MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MATEMATIKK (MAT1005) Sentralmål / Spredningsmål"

Transkript

1 ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene kan benyttes) Alt arbeid i regneark (Excel) og i graftegner (GeoGebra) skal limes inn i et tekstdokument (Word). Tekstdokumentet skal ha filnavn lik elevens navn. I tekstdokumentets topptekst skal elevens navn, klasse og dato skrives inn. Tekstdokumentet skal leveres på ITSLEARNING. Total poengsum: 32 poeng Karakter 2: -p Karakter 3: -p Karakter 4: -p Karakter 5: -p Karakter 6: -p Poeng i oppgaven er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at lærer vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler forklarer fremgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske fremstillinger vurderer om svar er rimelige Læreplanmål Planlegge, gjennomføre og vurdere statistiske undersøkelser Beregne og drøfte sentralmål og spredningsmål Gruppere data og beregne sentralmål for et gruppert datamateriale Bruke regneark i statistiske beregninger og presentasjoner

2 KJENNETEGN PÅ GRAD AV MÅLOPPNÅELSE Lav grad Karakter 2 Middels grad Karakter 3/4 Høy grad Karakter 5/6 Begreper, forståelse og ferdigheter: Eleven forstår en del grunnleggende begreper. Eleven behersker en del enkle, standardiserte framgangsmåter. Eleven forstår de fleste grunnleggende begreper og viser eksempler på forståelse av sammenhenger i faget. Eleven behersker de fleste enkle, standardiserte framgangsmåter, har middels god regneteknikk og bruk av matematisk formspråk, viser eksempler på logiske resonnementer og bruk av ulike matematiske representasjoner. Eleven forstår alle grunnleggende begreper, kombinerer begreper fra ulike områder med sikkerhet og har god forståelse av dypere sammenhenger i faget. Eleven viser sikkerhet i regneteknikk, logiske resonnementer, bruk av matematisk formspråk og bruk av ulike matematiske representasjoner. Problemløsning: Eleven viser eksempler på å kunne løse enkle problemstillinger med utgangspunkt i tekster, figurer og praktiske og enkle situasjoner. Eleven klarer iblant å planlegge enkle løsningsmetoder eller utsnitt av mer kompliserte metoder. Eleven løser de fleste enkle og en del middels kompliserte problemstillinger med utgangspunkt i tekster, figurer og praktiske situasjoner, og viser eksempler på bruk av fagkunnskap i nye situasjoner. Eleven klarer delvis å planlegge løsningsmetoder i flere steg og å gjøre fornuftige antakelser. Eleven utforsker problemstillinger, stiller opp matematiske modeller og løser oppgaver med utgangspunkt i tekster, figurer og nye og komplekse situasjoner. Eleven viser sikkerhet i planlegging av løsningsmetoder i flere steg og formulering av antakelser knyttet til løsningen, viser kreativitet og originalitet. Eleven kan avgjøre om svar er rimelige i en del enkle situasjoner. Eleven viser eksempler på bruk av hjelpemidler knyttet til enkle problemstillinger. Eleven kan ofte vurdere om svar er rimelige. Eleven bruker hjelpemidler på en hensiktsmessig måte i en del ulike sammenhenger. Eleven viser sikkerhet i vurdering av svar, kan reflektere over om metoder er hensiktsmessige. Eleven viser sikkerhet i vurdering av hjelpemidlenes muligheter og begrensninger, og i valg mellom hjelpemidler. Eleven kan bruke hjelpemidler til å se en del enkle mønstre. Eleven klarer delvis å bruke digitale verktøy til å finne matematiske sammenhenger. Eleven kan bruke digitale verktøy til å finne matematiske sammenhenger, og kan sette opp hypoteser ut fra dette. Kommunikasjon: Eleven presenterer løsninger på en enkel måte, for det meste med uformelle uttrykksformer. Eleven presenterer løsninger på en forholdsvis sammenhengende måte med forklarende tekst i et delvis matematisk formspråk. Eleven presenterer løsninger på en oversiktlig, systematisk og overbevisende måte med forklarende tekst i matematisk formspråk. Karakteren 1 uttrykker svært lav kompetanse i faget

3 DEL 1 (UTEN HJELPEMIDLER) 30 minutter Oppgave 1 (6 poeng) I kiosken på senteret ble det notert hvor mye hver av de syv første kundene betalte for varene de kjøpte. Dette var resultatet: 20, 60, 50, 45, 55, 20, 30 a) Finn variasjonsbredden. Variasjonsbredden er forskjellen mellom høyeste og laveste verdi. Varasjonsbredden = Høyeste verdi Laveste verdi = = 40 Variasjonsbredden er 40. b) Finn medianen. Median som også kalles Q 2 ligger midt i tallmaterialet. Vi ordner tallene: 20, 20, 30, 45, 50, 55, 60 og ser at 45 er det midtre tallet. Medianen er 45. c) Hvor mye brukte kundene i gjennomsnitt. Vi finner gjennomsnittet ved å legge sammen alle verdiene og deler på antallet observasjoner d) Finn nedre kvartil. = Lager en tabell over resultatene. NEDRE HALVDEL = 40 Gjennomsnittet er 40. ØVRE HALVDEL nedre kvartil median øvre kvartil Q 1 Q 2 Q 3 Nedre kvartil som også kalles Q 1 ligger midt i den nedre halvdel av observasjonene. Nedre kvartil er 20. e) Finn øvre kvartil. Se tabellen i oppgave d). Øvre kvartil som også kalles Q 3 ligger midt i den øvre halvdel av observasjonene. Øvre kvartil er 55. f) Finn kvartilbredden. Kvartilbredden = Øvre kvartil Nedre kvartil = = 35 Kvartilbredden er 35.

4 Oppgave 2 (6 poeng) Histogrammet viser aldersfordelingen i en sjakklubb. y Alder x Intervall (Alder) Frekvens Intervallbredde Søylehøyde [ a, b f b a f b a [00, [20, [30, [40, [50, N = 020 S = 280 a) Se på histogrammet, tegn av tabellen og fyll inn verdiene. Intervall (Alder) Frekvens Intervallbredde Søylehøyde [ a, b f b a f b a [00, [20, [30, [40, [50, N = 20 S = 280 b) Hvor mange medlemmer har sjakklubben? Frekvensen (f) viser hvor mange medlemmer sjakklubben har i de ulike aldersintervallene. Vi legger sammen frekvensene og får n = 20. Sjakklubben har 20 medlemmer. c) Finn gjennomsnittsalderen til medlemmene i sjakklubben. Intervall (Alder) Frekvens Midtpunkt Sum (S) [ a, b f x m f x m [00, [20, [30, [40, [50, N = 20 S = 690 Gjennomsnittsalderen i sjakklubben = S N = = 34, 5 år

5 DEL 2 (MED HJELPEMIDLER) 60 minutter Oppgave 4 (10 poeng) Her er karakterfordelingen i matematikkfaget for alle elever som har matematikk 2P-Y i Norge, skoleåret 2015/2016. Karakter Frekvens Kilde: statistikkportalen.udir.no a) Hva er typetallet? Typetallet er det tallet som forekommer flest ganger. Vi ser at frekvensen for karakter 2 er Typetallet er 2. b) Finn gjennomsnittet. Karakter x Frekvens f f x N = S = Gjennomsnittskarakter = Summen av karakterer Antall studenter = S N = = 3,194 3,

6 c) Finn variansen. Karakter x Frekvens f f Kvadratisk avvik f (x g) (6 3,194) 2 = 400 ( 2,806) , (5 3,194) 2 = 1557 ( 1,806) , (4 3,194) 2 = 2168 ( 0,806) , (3 3,194) 2 = 2704 ( 0,194) , (2 3,194) 2 = 2946 ( 1,194) , (1 3,194) 2 = 0747 ( 2,194) ,79 N = A 17533,71 Vi finner da at summen av de kvadratiske avvikene (A) er = 17533, Variansen = A = , 67 A er summen av de kvadratiske avvikene N N er antall observasjoner d) Finn standardavviket. standardavviket = variansen = A N = , 29 e) Framstill datamaterialet i tre ulike diagrammer: Sirkel, Stolpe og Linjediagram.

7 Oppgave 5 (10 poeng) Tabellen viser omtrent hvor mange personer i Norge som betalte formueskatt i Alder Frekvens [17, [28, [41, [51, [61, [71, Kilde: ssb.no a) Hvor mange personer betalte formueskatt? Alder Frekvens [17, [28, [41, [51, [61, [71, N = Vi legger sammen frekvensen og får N = Det betyr at personer betalte formueskatt i b) Hva er gjennomsnittsalderen til en person som betaler formueskatt? Utvider tabellen med Midtpunkt og Sum i tabellen. Intervall (Alder) Frekvens (f) Midtpunkt Sum (S) x m f x m [17, , [28, , [41, , [51, , [61, , [71, , N = S = Gjennomsnittsalder = , 61 år

8 c) Finn medianen i det gruppedelte materialet ved regning. Legger til Kumulativ frekvens i tabellen. Intervall (Alder) Frekvens (f) Kumulativ frekvens [17, [28, [41, [51, [61, [71, Vi har observasjoner, medianen i datamaterialet er da observasjon nummer: = Observasjon nummer ligger i intervallet [61, 70 som har kumulativ frekvens = I dette intervallet har vi da observasjoner (fra og med og til og med ). Observasjon nummer = i intervallet [61, 70 blir da «medianalder». "Medianalder" = 61 år , 7964 år 9 fordi intervallet har bredde = 9 d) Finn medianen i det gruppedelte materialet grafisk ved hjelp av GeoGebra. Utvider tabellen med Relativ kumulativ frekvens. Intervall (Alder) Frekvens (f) Kumulativ frekvens Relativ kumulativ frekvens [17, ,0103 [28, ,0631 [41, ,1923 [51, ,4094 [61, ,7011 [71, ,0000 1: Kopierer den kumulative frekvensen og limer denne inn vertikalt i Regneark. 1: Fører også inn 17 og 0 i linje 1 i regneark. 2: Høyreklikk i det merkede området i Regneark og velg: Lag Polylinje 3: 4: Lag ved å velge og så og klikk i skjæringen.

9 sier oss at når vi er midt i tallmaterialet (0.5) så er den grafiske medianen 64,1059 år.

10 e) Lag et histogram i GeoGebra som viser fordelingen. Intervall (Alder) Frekvens Intervallbredde Søylehøyde [a, b f b a f b a [17, ,40 [28, ,75 [41, ,33 [51, ,89 [61, ,67 [71, ,55 NB! Husk at GeoGebra ikke vil ha komma (, ) i Regneark, men punkt (. ) Merk intervallene (A1 til A7) i GeoGebra, høyreklikk og velg Lag Liste Merk intervallene (B1 til B6) i GeoGebra, høyreklikk og velg Lag Liste Vi har nå laget to lister, Liste1 og Liste2. Nederst, i kommandofeltet : Vi får da dette resultatet:

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene kan benyttes)

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene

Detaljer

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p 13.03.2017 MATEMATIKK (MAT1005) Funksjoner og vekst DEL 1 (UTEN HJELPEMIDLER) 40 minutter DEL 2 (MED HJELPEMIDLER) 50 minutter (Del 1 leveres inn etter nøyaktig 40 minutter og før hjelpemidlene kan benyttes)

Detaljer

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål 04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 leveres inn etter nøyaktig

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 06.02.2017 MATEMATIKK (MAT1005) Rette linjer / Lineære funksjoner DEL 1 (UTEN HJELPEMIDLER) 50 minutter DEL 2 (MED HJELPEMIDLER) 40 minutter (Del 1 leveres inn etter nøyaktig 50 minutter og før hjelpemidlene

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål 04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 må leveres inn før hjelpemidlene

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 07.0.017 MATEMATIKK (MAT100) Sannsynlighetsregning DEL 1 (UTEN HJELPEMIDLER) 0 minutter DEL (MED HJELPEMIDLER) 0 minutter (Del 1 leveres inn etter nøyaktig 0 minutter og før hjelpemidlene kan benyttes)

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål

Detaljer

Sensorveiledning Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene

Sensorveiledning Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene Sensorveiledning 01.08.2016 Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene 1 Om sensorveiledningen Sensorveiledningen inneholder kommentarer til enkeltoppgaver og

Detaljer

Vurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene

Vurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene Utdanningsavdelingen Vurderingsveiledning Muntlige eksamener Lokalt gitt eksamen Matematikk Felles for utdanningsområdene Karakterer i fag 4-4. Karakterer i fag Det skal nyttes tallkarakterer på en skala

Detaljer

Vurderingsveiledning

Vurderingsveiledning Lokalt gitt skriftlig eksamen i MAT1001 Matematikk 1P-Y vår 017 Eksamensmodell Eksamen varer i 4 timer og består av to deler. Eksamensordning Eksamen har ingen forberedelsesdel. Del 1 og Del av eksamen

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Eksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Eksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Eksamensveiledning for elever og privatister i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for elever og privatister. Den tar utgangspunkt

Detaljer

Statistikk. Forkurs 2017

Statistikk. Forkurs 2017 Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger

Detaljer

MATEMATIKK (MAT1005) Tabeller / Diagrammer

MATEMATIKK (MAT1005) Tabeller / Diagrammer 04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum: 40

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser

Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser 48 3 Statistikk Mål for opplæringen er at eleven skal kunne planlegge, gjennomføre og vurdere statistiske undersøkelser beregne kumulativ hyppighet, finne og drøfte sentralmål og spredningsmål representere

Detaljer

Forhåndssensurrapport

Forhåndssensurrapport Forhåndssensurrapport 31.05.2016 MAT0010 Matematikk Bokmål Forhåndsensur for sentralt gitt skriftlig eksamen MAT0010 Matematikk Våren 2016 Forhåndssensuren ble arrangert i Oslo 30. mai og 31. mai 2016.

Detaljer

Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y

Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y 2013 Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y Vest-Agder fylkeskommune Vurderingsveiledning i matematikk Vg1P-Y og Vg1T-Y Vurderingsveiledning

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

LOKALT GITT EKSAMEN MUNTLIG EKSAMEN

LOKALT GITT EKSAMEN MUNTLIG EKSAMEN LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte

Detaljer

Sensorveiledning

Sensorveiledning Sensorveiledning 16.05.2017 MAT0010 Matematikk Bokmål Formålet med sensorveiledningen Formålet med denne sensorveiledningen er å sikre så lik vurdering og så rettferdig sensur som mulig for alle elever

Detaljer

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse Fag: Matematikk Skoleår: 2008/ 2009 Klasse: 9 Lærer: Miriam Vikan Oversikt over læreverkene som benyttes, ev. andre hovedlæremidler: Faktor 2 Vurdering: a) Karakteren 1 uttrykker at eleven har svært lav

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Eksamensveiledning MAT1001

Eksamensveiledning MAT1001 Eksamensveiledning MAT1001 Gjelder for alle yrkesfaglige utdanningsprogram i Matematikk 1P-Y Gjelder fra våren 2017 Veiledningen inneholder informasjon om eksamen, beskrivelse av mål og vurdering av. Målgruppen

Detaljer

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene

Detaljer

2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen

2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen 303 a For eksempel finner vi at den relative frekvensen for jenter med høyde 155 159 cm er 0,067 6,7 % 30 = =. Høyde i cm Antall Relativ (frekvens)

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Basisoppgaver til 2P kap. 3 Statistikk

Basisoppgaver til 2P kap. 3 Statistikk Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske

Detaljer

Lokal læreplan 9 trinn matematikk

Lokal læreplan 9 trinn matematikk Lokal læreplan 9 trinn matematikk Lærebok: Gruntal Antall uker Geometri i planet Gruntall 9 153-198 11 utføre, beskrive og grunngi geometriske konstruksjoner med passer og linjal (og dynamiske geometriprogram)

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015

Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015 Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015 Veiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratets veiledning

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Fra læreplan - formål, grunnleggende ferdigheter, hovedområder og kompetansemål

Fra læreplan - formål, grunnleggende ferdigheter, hovedområder og kompetansemål Fra læreplan - formål, grunnleggende ferdigheter, hovedområder og kompetansemål nasjonalt til årsplan - tema, handlingsmål og vurdering lokalt. http://www.udir.no/ Utdrag fra føremål med faget. Matematikk

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45

[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45 Nynorsk utgåve FAG - OG VURDERINGSRAPPORT [2016] FAG: Matematikk KLASSE/GRUPPE: 10. TALET PÅ ELEVAR: 45 SKULE: Lye ungdomsskule FAGLÆRAR: Jørn Serigstad For kommunane: Gjesdal Hå Klepp Sola Time Tema 1

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksempeloppgave REA3028 Matematikk S2. Bokmål

Eksempeloppgave REA3028 Matematikk S2. Bokmål Eksempeloppgave 2008 REA3028 Matematikk S2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Årsplan i matematikk ved Blussuvoll skole.

Årsplan i matematikk ved Blussuvoll skole. Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Forhåndssensurrapport

Forhåndssensurrapport Forhåndssensurrapport 31.05.2017 MAT0010 Matematikk Bokmål Formålet med fohåndssensurraporten Formålet med denne forhåndssensurrapporten er å sikre så lik vurdering og så rettferdig sensur som mulig for

Detaljer

Eksamen 19.05.2014. MAT0010 Matematikk Del 2. Badeland. Eratosthenes. Bokmål

Eksamen 19.05.2014. MAT0010 Matematikk Del 2. Badeland. Eratosthenes. Bokmål Eksamen 19.05.2014 MAT0010 Matematikk Del 2 Badeland Eratosthenes Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal du levere innen 2 timer. Del 2 skal du

Detaljer

Eksamen MAT0010 Matematikk Del 2. I trafikken. Geometri. Ada Lovelace. Bokmål

Eksamen MAT0010 Matematikk Del 2. I trafikken. Geometri. Ada Lovelace. Bokmål Eksamen 16.05.2017 MAT0010 Matematikk Del 2 I trafikken Geometri Ada Lovelace Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt. Del 1 og Del 2 skal deles ut samtidig.

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2017-2018 Side 1 av 8 Periode 1: UKE 33-39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere faste

Detaljer

Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co Side 1

Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co  Side 1 Repetisjon fra kapittel 2: Summere mange tall, funksjonen SUMMER() Regnearket inneholder en mengde innebygde funksjoner. Vi skal her se på en av de funksjonene vi oftest bruker. Funksjonen SUMMER() legger

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka

2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka P kapittel 4 Statistikk Løsninger til oppgavene i læreoka 4.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1

7. TRINN MATEMATIKK PERIODEPLAN 1 1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Hva måler nasjonal prøve i regning?

Hva måler nasjonal prøve i regning? Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

Kapittel 4. Statistikk

Kapittel 4. Statistikk Kapittel 4. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Forhåndssensurrapport MAT1005 Matematikk 2P-Y

Forhåndssensurrapport MAT1005 Matematikk 2P-Y Forhåndssensurrapport 03.06.2013 MAT1005 Matematikk 2P-Y 1 Om forhåndssensurrapporten Forhåndssensur Forhåndsensurmøte: 3. juni 2013 På forhåndssensurmøtet har oppgavene blitt gjennomgått, de foreløpige

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.

Detaljer

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven.

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven. Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

Oslo kommune Utdanningsetaten. Fef les heldagspraver 201s. Fag: Pravedag: Forberedelse. Matematikk 2P-Y 23. april 2015 I ngen forberedelsesdel

Oslo kommune Utdanningsetaten. Fef les heldagspraver 201s. Fag: Pravedag: Forberedelse. Matematikk 2P-Y 23. april 2015 I ngen forberedelsesdel Oslo kommune Utdanningsetaten Fef les heldagspraver 201s Fag: Pravedag: Forberedelse. Matematikk 2P-Y 23. april 2015 I ngen forberedelsesdel Informasjon om heldagspraven Prgvetid: Hjelpemidler p3 Oel t:

Detaljer

Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn.

Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn. Statistikk Innledning Begrepet statistikk skriver seg fra tiden da en stat samlet inn opplysninger som myndighetene hadde bruk for. Opplysningene eller dataene som ble samlet inn, dreide seg for det meste

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3.1 a 25 5 8 12 Det var 12 elever som rukte 40 59 minutter til skolen. For eksempel finner vi at den relative frekvensen for elever med reisetid

Detaljer

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet)

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet) Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 3.11.011 MAT1015 Matematikk P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del

Detaljer

Eksamen. MAT1005 Matematikk 2P-Y Nynorsk/Bokmål

Eksamen. MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Eksamen 31.05.2017 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Hos tannlegen Hippokrates

Hos tannlegen Hippokrates Eksamen 21.05.2013 MT0010 Matematikk Hos tannlegen Hippokrates Del 2 X-Fighters Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal du levere innen 2 timer.

Detaljer

2P eksamen våren 2016

2P eksamen våren 2016 2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Eksamen. MAT1015 Matematikk 2P. Ny eksamensordning 27.05.2015. Del 1: 2 timar (utan hjelpemiddel) / 2 timer (uten hjelpemidler)

Eksamen. MAT1015 Matematikk 2P. Ny eksamensordning 27.05.2015. Del 1: 2 timar (utan hjelpemiddel) / 2 timer (uten hjelpemidler) Eksamen 7.05.015 MAT1015 Matematikk P Ny eksamensordning Del 1: timar (utan hjelpemiddel) / timer (uten hjelpemidler) Del : 3 timar (med hjelpemiddel) / 3 timer (med hjelpemidler) Minstekrav til digitale

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Prøveveiledning om vurdering av prøvebesvarelser

Prøveveiledning om vurdering av prøvebesvarelser Prøveveiledning om vurdering av prøvebesvarelser 2016 Matematikk 1P + 2P Sentralt gitt skriftlig prøve etter forkurs i lærerutdanningene Bokmål Innhold 1 Vurdering prøvemodell og vurdering av prøvebesvarelser

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Sandvika 12.september 2011 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Hovedpunkter: Praktisk regning dag 1 Læringsmiljø Elevers

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksempeloppgave 2 2009

Eksempeloppgave 2 2009 Eksempeloppgave 2 2009 MAT0010 Matematikk Elever (10. årstrinn) Eksamen våren 2009 Del 2 Eratosthenes Oljeplattform Bokmål Bokmål Eksamensinformasjon for Del 2 Eksamenstid: Hjelpemidler på Del 2: Bruk

Detaljer

RAMMER FOR MUNTLIG-PRAKTISK EKSAMEN I REALFAG ELEVER OG PRIVATISTER 2015

RAMMER FOR MUNTLIG-PRAKTISK EKSAMEN I REALFAG ELEVER OG PRIVATISTER 2015 RAMMER FOR MUNTLIG-PRAKTISK EKSAMEN I REALFAG ELEVER OG PRIVATISTER 2015 Fagkoder: NAT1001, NAT1002, NAT1003, REA3001, REA3003, REA3004, REA3006, REA3007, REA3008, REA3010, REA3011, REA3013 Årstrinn: Vg1,

Detaljer