Statistikk. Forkurs 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Statistikk. Forkurs 2017"

Transkript

1 Statistikk Forkurs 2017

2 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger på en hensiktsmessig måte. Tolke og trekke slutninger på grunnlag av disse opplysningene på en vitenskapelig forsvarlig måte.

3 Beskrivende statistikk (også kalt deskriptiv statistikk) Når vi jobber med beskrivende statistikk så lager vi tabeller og diagrammer samt finner sentral og spredningsmål. Observasjonene kan fremstilles enkeltvis og i klassedelt materiale.

4 Statistisk undersøkelse La oss se på en tenkt undersøkelse blant 20 tilfeldige lærerstudenter. Spørsmålet de fikk var følgende: Hvor mange arbeidstimer jobbet du med studiet i forrige uke?

5 Nummer Student Arbeidstimer Tabell 1 Tabellen viser ukentlige arbeidstimer for 20 tilfeldige studenter (i tabellen er studentene nummerert fra A til T). Eks. Forrige uke brukte student A 31 timer, mens student B brukte 24 timer på studiene. 1 A 31 2 B 24 3 C 38 4 D 42 5 E 29 6 F 31 7 G 41 8 H 42 9 I 0 10 J K L 4 13 M N O 6 16 P Q R 3 19 S T 40

6 Nummer Student Arbeidstimer 1 I 0 2 R 3 3 L 4 Tabell 2 Dataene ordnet etter Størrelse. Student I brukte 0 arbeidstimer, mens student M brukte 42 arbeidstimer. Totalt antall arbeidstimer for alle studentene var 598 timer. 4 O 6 5 B 24 6 E 29 7 A 31 8 F 31 9 S C K N P J Q T G D H M 42 Sum: 598

7 Ulike sentralmål Størrelser som angir den typiske (vanligste) verdien til variabelen i et tallmateriale. Gjennomsnitt (Middelverdi) Gjennomsnittsverdien er gjerne det sentralmålet som blir brukt mest. En størrelse som angir en typisk størrelse i et datamateriale. Når en beregner gjennomsnittet så tillegges alle verdiene like stor vekt, gjennomsnittet vil dermed bli påvirket av ekstreme verdier.

8 Gjennomsnitt - aritmetisk middelverdi Gjennomsnittet i vårt tenke datamateriale er: 598 : 20 = 29,9

9 Median Medianen er den verdien av en variabel (for eksempel lønn, alder, høyde) som ligger midt i det statistiske materialet, det vil si at like stort antall observasjoner i materialet ligger over medianen som under den. Hvis antall observasjoner er et oddetall, er medianen den midterste verdien. Når antall observasjoner er et partall så er det vanlig å definere medianen som gjennomsnittet av de to midterste verdiene. Medianen foretrekkes fremfor det gjennomsnitt når man ønsker å beskrive den sentrale tendensen i materialet og ikke vil gi ekstreme verdier stor vekt.

10 Median Det midterste tallet når dataene er ordnet etter størrelse. En finner det midterste tallet ved å regne ut (n+1)/2, der n er antall observasjoner i datamaterialet. I vårt eksempeler n = 20. Da er den midterste observasjonen (20+1) : 2=10,5 Hva gjør vi da? Da tar vi gjennomsnittet av observasjon nr. 10 og nr. 11: (38+38) : 2 = 38

11 Typetall Den verdien som har høyest frekvens. Dersom det er flere verdier som har høyest frekvens, har vi ikke typetall. Typetall betegnes som T. En fordel med typetallet er at det ikke blir påvirket av verdier som er lite typiske for datamaterialet.

12 Typetall Det utfallet som forekommer oftest/ hyppigst i et datamateriale. Fra tabell 2 ser vi at det er 38

13 Da har vi funnet ut at Gjennomsnitt = 29,9 Typetall = 38 Median = 38 Hvilke av sentralmålene gir oss best informasjon om datamaterialet?

14 Gjennomsnitt i et gruppert materiale Dersom datamateriale er gruppert og vi ikke lenger har tilgang til enkeltobservasjoner, kan vi finne tilnærmet verdi for gjennomsnittet. Vi går da ut fra dataene fordeler seg jevnt i hver klasse og bruker klassemidtpunktet som utgangspunkt. Summen av observasjoner i hver klasse er tilnærmet lik klassemidtpunktet multiplisert med frekvensen. Vi legger sammen resultatene for alle klassene og dividerer med antall observasjoner som før.

15 Diagrammer Hvilke diagrammer har vi?

16 Punktdiagram Tidsbruk 20 studenter Uketimer Studenter

17 Stolpediagram Tidsbruk studenter Uketimer Studenter

18 Stolpediagram, klassedelt materiale Tidsbruk studenter Antall studenter [0-5> [5-10> [10-15> [15-20> [20-25> [25-30> [30-35> [35-40> [40-45> Uketimer

19 Sektordiagram

20 Histogram Tabellen viser resultatene fra Alle som var lavere enn 165 cm er plassert i klassen [160,165> og alle som var 195 cm eller høyere er plassert i klassen [195, 200> Når en skal framstille fordelingen i et histogram. Må man dividerer relativ frekvens med klassebredde for å finne histogramhøyde. Arealet av hvert rektangel i histogrammet er lik den relative frekvensen (sannsynligheten) for klassen, og det samlede arealet av rektanglene er lik 1.

21 Histogram Histogram: Vi dividerer relativ frekvens med klassebredde for å finne histogramhøyde.

22 Spredningsmål Vi ønsker også å si noe om spredningen av datamaterialet. I en klasse er det 27 studenter. På en prøve fikk studentene disse karakterene: 3, 5, 4, 1, 3, 4, 2, 3, 1, 4, 1, 6, 3, 3, 2, 1, 5, 2, 4, 3, 4, 3, 2, 5, 2, 4, 5 Utfallsrom: De mulige verdiene en variabel kan få i et forsøk kaller vi utfallsrommet. I vårt eksempel er U = {1, 2, 3, 4, 5, 6}

23 Kvartilbredde Når vi skal dele datamateriale i kvartiler skal vi dele i fire(omtrent) like store deler. Eks. Vi ser på karakterfordelingen i en klasse med 27 elever og skriver karakterene i stigende rekkefølge: 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6 Første/nedre kvartil er karakteren 2, det er data nummer 7. Andre kvartil eller medianen er karakteren 3, det er data nummer 14. Tredje/øvre kvartil er karakteren 4, det er data nummer 21. Hvis datamateriale er et partall ligger medianen mellom to tall eks. 1, 1, 2, 2, 3 I 3, 4, 4, 4, 4 Blir første/nedre kvartil: 2 og tredje/øvre kvartil : 4

24 Kvartilbredde Kvartilbredden er tredje kvartil (75% ligger under denne grensen) første kvartil (25% ligger under denne grensen). I eksempelet vårt blir det da 4-2 = 2. Kvartilbredden forteller oss hvor stor spredning det er i den halvdelen av datamaterialet som ligger nærmest medianen. Hvis kvartilbredden er liten, betyr det at det er lite spredning i denne delen av datamaterialet. Hvis spredningen er stor, vil kvartilbredden være stor.

25 Variasjonsbredde. Dette spredningsmålet er definert som differansen mellom den høyeste og den laveste verdien i datamaterialet. Tegnet r benyttes for å symbolisere variasjonsbredden. r = x (maks) - x (min) Variasjonsbredden tar ikke hensyn til hvordan spredningen på verdiene er mellom minste og største verdi. Den tar bare hensyn til den største og minste verdien og er derfor følsom mot ekstreme verdier. I vårt eksempelet med karakterene vil variasjonsbredden være: r = 6 1 = 5

26 Standardavvik Standardavvik er et mye brukt mål for spredning. Standardavviket sier noe om hvor langt de enkelte verdiene i gjennomsnitt ligger fra gjennomsnittsverdien. For hver verdi regner vi ut avstanden til gjennomsnittsverdien. Hver avstand kvadreres, og så summeres alle kvadratene. Summen deles på antall verdier. Det tallet vi da får, kalles varians. Standardavviket er kvadratroten av variansen.

27 Standardavvik Steg for steg finner vi standardavviket ved å: 1.Regne ut gjennomsnittet. 2.Regne ut forskjellene mellom gjennomsnittet og hvert av tallene. 3.Kvadrere forskjellene. 4.Summere kvadratene av forskjellene. 5.Dividere summen med det totale antallet observasjoner. I punkt 1-5 har vi funnet variansen i datamatriaielet for å finne standardavviket må man ta kvadroten av variansen Differansen mellom et tall og gjennomsnittet er positivt eller negativt er kvadratet av differansen alltid positivt. Variansen direkte er ikke så lett å tolke, så etter å ha regnet den ut tar vi kvadratroten av variansen, og tallet vi får da kalles for standardavviket. Dette er et "forventet" avvik fra gjennomsnittet.

28 Frekvenstabell Begrepsavklaring Frekvens = antall observasjoner Relativ frekvens = andel, altså antall observasjoner innen en gitt grense sett i forhold til alle observasjoner. Summen av alle relative frekvenser i samme datamateriale er 1. Relativ kumulativ frekvens = oppsamlet relativ frekvens

29 Klassedelt materiale - frekvenstabell Timer Antall studenter Kumulativ frekvens Relativ Kumulativ frekvens [0-5> 3 3 3/20 = 0,15 = 15% [5-10> 1 4 4/20 = 0,20 = 20% [10-15> 0 4 [15-20> 0 4 4/20 = 0,20 = 20% [20-25> 1 5 5/20 = 0,25 = 25% [25-30> 1 6 6/20 = 0,30 = 30% [30-35> 3 9 9/20 = 0,45 = 45% [35-40> /20 = 0,70 = 70% [40-45> /20 = 1,00 = 100% Sum: %

Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser

Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser 48 3 Statistikk Mål for opplæringen er at eleven skal kunne planlegge, gjennomføre og vurdere statistiske undersøkelser beregne kumulativ hyppighet, finne og drøfte sentralmål og spredningsmål representere

Detaljer

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål

Detaljer

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn.

Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn. Statistikk Innledning Begrepet statistikk skriver seg fra tiden da en stat samlet inn opplysninger som myndighetene hadde bruk for. Opplysningene eller dataene som ble samlet inn, dreide seg for det meste

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

ECON Statistikk 1 Forelesning 2: Innledning

ECON Statistikk 1 Forelesning 2: Innledning ECON2130 - Statistikk 1 Forelesning 2: Innledning Data, beskrivende statistikk, visualisering Jo Thori Lind j.t.lind@econ.uio.no 1. Beskrivende statistikk Typer variable Nominelle: Gjensidig utelukkende

Detaljer

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene

Detaljer

2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen

2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen 303 a For eksempel finner vi at den relative frekvensen for jenter med høyde 155 159 cm er 0,067 6,7 % 30 = =. Høyde i cm Antall Relativ (frekvens)

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

Basisoppgaver til 2P kap. 3 Statistikk

Basisoppgaver til 2P kap. 3 Statistikk Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske

Detaljer

Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co Side 1

Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co  Side 1 Repetisjon fra kapittel 2: Summere mange tall, funksjonen SUMMER() Regnearket inneholder en mengde innebygde funksjoner. Vi skal her se på en av de funksjonene vi oftest bruker. Funksjonen SUMMER() legger

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3.1 a 25 5 8 12 Det var 12 elever som rukte 40 59 minutter til skolen. For eksempel finner vi at den relative frekvensen for elever med reisetid

Detaljer

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål 04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 må leveres inn før hjelpemidlene

Detaljer

Kapittel 4. Statistikk

Kapittel 4. Statistikk Kapittel 4. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data

Detaljer

2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka

2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka P kapittel 4 Statistikk Løsninger til oppgavene i læreoka 4.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale

Detaljer

Kapittel 1: Data og fordelinger

Kapittel 1: Data og fordelinger STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

Dataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010

Dataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010 STK1000 Innføring i anvendt statistikk Tirsdag 24. august 2010 Geir Storvik (modifisert etter I. Glad s tidligere presentasjon) 1 Data, data, data Genetiske data World Wide Web Overvåkning Medisinske bilder

Detaljer

Fagstoff til eksamen. Matematikk Vg2P

Fagstoff til eksamen. Matematikk Vg2P Matematikk Vg2P Fagstoff til eksamen Innhold på ndla.no er nå tilgjengelig i PDF- eller epub-format som hjelpemidler til eksamen. Disse filene kan lagres på egen datamaskin og leses i digitalt format,

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Grafisk

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem

Detaljer

1 Grafisk framstilling av datamateriale

1 Grafisk framstilling av datamateriale 1 Grafisk framstilling av datamateriale Dette notatet er laget med tanke på åfå til en rask gjennomgang av denne delen av pensum. Determentforå ha nedskrevet det som forholdsvis rakt blir sagt i forelesning,

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

Kapittel 6. Statistikk

Kapittel 6. Statistikk Kapittel 6. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data

Detaljer

Kapittel 4. Statistikk

Kapittel 4. Statistikk Kapittel 4. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data

Detaljer

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,

Detaljer

Påbygging kapittel 3 Statistikk Løsninger til oppgavene i boka

Påbygging kapittel 3 Statistikk Løsninger til oppgavene i boka Påygging kapittel 3 Statistikk Løsninger til oppgavene i oka 3.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale

Detaljer

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger

Detaljer

NR. 2-2005 11. årgang

NR. 2-2005 11. årgang nytt NR. - 005 11. årgang FX-9860G SD Casio lanserer i nær framtid et nytt tilskudd på stammen av grafiske lommeregnere spesielt beregnet for videregående skole. Den svart hvite skjermen, er blitt større

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS

Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. I de fleste tilfeller

Detaljer

Eksempel på data: Karakterer i «Stat class» Introduksjon

Eksempel på data: Karakterer i «Stat class» Introduksjon Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en

Detaljer

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt.

42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. elever sykler til skolen hver dag, mens 0 tar bussen. går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. 7 Hm, er det så mange satellitter over år?! Statistikk MÅL I dette kapitlet

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål

Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål 04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 leveres inn etter nøyaktig

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166

Detaljer

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 16. april 2015 kl. 10.00-12.00

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 16. april 2015 kl. 10.00-12.00 STUDIEÅRET 2014/2015 Individuell skriftlig eksamen i STA 200- Statistikk Torsdag 16. april 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består av

Detaljer

3 Statistikk KATEGORI 1. 3.1 Søylediagrammer. Oppgave 3.111 Tabellen viser karakterstatistikken for en prøve i en matematikkgruppe 2P.

3 Statistikk KATEGORI 1. 3.1 Søylediagrammer. Oppgave 3.111 Tabellen viser karakterstatistikken for en prøve i en matematikkgruppe 2P. 3 Statistikk KATEGORI 1 3.1 Søylediagrammer Oppgave 3.110 I en klasse ble elevene spurt om hvor mange søsken de hadde. Tabellen viser resultatet. søsken elever 0 6 1 12 2 6 3 2 4 1 Oppgave 3.111 Tabellen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

Uke 24. Mandag Tirsdag Onsdag Torsdag Fredag Naturfag. Landskapet blir forandret Lærer: Terje. Engelsk. Repetisjon.

Uke 24. Mandag Tirsdag Onsdag Torsdag Fredag Naturfag. Landskapet blir forandret Lærer: Terje. Engelsk. Repetisjon. Ukeplan for 5B Uke 24. Husk! Fokus på arbeidsro. Komme raskt i gang med oppgavene. Siste skoledag 21.06. 08.30 10.00 10.15 11.00 11.45-13.15 Mandag 13.06 Tirsdag 14.06 Onsdag 15.06 Torsdag 16.06 Fredag

Detaljer

4: Sannsynlighetsregning

4: Sannsynlighetsregning Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni

Detaljer

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p

Karakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p 03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN

Detaljer

2P eksamen våren 2016

2P eksamen våren 2016 2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

Faktor 3 Oppgavebok. Løsningsforslag. Løsningsforslag til kapittel 6: Statistikk, kombinatorikk og sannsynlighet. Kategori 1

Faktor 3 Oppgavebok. Løsningsforslag. Løsningsforslag til kapittel 6: Statistikk, kombinatorikk og sannsynlighet. Kategori 1 Faktor 3 Oppgavebok til kapittel : Statistikk, kombinatorikk og sannsynlighet Kategori 1.101 a) Gjennomsnittsverdien blir: 3 + + 1 + 9 = 7,50 kr Gjennomsnittsverdien blir: 9 + + 11 + + 1 = 7, m 5.10 a)

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1

7. TRINN MATEMATIKK PERIODEPLAN 1 1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet

Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet Utviklet med støtte fra Bakgrunn og innledning Tilfeldighetenes spill var et eksperiment som ble kjørt på Akvariet i Bergen under Forskningsdagene

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.

Detaljer

Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie,

Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, www.statistrikk.no Kontinuerlige data er målinger som gjøres langs en skala, for eksempel tid, lengde og vekt. Noen ganger

Detaljer

ECON240 Vår 2018 Oppgaveseminar 1 (uke 6)

ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.12, P.13, og P.14 Example 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.9,

Detaljer

STATISTIKK FRA A TIL Å

STATISTIKK FRA A TIL Å STATISTIKK FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til statistikk S - 2 2 Grunnleggende om statistikk S - 3 3 Statistisk analyse S - 3 3.1 Gjennomsnitt S - 4 3.1.1

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et skoleår. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Hvordan blir det og hvordan gikk det? Skolering Nordland og Troms Oktober/november 2014 Astrid Bondø

Hvordan blir det og hvordan gikk det? Skolering Nordland og Troms Oktober/november 2014 Astrid Bondø Hvordan blir det og hvordan gikk det? Skolering Nordland og Troms Oktober/november 2014 Astrid Bondø Statistikk og sannsynlighet planlegge og samle inn data representere data i tabeller og diagram lese,

Detaljer

Oppgaver i statistikk

Oppgaver i statistikk Oppgaver i statistikk Oppgave 1 En regner med at verdens (kjente) oljeressurser (i 2003) fordeler seg omtrent slik på de ulike regionene: Midtøsten: 63,3% Europa: 9,2% Sør og Sentral Amerika:,9% Afrika:,9%

Detaljer

Introduksjon til statistikk og dataanalyse

Introduksjon til statistikk og dataanalyse Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166 500 000 Samla billettsalg: $ 20 199 000 000 2 Datasettet vårt Filmene er delt i 8 sjangere: Action

Detaljer

Mot normalt: Om gjennomsnitt

Mot normalt: Om gjennomsnitt Tall kan temmes! Jan Erik Kristiansen Mot normalt: Om gjennomsnitt Jan Erik Kristiansen er sosiolog og seniorrådgiver i Statistisk sentralbyrå, Formidlingsavdelingen. Han har lang erfaring i å presentere

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

ECON Statistikk 1 Forelesning 1: Innledning

ECON Statistikk 1 Forelesning 1: Innledning ECON2130 - Statistikk 1 Forelesning 1: Innledning Hva er statistikk, data, beskrivende statistikk Jo Thori Lind j.t.lind@econ.uio.no Kursstruktur Undervisning Forelesninger 13 ganger Teori og illustrasjoner

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

ÅRSPLAN FAG: MATEMATIKK

ÅRSPLAN FAG: MATEMATIKK Begby barne- og ungdomsskole ÅRSPLAN FAG: MATEMATIKK TRINN: 8 Tid Kompetansemål Tema med emner Fokus/grunnleggende STATISTIKK 5 uker - hente fakta ut av tabeller - lese av, tolke og lage ulike diagrammer

Detaljer

Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE

Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE MET1002 Statistikk Grunnkurs 7,5 studiepoeng Torsdag 14. mai 2007 kl. 09.00-13.00 Faglærer: Sjur Westgaard (97122019) Kontaktperson

Detaljer

Lokal læreplan i Matematikk Trinn 9

Lokal læreplan i Matematikk Trinn 9 Lokal læreplan i Matematikk Trinn 9 1 9. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

Repeterbarhetskrav vs antall Trails

Repeterbarhetskrav vs antall Trails Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er første artikkel i en serie av fire som tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Potenser.....................................

Detaljer

ECON240 Høst 2017 Oppgaveseminar 1 (uke 35)

ECON240 Høst 2017 Oppgaveseminar 1 (uke 35) ECON40 Høst 017 Oppgaveseminar 1 (uke 35) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.1, P.13, og P.14 Example 1.1, 1., 1.3, 1.4, 1.6, 1.7, 1.9,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 37 Tema: Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal ( ) og tal

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2017-2018 Side 1 av 8 Periode 1: UKE 33-39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere faste

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Nyttige tilleggsverktøy i GeoGebra

Nyttige tilleggsverktøy i GeoGebra Nyttige tilleggsverktøy i GeoGebra Her er en omtale av noen GeoGebra-verktøy som kan være nyttige og arbeidssparende. Ei vanlig GeoGebra-fil har etternavnet ggb, mens et GeoGebraverktøy har etternavnet

Detaljer

Årsplan i matematikk Trinn 10 Skoleåret Haumyrheia skole

Årsplan i matematikk Trinn 10 Skoleåret Haumyrheia skole Årsplan i matematikk Trinn 10 Skoleåret 2016-2017 Tids rom Kompetansemål Hva skal vi lære? (Læringsmål) Hvordan jobber vi? (Metoder) 34-38 sammenligne og regne tall på standardform og uttrykke slike tall

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer