasjonen AB vist (du må vise at BA gir det samme). ( )

Detaljer

Notat 6 - ST februar 2005

Notat 6 - ST februar 2005 Notat 6 - ST1301 22. februar 2005 1 Instruksjoner som data I begynnelsen av kurset definerte vi data som informasjon uttrykkt i et programmeringsspråk. Slike data kan være av ulik type, f.eks. enkle skalarer

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

Løsningsforslag for MAT-0001, desember 2009, UiT

Løsningsforslag for MAT-0001, desember 2009, UiT Løsningsforslag for MAT-1, desember 29, UiT av Kristian Hindberg Oppgave 1 a) Bestem grenseverdien e x 1 x lim x x 2 e x 1 x lim x x 2 = lim x e x 1 2x e = x lim x 2 = 1 2 b) Finn det ubestemte integralet

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

FYS1120 Elektromagnetisme - Ukesoppgavesett 2

FYS1120 Elektromagnetisme - Ukesoppgavesett 2 FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene

Detaljer

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A = Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl 400-900 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = 9 6 7

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for

Detaljer

Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0

Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0 Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen

Detaljer

Løsningsforslag til eksamen i MAT1110, 13/6-07

Løsningsforslag til eksamen i MAT1110, 13/6-07 Løsningsforslag til eksamen i MAT, 3/6-7 Oppgaveteksten er gjengitt i kursiv Oppgave : a) Finn de stasjonære (kritiske) punktene til f(x, ) = x + 4x Løsning: Finner først de partiellderiverte: (x, ) x

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

Løsning IM

Løsning IM Løsning IM 6 Oppgave x + y Grensen lim er ubestemt da både teller og nevner blir Vi skal vise at grensen ( xy, ) (,) x + y ikke eksisterer og bruker rette linjer inn mot origo De enkleste linjene er koordinataksene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

z = f x, y for x, y 2 D (kartesiske koordinater) Maplekommando: plot3d f x, y, x = a..b, y = c..d.

z = f x, y for x, y 2 D (kartesiske koordinater) Maplekommando: plot3d f x, y, x = a..b, y = c..d. For å plotte flater gitt i sylinderkoordinater eller kulekoordinater skal vi bruke kommandoen på disse oppgavene. Denne kommandoen kan plotte flater gitt i ulike koordinatsystemer. Vi skal plotte flater

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

Høyskolen i Buskerud. fx ( ) x x 2 = x 1. c) Løs ulikheten ( x 3) ( x + 1)

Høyskolen i Buskerud. fx ( ) x x 2 = x 1. c) Løs ulikheten ( x 3) ( x + 1) Høyskolen i Buskerud Eksamen i matematikk. års grunnutdanning Mandag den. desember 00 OPPGVE. Deriver funksjonene a) f ( ) 5 + -- f ( ) 5 + -- 5 + -- b) f ( ) f ( ) ---------- ----------------------------------------

Detaljer

Eksamen i MAT1100 H14: Løsningsforslag

Eksamen i MAT1100 H14: Løsningsforslag Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):

Detaljer

Eksempel: s d taylor sin x, x = 0, 9

Eksempel: s d taylor sin x, x = 0, 9 Maple kan selv konstruere taylorpolynomer til en gitt funksjon om et gitt punkt. Kommandoen er taylor der vi må taste inn funksjonen, punktet a vi finner polynomet om, og hvilken orden n vi vil at polynomet

Detaljer

FYS1120 Elektromagnetisme, Ukesoppgavesett 1

FYS1120 Elektromagnetisme, Ukesoppgavesett 1 FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b: OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

ECON2200: Oppgaver til for plenumsregninger

ECON2200: Oppgaver til for plenumsregninger University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

x 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2,

x 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2, TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 Alle oppgavenummer referer til 8. utgave av Adams & Esse Calculus: A Complete

Detaljer

Ma Flerdimensjonal Analyse Øving 11

Ma Flerdimensjonal Analyse Øving 11 Ma3 - Flerdimensjonal Analyse Øving Øistein Søvik 7.3. Oppgaver 5.3 5. Find the moment of inertie about the -axis. Eg the value of δ x + y ds, for a wire of constant density δ lying along the curve : r

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

1 Mandag 8. februar 2010

1 Mandag 8. februar 2010 1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner

Detaljer

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A = Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 0 y = 4 0 4 0 z 0 Deretter

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2015

MA1102 Grunnkurs i Analyse II Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i Analyse II Vår 215 Løsningsforslag Øving 5 11.3:3 f n (x) = 2n+1 x? = x 1 2n+1. (Det er muligens en forskjell

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk Høst Løsningsforslag Øving Review Exercise 6, side 86 Vi lar fx sin x. Taylor-polynomet av grad 6 til f om x

Detaljer

SIF 5005 Matematikk 2 våren 2001

SIF 5005 Matematikk 2 våren 2001 IF 55 Matematikk våren Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Diverse løsningsforslag 75 Matematikk B, mai 994 (side 77 79) 6 a) Vi finner en potensialfunksjon φ(x,

Detaljer

Løsning til utvalgte oppgaver fra kapittel 12 (15).

Løsning til utvalgte oppgaver fra kapittel 12 (15). Løsning til utvalgte oppgaver fra kapittel (5) Oppgave 7 ( 5) Vi skal btte integrasjonsrekkefølgen i integralet dd Når vi btter integrasjons- rekkefølgen må integrasjonsområdet beskrives på ntt Dobbelintegralet

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

Ma Flerdimensjonal Analyse II Øving 9

Ma Flerdimensjonal Analyse II Øving 9 Ma23 - Flerdimensjonal Analyse II Øving 9 Øistein Søvik 2.3.22 Oppgaver 4.5 Evaluate the triple integrals over the indicated region. Be alert for simplifications and auspicious orders of integration 3.

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0

Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0 Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0 = y 0 der F x, y står for et uttrykk i x og y. De er iterative metoder, så for - løkker egner seg ypperlig i denne sammenengen.

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende

Detaljer

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii) 1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.

Detaljer

Funksjoner (kapittel 1)

Funksjoner (kapittel 1) Ukeoppgaver, uke 34 og 35, i Matematikk 0, Funksjoner og grenser. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 34 og 35 Funksjoner (kapittel ) Oppgave Figuren til øyre viser

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN

Høgskolen i Agder Avdeling for realfag EKSAMEN Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer