Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p"

Transkript

1 MATEMATIKK (MAT1005) Rette linjer / Lineære funksjoner DEL 1 (UTEN HJELPEMIDLER) 50 minutter DEL 2 (MED HJELPEMIDLER) 40 minutter (Del 1 leveres inn etter nøyaktig 50 minutter og før hjelpemidlene kan benyttes) Alt arbeid i regneark (Excel) og i graftegner (GeoGebra) skal limes inn i et tekstdokument (Word) og leveres på Itslearning med filnavn lik elevens navn. I tekstdokumentets topptekst skal elevens navn, klasse og dato skrives inn. Total poengsum: 40 poeng Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p Poeng i oppgaven er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at lærer vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler forklarer fremgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske fremstillinger vurderer om svar er rimelige Læreplanmål Gjøre rede for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske eksempler, også digitalt Omsette mellom ulike representasjoner av funksjoner Gjøre målinger i praktiske forsøk og formulere matematiske modeller på grunnlag av observerte data Analysere praktiske problemstillinger knyttet til dagligliv, økonomi, statistikk og geometri, finne mønster og struktur i ulike situasjoner og beskrive sammenhenger mellom størrelser ved hjelp av matematiske modeller Bruke digitale verktøy i utforskning, modellbygging og presentasjon Bruke funksjoner til å modellere, drøfte og analysere praktiske sammenhenger

2 KJENNETEGN PÅ GRAD AV MÅLOPPNÅELE Lav grad Karakter 2 Middels grad Karakter 3/4 Høy grad Karakter 5/6 Begreper, forståelse og ferdigheter: Eleven forstår en del grunnleggende begreper. Eleven behersker en del enkle, standardiserte framgangsmåter. Eleven forstår de fleste grunnleggende begreper og viser eksempler på forståelse av sammenhenger i faget. Eleven behersker de fleste enkle, standardiserte framgangsmåter, har middels god regneteknikk og bruk av matematisk formspråk, viser eksempler på logiske resonnementer og bruk av ulike matematiske representasjoner. Eleven forstår alle grunnleggende begreper, kombinerer begreper fra ulike områder med sikkerhet og har god forståelse av dypere sammenhenger i faget. Eleven viser sikkerhet i regneteknikk, logiske resonnementer, bruk av matematisk formspråk og bruk av ulike matematiske representasjoner. Problemløsning: Eleven viser eksempler på å kunne løse enkle problemstillinger med utgangspunkt i tekster, figurer og praktiske og enkle situasjoner. Eleven klarer iblant å planlegge enkle løsningsmetoder eller utsnitt av mer kompliserte metoder. Eleven løser de fleste enkle og en del middels kompliserte problemstillinger med utgangspunkt i tekster, figurer og praktiske situasjoner, og viser eksempler på bruk av fagkunnskap i nye situasjoner. Eleven klarer delvis å planlegge løsningsmetoder i flere steg og å gjøre fornuftige antakelser. Eleven utforsker problemstillinger, stiller opp matematiske modeller og løser oppgaver med utgangspunkt i tekster, figurer og nye og komplekse situasjoner. Eleven viser sikkerhet i planlegging av løsningsmetoder i flere steg og formulering av antakelser knyttet til løsningen, viser kreativitet og originalitet. Eleven kan avgjøre om svar er rimelige i en del enkle situasjoner. Eleven viser eksempler på bruk av hjelpemidler knyttet til enkle problemstillinger. Eleven kan ofte vurdere om svar er rimelige. Eleven bruker hjelpemidler på en hensiktsmessig måte i en del ulike sammenhenger. Eleven viser sikkerhet i vurdering av svar, kan reflektere over om metoder er hensiktsmessige. Eleven viser sikkerhet i vurdering av hjelpemidlenes muligheter og begrensninger, og i valg mellom hjelpemidler. Eleven kan bruke hjelpemidler til å se en del enkle mønstre. Eleven klarer delvis å bruke digitale verktøy til å finne matematiske sammenhenger. Eleven kan bruke digitale verktøy til å finne matematiske sammenhenger, og kan sette opp hypoteser ut fra dette. Kommunikasjon: Eleven presenterer løsninger på en enkel måte, for det meste med uformelle uttrykksformer. Eleven presenterer løsninger på en forholdsvis sammenhengende måte med forklarende tekst i et delvis matematisk formspråk. Eleven presenterer løsninger på en oversiktlig, systematisk og overbevisende måte med forklarende tekst i matematisk formspråk. Karakteren 1 uttrykker svært lav kompetanse i faget.

3 DEL 1 (UTEN HJELPEMIDLER) 50 minutter Oppgave 1 (8 poeng) y R 6 5 a) Finn ligningen til de to linjene R og som er tegnet inn i koordinatsystemet. 4 3 Linje R synker med to enheter og krysser y-aksen i Ligningen til linje R : y = 2x x Linje stiger med en enhet og krysser y-aksen i Ligningen til linje : y = x b) Finn skjæringspunktet til de to linjene R og ved regning. etter R = : 2x + 4 = x + 1 2x x = 1 4 3x = 3 x = 1 etter x = 1 inn i : y = x + 1 = = 2 kjæringspunktet = (x, y) = (1, 2) c) En tredje linje skjærer y-aksen i 3, og er parallell med linje. Hva er ligningen til denne linjen? Når linjen er parallell er stigningen den samme som for linje. kjæringspunktet med y-aksen er 3, konstantleddet blir da 3. Ligningen blir da: y = x + 3 Linjen er tegnet rød og stiplet. d) En fjerde linje går gjennom punktene (-6, -6) og (6, 0). Hva er stigningstallet til denne linjen? y R Først lager vi punktene (-6, -6) og (6, 0) slik som vist i figuren. å trekker vi en linje mellom disse to punktene. Linjen er tegnet grønn. Vi ser at linjen stiger fra venstre mot høyre. Det betyr at stigningen er positiv (1, 2) x (6, 0) tigningstallet = y x = 1 2 eller 0, ( 6, 6) og (6, 0) = (x 1, y 1 ) og (x 2, y 2 ) (-6, -6) x y tigningstallet = y x = y 2 y 1 x 2 x 1 = 0 ( 6) 6 ( 6) = 6 12 = 1 2

4 Juli 2017 Juni 2017 Mai 2017 April 2017 Mars 2017 Februar 2017 Januar 2017 Desember November Oktober eptember August Juli Juni Mai April Mars Februar Januar Desember 2015 November 2015 Oktober 2015 eptember 2015 August 2015 Juli 2015 Oppgave 2 (14 poeng) Tabellen nedenfor viser hvor mye penger Geir hadde i en skoeske. y-aksen er her pengene i skoesken. Måned Mars Apr. Mai Juni Juli Aug. ep. Okt. Nov. Des. x y a) På det vedlagte rutearket: a) Lag et koordinatsystem og tegn inn punktene. a) Tegn så en rett linje gjennom det første og det siste punktet. Tegner inn punktene på det vedlagte rutearket. Her er punktene de svarte prikkene. Trekker en rett linje fra første til siste punkt. Her er denne linjen heltrukket rød g) f) e) b) Forklar hvorfor funksjonsuttrykket til linjen i oppgave a) er gitt ved formelen: f(x) = 2000x x betyr at pengebeholdningen øker med 2000 kr per måned. Økningen er lineær betyr at det på et gitt tidspunkt, i dette tilfelle mars, var kroner i skoesken. c) Finn stigningstallet. tigningstallet : y månedlig innskudd i skoesken = = 2000 = 2000 x antall måneder 1

5 d) Hva forteller stigningstallet oss? tigningstallet forteller oss hvor raskt linjen stiger (øker). I dette tilfelle 2000 per enhet og enheten er måned. Geir legger 2000 kroner i skoesken hver måned. e) Når begynte Geir å spare i skoesken? Oppgaven kan enten løses grafisk eller ved regning. Grafisk: om vist i figuren ved å forlenge den røde linjen. Finner da at denne er 0 i juli Ved regning: etter ligningen f(x) = 0 f(x) = 2000x = 2000x x = x = 8 om betyr 8 måneder før mars som er juli f) Hvor mange penger hadde Geir i skoesken, november 2015? Oppgaven kan enten løses grafisk eller ved regning. Grafisk: om vist i figuren ved å forlenge den røde linjen. Finner da at i november 2015 hadde Geir 8000 kroner i skoesken. Ved regning: etter ligningen x = 4 fordi november 2015 er 4 måneder før mars. y = 2000x y = y = 8000 om betyr at Geir hadde 8000 kroner i skoesken i november g) Når vil Geir ha i skoesken? Oppgaven kan enten løses grafisk eller ved regning. Grafisk: om vist i figuren ved å forlenge den røde linjen. Finner da at i mai 2017 har Geir kroner i skoesken. Ved regning: etter ligningen f(x) = = 2000x x = x = 14 om betyr at Geir har kroner i skoesken 14 måneder etter mars som er mai 2017.

6 DEL 2 (MED HJELPEMIDLER) 40 minutter Oppgave 3 (10 poeng) Det er populært å lease bil i Norge. Det vanligste er å betale et startbeløp og et månedlig beløp i tre år. I vårt tilfelle er startbeløpet kroner og det månedlige beløpet 2400 kroner. a) ett opp uttrykket for kostnaden y når du leaser en bil i x måneder. y = 2400x b) Tegn digitalt linjen som viser kostnaden, når x er mellom 0 og 36. I inntastingsfeltet:. Tegner da en funksjonslinje i GeoGebra. c) Finn digitalt hva kostnaden (y) er etter 24 måneder. I inntastingsfeltet:. Lager en hjelpelinje og legger til punktet A med. Leser av at A = (24, 97600) som betyr at etter 24 måneder er kostnaden kr d) Hvor mange måneder har du leaset bilen når du til sammen har betalt kroner I inntastingsfeltet:. Lager en hjelpelinje og legger til punktet B med. Leser av at B = (18, 83200) som betyr at du har betalt kroner etter 18 måneder. e) Hvor mye koster leasingen i gjennomsnitt per måned i hver av de 36 månedene? y = 2400x y = = Leasing koster i gjennomsnitt per måned: = 3511, 11 kroner

7 Oppgave 4 (8 poeng) Tabellen viser antall jordbruksbedrifter i Norge. År x y Kilde: ssb.no a) Finn ved lineær regresjon den linjen som passer best med verdiene i tabellen. GeoGebra: Merk området og: Lager den rød streken med lineær regresjon i GeoGebra:

8 b) Hva er ligningen til linjen? Leser av i GeoGebra: Ligningen til linjen er : y = 1017, 7455x , 8545 (har brukt 4 sifre etter komma) c) Hvor mange jordbruksbedrifter blir nedlagt per år? Hver år blir det i perioden 2006 til 2015 lagt ned 1017 jordbruksbedrifter i Norge. ( 1017,7455) d) Når vil det etter denne modellen ikke være flere jordbruksbedrifter igjen i Norge? Lager punktet K med der linjen krysser 0 og leser av : Det betyr at 50,0212 år etter 2006 vil det ikke være jordbruksbedrifter i Norge. Det vil si i 7. januar år 2056.

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene

Detaljer

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p 13.03.2017 MATEMATIKK (MAT1005) Funksjoner og vekst DEL 1 (UTEN HJELPEMIDLER) 40 minutter DEL 2 (MED HJELPEMIDLER) 50 minutter (Del 1 leveres inn etter nøyaktig 40 minutter og før hjelpemidlene kan benyttes)

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene kan benyttes)

Detaljer

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 07.0.017 MATEMATIKK (MAT100) Sannsynlighetsregning DEL 1 (UTEN HJELPEMIDLER) 0 minutter DEL (MED HJELPEMIDLER) 0 minutter (Del 1 leveres inn etter nøyaktig 0 minutter og før hjelpemidlene kan benyttes)

Detaljer

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål 04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 leveres inn etter nøyaktig

Detaljer

Sensorveiledning Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene

Sensorveiledning Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene Sensorveiledning 01.08.2016 Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene 1 Om sensorveiledningen Sensorveiledningen inneholder kommentarer til enkeltoppgaver og

Detaljer

Vurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene

Vurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene Utdanningsavdelingen Vurderingsveiledning Muntlige eksamener Lokalt gitt eksamen Matematikk Felles for utdanningsområdene Karakterer i fag 4-4. Karakterer i fag Det skal nyttes tallkarakterer på en skala

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

Vurderingsveiledning

Vurderingsveiledning Lokalt gitt skriftlig eksamen i MAT1001 Matematikk 1P-Y vår 017 Eksamensmodell Eksamen varer i 4 timer og består av to deler. Eksamensordning Eksamen har ingen forberedelsesdel. Del 1 og Del av eksamen

Detaljer

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål 04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 må leveres inn før hjelpemidlene

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Eksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Eksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Eksamensveiledning for elever og privatister i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for elever og privatister. Den tar utgangspunkt

Detaljer

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Rette linjer og lineære funksjoner

Rette linjer og lineære funksjoner Rette linjer og lineære funksjoner 3.1 Læreplanmål 1 4.1 Rette linjer 2 4.2 Digital graftegning 6 4.3 Konstantledd og stigningstall 13 4.4 Grafisk avlesning 19 4.5 Digital løsning av likninger 26 4.6 Funksjonsbegrepet

Detaljer

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y

Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y 2013 Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y Vest-Agder fylkeskommune Vurderingsveiledning i matematikk Vg1P-Y og Vg1T-Y Vurderingsveiledning

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

LOKALT GITT EKSAMEN MUNTLIG EKSAMEN

LOKALT GITT EKSAMEN MUNTLIG EKSAMEN LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 28.05.2008 REA3026 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Forhåndssensurrapport

Forhåndssensurrapport Forhåndssensurrapport 31.05.2016 MAT0010 Matematikk Bokmål Forhåndsensur for sentralt gitt skriftlig eksamen MAT0010 Matematikk Våren 2016 Forhåndssensuren ble arrangert i Oslo 30. mai og 31. mai 2016.

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

MATEMATIKK (MAT1005) Tabeller / Diagrammer

MATEMATIKK (MAT1005) Tabeller / Diagrammer 04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum: 40

Detaljer

Eksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning

Eksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning Eksempeloppgave 2014 MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2 Fotball Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) René Descartes II Minstekrav

Detaljer

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1010 Matematikk 2T-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del 2: 2 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Hos tannlegen Hippokrates

Hos tannlegen Hippokrates Eksamen 21.05.2013 MT0010 Matematikk Hos tannlegen Hippokrates Del 2 X-Fighters Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal du levere innen 2 timer.

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Eksamen REA3026 Matematikk S1

Eksamen REA3026 Matematikk S1 Eksamen 02.12.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse Fag: Matematikk Skoleår: 2008/ 2009 Klasse: 9 Lærer: Miriam Vikan Oversikt over læreverkene som benyttes, ev. andre hovedlæremidler: Faktor 2 Vurdering: a) Karakteren 1 uttrykker at eleven har svært lav

Detaljer

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015

Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015 Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015 Veiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratets veiledning

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Hjelpemidler på Del 1: Ingen hjelpemidler er tillatt, bortsett fra vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Hjelpemidler på Del 1: Ingen hjelpemidler er tillatt, bortsett fra vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Lokalt gitt eksamen vår 2016 Eksamen

Lokalt gitt eksamen vår 2016 Eksamen Lokalt gitt eksamen vår 2016 Eksamen MATEMATIKK 1TY for yrkesfag MAT 1006 8 sider inkludert forside og opplysningsside Side 1 av 8 Eksamenstid: Totalt fire klokketimer. Vi anbefaler at du ikke bruker mer

Detaljer

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål

Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Eksamensveiledning. Gjelder fra våren MAT 1006 Matematikk 1T-Y. Programområde: Alle

Eksamensveiledning. Gjelder fra våren MAT 1006 Matematikk 1T-Y. Programområde: Alle Eksamensveiledning Gjelder fra våren 2017 MAT 1006 Matematikk 1T-Y Programområde: Alle Veiledningen er utarbeidet for elever og privatister. Den tar utgangspunkt i Utdanningsdirektoratets veiledning for

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamensveiledning MAT1001

Eksamensveiledning MAT1001 Eksamensveiledning MAT1001 Gjelder for alle yrkesfaglige utdanningsprogram i Matematikk 1P-Y Gjelder fra våren 2017 Veiledningen inneholder informasjon om eksamen, beskrivelse av mål og vurdering av. Målgruppen

Detaljer

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Læreplanmål Matematikk S1 lage og tolke funksjoner som modellerer og beskriver praktiske problemstillinger i økonomi tegne grafen til polynomfunksjoner,

Detaljer

Lokalt gitt eksamen vår 2016 Eksamen

Lokalt gitt eksamen vår 2016 Eksamen Lokalt gitt eksamen vår 2016 Eksamen MATEMATIKK 1TY for yrkesfag MAT 1006 9 sider inkludert forside og opplysningsside Side 1 av 9 Eksamenstid: Totalt fire klokketimer. Vi anbefaler at du ikke bruker mer

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

Hjelpemidler på del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Hjelpemidler på del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Lokalt gitt eksamen vår 2016 Eksamen

Lokalt gitt eksamen vår 2016 Eksamen Lokalt gitt eksamen vår 2016 Eksamen MATEMATIKK 1TY for yrkesfag MAT 1006 7 sider inkludert forside og opplysningsside Side 1 av 7 Eksamenstid: Totalt fire klokketimer. Vi anbefaler at du ikke bruker mer

Detaljer

Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

NYE OPPGAVETYPER OG KRAV TIL FØRING

NYE OPPGAVETYPER OG KRAV TIL FØRING CAS, Graftegner og regneark på eksamen Eksamen 1P, 2P og 2P-Y 2 timer uten hjelpemidler 3 timer med hjelpemidler Noen oppgaver i del 2 kreves løst med digitale verktøy Aktuelle verktøy er graftegner og

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 0.05.016 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Heldagsprøve i R1-9.mai 2008 Adolf Øiens skole

Heldagsprøve i R1-9.mai 2008 Adolf Øiens skole Heldagsprøve i R1-9.mai 2008 Adolf Øiens skole Informasjon: Tid: Hjelpemidler: Framgangsmåte og forklaringer: Om vurderingen: 5 timer. Del 1 skal leveres etter 2 timer, dvs. kl.11.00. Del 2 skal leveres

Detaljer

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.

Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Sensorveiledning

Sensorveiledning Sensorveiledning 16.05.2017 MAT0010 Matematikk Bokmål Formålet med sensorveiledningen Formålet med denne sensorveiledningen er å sikre så lik vurdering og så rettferdig sensur som mulig for alle elever

Detaljer

Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen. MAT1017 Matematikk 2T Nynorsk/Bokmål

Eksamen. MAT1017 Matematikk 2T Nynorsk/Bokmål Eksamen 27.05.2016 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte. Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Stigningstall og konstantledd, løsningsforslag

Stigningstall og konstantledd, løsningsforslag Stigningstall og konstantledd, løsningsforslag Oppgave: Løsningsforslag Listen [1] Oppgave Oppgave 1 a) Skriv ned stigningstallet og konstantleddet i de tre funksjonene under. 1. f(x) = x + Stigningstall

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Eksempeloppgåve / Eksempeloppgave

Eksempeloppgåve / Eksempeloppgave Eksempeloppgåve / Eksempeloppgave Matematikk S1 April 007 Programfag i studiespesialiserande program / Programfag i studiespesialiserende program Elevar/Elever Privatistar/Privatister Oppgåva ligg føre

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

RAMMER FOR MUNTLIG-PRAKTISK EKSAMEN I REALFAG ELEVER OG PRIVATISTER 2015

RAMMER FOR MUNTLIG-PRAKTISK EKSAMEN I REALFAG ELEVER OG PRIVATISTER 2015 RAMMER FOR MUNTLIG-PRAKTISK EKSAMEN I REALFAG ELEVER OG PRIVATISTER 2015 Fagkoder: NAT1001, NAT1002, NAT1003, REA3001, REA3003, REA3004, REA3006, REA3007, REA3008, REA3010, REA3011, REA3013 Årstrinn: Vg1,

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer