Forelesning nr.8 INF 1410

Størrelse: px
Begynne med side:

Download "Forelesning nr.8 INF 1410"

Transkript

1 Forelesning nr.8 INF 4 C og kretser 2.3. INF 4

2 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2

3 Node og meshanalyse med og C Har KV vist at KV og KC også gjelder for kretser med spoler og kondensatorer Spoler i serie og parallell oppfører seg som ohmske motstander i serie og parallell Kondensatorer i serie oppfører seg som ohmske motstander i parallell, og kondensatorer i parallell oppfører seg som resistanser i serie og KC i kretser med kun ohmske motstander kan løses enkelt (n lineære tidsuavhengige ligninger med n ukjente) 2.3. INF 4 3

4 Node og meshanalyse med og C KV Integrodifferensial: Skal Senere og KV i kretser med spoler og/eller kondensatorer krever løsning av integrodifferensial-ligninger Inneholder både den integrerte og deriverte av variabelen som inngår først studere eksempler med nodeligninger uten å eksplisitt løse dem i kurset innføres en metode for å løse slike ligninger på en enkel måte vha S-transformasjon 2.3. INF 4 4

5 Eksempel Ønsker Summen Har For å finne nodeligningene for kretsen til høyre av alle strømmene som går ut av node er lik også en initialstrøm gjennom spolen node blir ligningen t t (v v s )' C 2 dv (v v 2 ) i (t ) 2.3. INF 4 5

6 Eksempel (forts) igningen Skriver for node 2 blir (v2 v) d(v2 vs ) is C om KC-ligningen slik at spenninger og strømmer fra kilder og initialverdier står på høyre side, og resten på venstre: t t v ' C 2 dv v v2 t t v s ' i (t ) v v2 dv2 C C dv s i s 2.3. INF 4 6

7 Eksempel (forts) Generelt Spenningskilden Initialstrømmen igningssystemene er ligningene som er utledet kompliserte å løse analytisk v s opptrer den både som derivert og integrert, men ikke direkte gjennom spolen opptrer som en konstant kan også løses numerisk, noe som ofte gir god nok presisjon 2.3. INF 4 7

8 Impedans og admittans Forholdet Impedans mellom spenning og strøm kalles for impedans kan tenkes som sammensatt av en tidsuavhengig og en tidsavhengig del esistivitet: tidsuavhengig eaktans: tidsavhengig eaktans Avhengig kan deles inn i to typer Induktiv Kapasitiv av hvilket element man refererer til, brukes ofte esistiv impedans Induktiv impedans Kapasitiv impedans 2.3. INF 4 8

9 Impedans og admittans (forts) Forholdet Admittans Admittans mellom strøm og spenning kalles for admittans kan tenkes på som den inverse til impedans kan tenkes som sammensatt av en tidsuavhengig og en tidsavhengig del Konduktans: tidsuavhengig Disse For Suseptans: tidsavhengig begrepene vil bli nærmere definert når komplekse frekvenser inntroduseres (imaginære + relle deler) ohmske motstander som bare er resistive kalles admittansen for konduktans 2.3. INF 4 9

10 Integrator med kondensator Man Ved Siden kan designe relativt avanserte kretser med basert på opamp er og motstander, spoler og kondensatorer å erstatte motstanden i tilbakekoblingen i en inverterende forsterker med en kondensator får man en integrator: v dv a vs va vs C f i C f v a =v b =, har reduseres dette til v dv s C f vs C f C f d( v out ) 2.3. INF 4

11 Integrator med kondensator For å finne v out som funksjon av v s må man integrere på begge sider Verdien O v v C f out v a v C out f t v v s (t' )' v () C er en integrasjonskonstant og kalles også for tidskonstant τ man ikke ønsker en skalert utverdi må og C f velges slik at C f = out C f 2.3. INF 4

12 Derivator med kondensator Ved å la motstand og kondensator bytte plass får man en derivator istedenfor integrator: v dv a vout va vout C i C f f Siden v a =v b =, har reduseres dette til v v out f C dv out C C f dvs C d( v s ) C dv s 2.3. INF 4 2

13 Integrator og derivator med spole Man Teoretisk Ved I Spoler kan også lage integratorer/derivatorer med spoler istedenfor kondensatorer gjøres dette ved å bytte ut kondensatoren i integratoren med en spole, og dette gir en derivator å bytte ut kondensatoren med en spole i derivatoren får man en integrator praksis vil man ikke bruke spoler fordi de er vanskeligere å lage enn kondensatorer på integrerte kretser (tar mer plass) vil kunne fungere som antenner på integrerte kretser og fange opp uønsket elektromagnetisk støy fra omgivelsene 2.3. INF 4 3

14 Kretser med ulik type startbetingelser For kretser med spoler og kondensatorer vil utsignalet være bestemt av to forhold: Kretsens Naturlig Den Hvilke strømmer/energi som er finnes i kretsen ved tidspunkt t Hva slags type signal som påtrykkes kretsen ved tidspunkt t oppførsel som følge av det historiske innsignalet gir et bestemt utsignal ved t og kalles naturlig respons respons kalles også source-free eller transient respons, fordi det ikke avhenger av hvordan innsignalet så ut, men de naturlige egenskapene til kretsen andre typen respons kalles for påtrykket eller tvungen, og utsignalet vil ha en komponent som er et resultat av dette 2.3. INF 4 4

15 Generelt For Begynner Transientrespons i -kretser sett er det vanskelig å løse integral/differensialligninger kretsanalyse vil løsningene være på et bestemt format, og man kan derfor gjenbruke uten å løse på nytt hver gang med formen til løsningen for den naturlige (transient)responsen for en krets med en motstand og en spole Antar I Vet at strømmen gjennom kretsen ved t = er I, dvs i()=i vil med tiden vil dø ut ikke hvordan I har oppstått i fortiden 2.3. INF 4 5

16 Transientrespons i -kretser (forts) KV Ønsker for strømmen i kretsen gir at i v di i di i å finne et uttrykk for i(t) som både tilfredsstiller det generelle tilfellet og initialbetingenlsen i(t )=I i(t ) I di di' i' i t ( di i )' ln(i ) i I t' t ln(i ) ln() (t ) 2.3. INF 4 6

17 Transientrespons i -kretser (forts) Ved å opphøye i e på begge sider får man ln(i(t )) ln(i ) e i(t) I e t e t i(t) I e t Måtte Ved Setter mao. sjekke at både det generelle tilfellet og initialbetingelsen er oppfylt av løsningen tidspunkt t= er i()=i, dvs ok. inn det gitte uttrykket for i(t) utledet over i den opprinnelige diffligningen: di i 2.3. INF 4 7

18 Generell form transientresponsen øsningen Antar Ved Både for i(t) for -kretsen kan generealiseres til en mer generell form som også gjelder for C-kretser en generell form på løsningen st i(t) Ae å sette denne inn i den opprinnelige ligningen får man As st st st e A e (s )Ae A= og s = vil være teoretisk løsninger på ligningen,men ikke i kretsen siden det tilsvarer at responsen er til alle tider 2.3. INF 4 8

19 Generell form transientresponsen (forts) For Dessuten igningen at løsningen skal være oppfylt må må s s kalles også for den karakteristiske ligningen til differensialligningen A I Kretsens naturlige respons er derfor bestemt av den (konstante) strømmen ved t=, og forholdet mellom og i(t) I e t 2.3. INF 4 9

20 Eksponensiell respons Den To / naturlige responsen til en (og C) krets er eksponensiell på formen gitt i figuren under parametre bestemmer generelt kurven: I og / bestemmer hvor fort strømmen I faller mot i(t) I e t 2.3. INF 4 2

21 Eksponensiell respons (forts) Jo Et Dette større / (dvs jo mindre /), desto lenger tid tar det for strømmen å falle mot null viktig mål på hvor fort strømmen faller er å beregne hvor fort strømmen vil bli null hvis den faller med samme rate som ved t= er det samme som den deriverte i t= d i I t e t t 2.3. INF 4 2

22 Eksponensiell respons (forts) En t τ kurve med stigningstall / vil krysse t-aksen i punktet τ=/ kalles også for tidskonstanten til kretsen kan også tolkes som forholdet mellom den initielle strømmen I og den aktuelle strømmen I(t) når t= τ : i( I ) I e I e INF 4 22

23 Eksponensiell respons (forts) Etter Etter Man t=2τ har den normaliserte strømmen falt til 3,53% av utgangspunktet, og etter t=3τ til 4,97 % t=τ har den falt til ca,45 % regner at når strømmen er ca % av utgangsverdien er den tilnærmet null, dvs etter t=5τ 2.3. INF 4 23

24 Transientrespons i C-kretser Samme Vil Antar Vet utfordring her som for -kretser se at formen på løsningen for C-kretser blir lik den for kretser at spenning lagret på kondensatoren ved t = er V, dvs v()=v ikke hvordan V har oppstått i fortiden, er heller ikke relevant for hvordan responsen blir (så lenge kilden er frakoblet) 2.3. INF 4 24

25 Transientrespons i C-kretser (forts) KC Det for strømmen i kretsen gir at dv C dv tilsvarende uttrykket for -kretsen: di v i v C Kan derfor sette opp uttrykket for v() direkte: v(t) v()e t C V e t C 2.3. INF 4 25

26 Transientrespons i C-kretser (forts) Kan gjøre samme betraktninger om responsen til en C krets som en krets Ønsker Tidskonstanten også her å finne ut hvor fort spenningen over kondensatoren lades ut for C-kretsen er gitt av τ=c 2.3. INF 4 26

27 Eksempel Skal finne spenningen over kondensatoren ved tiden t=2µ etter at batteriet er koblet ut Må Siden derfor først finne spenningen v for kretsen i b) det ikke går noe strøm gjennom kondensatoren vil spenningen v være like batterispenningen, dvs v()=9 V 2.3. INF 4 27

28 Eksempel (forts) Etter at batteriet er koblet fra reduseres kretsen i b) til kretsen under For Ved kretsen i c) er spenningen v(t) gitt av v(t) v()e t C V e å sette inn kompnentverdiene får man at t C v(t) 9Ve ( 2 4 )( * 6 6 2* F ) s 32.mV 2.3. INF 4 28

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer

Forelesning nr.5 INF 1411 Elektroniske systemer Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Tidsrespons til reaktive kretser RC-integrator/differensiator-respons

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006 Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende

Detaljer

Løsningsforslag eksamen inf 1410 våren 2009

Løsningsforslag eksamen inf 1410 våren 2009 Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å

Detaljer

Forelesning nr.7 INF 1410. Kondensatorer og spoler

Forelesning nr.7 INF 1410. Kondensatorer og spoler Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen

Detaljer

Forelesning nr.14 INF 1410

Forelesning nr.14 INF 1410 Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider

Detaljer

En del utregninger/betraktninger fra lab 8:

En del utregninger/betraktninger fra lab 8: En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer

Forelesning nr.6 INF 1411 Elektroniske systemer Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER

7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER 78,977 7.3 ETAN - POE - KONDENATO KOPET KOMBNAJONE 7.3 ETAN - POE - KONDENATO KOPET T VEKETØM KOMBNAJONE EEKOPNG AV ETAN - POE - KONDENATO Tre komponenter er koplet i serie: ren resistans, spole med resistans-

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng) TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Forelesning nr.5 INF 1410

Forelesning nr.5 INF 1410 Forelesning nr.5 INF 40 Operasjonsforsterker Oersikt dagens temaer Kort historikk til operasjonsforsterkeren (OpAmp) Enkel Karakteristikker modell for OpAmp til ideell OpAmp Konfigurasjoner Mer med OpAmp

Detaljer

Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet.

Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet. 7.4 KONDUKTAN - UCEPTAN - ADMITTAN 1 7.4 KONDUKTAN - UCEPTAN - ADMITTAN Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet.

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A : Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:

Detaljer

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87

Detaljer

LF - anbefalte oppgaver fra kapittel 2

LF - anbefalte oppgaver fra kapittel 2 1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

Elektriske kretser. Innledning

Elektriske kretser. Innledning Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer

Forelesning nr.4 INF 1411 Elektroniske systemer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer

Forelesning nr.2 INF 1411 Elektroniske systemer Forelesning nr. INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslo 1 Dagens temaer Sammenheng, strøm, spenning, energi og effekt Strøm og motstand i serielle kretser Bruk

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si

Detaljer

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

Oppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L

Oppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L Oppgave 1 (3%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen på denne. Reduser

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde

Detaljer

Innhold Oppgaver om AC analyse

Innhold Oppgaver om AC analyse Innhold Oppgaver om AC analyse 30 a) Finn krets og bodeplot vedhjelp av målt impulsrespons.... 30 b) Finn krets og bodeplot vedhjelp av målt respons.... 30 Gitt Bodeplot, Del opp og finn systemfunksjon...

Detaljer

Forelesning nr.12 INF 1411 Elektroniske systemer. Opamp-kretser Oscillatorer og aktive filtre

Forelesning nr.12 INF 1411 Elektroniske systemer. Opamp-kretser Oscillatorer og aktive filtre Forelesning nr.12 INF 1411 Elektroniske systemer Opamp-kretser Oscillatorer og aktive filtre Dagens temaer Komparatorer, addisjon- og subtraksjonskretser Integrasjon og derivasjon med opamp-kretser Oscillator

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

TFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng)

TFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng) TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 2 1 Strøm- og spenningsdeling. (5 poeng) Sett opp formelen for strømdeling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004. NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle

Detaljer

Eivind, ED0 Ingeniørfaglig yrkesutøvelse og arbeidsmetoder Individuell fremføring

Eivind, ED0 Ingeniørfaglig yrkesutøvelse og arbeidsmetoder Individuell fremføring Innledning og bakgrunn Denne teksten har som hensikt å forklare operasjonsforsterkerens virkemåte og fortelle om dens muligheter. Starten går ut på å fortelle kort om en del av operasjonsforsterkerens

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer

Forelesning nr.11 INF 1411 Elektroniske systemer Forelesning nr.11 INF 1411 Elektroniske systemer Operasjonsforsterkere 1 Dagens temaer Ideel operasjonsforsterker Operasjonsforsterker-karakteristikker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt Kondensator - apacitor Lindem 3. feb.. 007 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i arad. Som en teknisk definisjon kan vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS3230 Sensorer og måleteknikk Eksamensdag: Mandag 16. desember Tid for eksamen: 09:00 12:00 Oppgavesettet er på: 2 sider Vedlegg:

Detaljer

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no> TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................

Detaljer

Installasjonstest med Fluke 1650 tester på IT anlegg i drift

Installasjonstest med Fluke 1650 tester på IT anlegg i drift Installasjonstest med Fluke 1650 tester på IT anlegg i drift Utføring av testene Spenningsmålinger Testeren kan brukes som et multimeter hvor spenning og frekvens kan vises samtidig ved å sette rotasjonsbryteren

Detaljer

Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn

Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn Side 1 Høgskolen i Oslo Avdelingfor ingeniørutdanning Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn Les igjennom ~ oppgaver før du begynner

Detaljer

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser Forelesning nr.6 INF 1410 Operasjonsforsterker Fysiske karakteristikker og praktiske anendelser Oersikt dagens temaer Kretsekialent for opamp Fysiske begrensinger Common-mode rejection Komparatorer Metning

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Dagens temaer er hentet fra

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME

Detaljer

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer

Forelesning nr.10 INF 1411 Elektroniske systemer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer 1 Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Feedback-oscillatorer Dagens

Detaljer

Kapasiteten ( C ) til en kondensator = evnen til å lagre elektrisk ladning. Kapasiteten måles i Farad.

Kapasiteten ( C ) til en kondensator = evnen til å lagre elektrisk ladning. Kapasiteten måles i Farad. Kondensator - apacitor Lindem jan 6. 007 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( ) til en kondensator evnen til å lagre elektrisk ladning. Kapasiteten måles i arad.

Detaljer

Muntlig eksamenstrening

Muntlig eksamenstrening INNFHOLD: Muntlig eksamenstrening... 1 Finn algoritme fra gitt H(z)... Laplace og Z-transformasjon av en Forsinket firkant puls.... 3 Sampling, filtrering og derivering av en trekant strømpuls... 3 Digitalisering

Detaljer

LØSNINGSFORSLAG KRETSDEL

LØSNINGSFORSLAG KRETSDEL NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317 Eksamen

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave 18. mars 2013 (Lindem) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING AVVIKSPENNING OG HVILESTRØM STRØM-TIL-SPENNING

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

Løsningsforslag til øving 5

Løsningsforslag til øving 5 Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +

Detaljer

Løsningsforslag for obligatorisk øving 1

Løsningsforslag for obligatorisk øving 1 TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som

Detaljer

Théveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under).

Théveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under). Oppgave 1 (10 %) a) Kirchoffs spenningslov i node 1 gir følgende ligning 72 12 24 30 hvor to av strømmene er definert ut av noden, mens strømmen fra strømkilden går inn i noden. 2 72 720 Løser med hensyn

Detaljer

Differensjalligninger av førsteorden

Differensjalligninger av førsteorden Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem

Detaljer

FYS3220 Oppgaverer om Laplacetransformasjon

FYS3220 Oppgaverer om Laplacetransformasjon FYS3220 Oppgaverer om 1) Kontrollspørsmål Forklar forskjellen mellom Laplace- og Fourier Transformasjon? Sett opp en tabell med en kolonne for hver. Skriv opp definisjonene og kommenter likheter og ulikheter.

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning.

Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. 1 Noen gruppeoppgaver for uke 20 våren 2008 i FYS2130: Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. Vi har på forelesninger i uke 19 vist hvordan vi kan løse den andre ordens

Detaljer

Innføring i bruk av PSpice;- Schematics og Probe

Innføring i bruk av PSpice;- Schematics og Probe Innføring i bruk av PSpice;- Schematics og Probe Innholdsfortegnelse 1. INNLEDNING...1 2. SCHEMATICS SKJEMATEGNE VERKTØY...1 2.1. HENTE KOMPONENTER FRA BIBLIOTEKET...2 2.2. FLYTTE KOMPONENTER...3 2.3.

Detaljer

FYS1120 Elektromagnetisme H10 Midtveiseksamen

FYS1120 Elektromagnetisme H10 Midtveiseksamen FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren

Detaljer

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre.

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Treleder kopling Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Dersom Pt100=R, vil treleder koplingen totalt kanselerere virkningen

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 72 Bjørn B. Larsen 73 59 93 / 902 08 37 i emne

Detaljer

En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme.

En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. 7. EFFEK YER OG ARBED VEKSELSRØM 1 7. EFFEK YER OG ARBED VEKSELSRØM AKV EFFEK OG ARBED EN DEELL RESSANS En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. Det er bare

Detaljer

Lab 3: AC og filtere - Del 1

Lab 3: AC og filtere - Del 1 Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator

Detaljer

Oppsummering. BJT - forsterkere og operasjonsforsterkere

Oppsummering. BJT - forsterkere og operasjonsforsterkere Oppsummering BJT - forsterkere og operasjonsforsterkere OP-AMP vs BJT Fordeler og ulemper Vi har sett på to ulike måter å forsterke opp et signal, ved hjelp av transistor forsterkere og operasjonsforsterkere,

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere Forelesning nr.11 INF 1411 Elektroniske systemer Måleteknikk Operasjonsforsterkere Dagens temaer Måleteknikk Wheatstone-bro Ideell operasjonsforsterker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004

ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004 ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004 Vi skal i denne oppgaven forsøke å simulere et enkelt forsterkertrinn med bipolar transistor. Vi har imidlertid ikke modell

Detaljer

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere

Forelesning nr.11 INF 1411 Elektroniske systemer. Måleteknikk Operasjonsforsterkere Forelesning nr.11 INF 1411 Elektroniske systemer Måleteknikk Operasjonsforsterkere Dagens temaer Måleteknikk Wheatstone-bro Ideell operasjonsforsterker Differensiell forsterker Opamp-kretser Dagens temaer

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave, desember 2014 (T. Lindem, K.Ø. Spildrejorde, M. Elvegård) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

INF1411 Oblig nr. 4 Vår 2011

INF1411 Oblig nr. 4 Vår 2011 INF1411 Oblig nr. 4 Vår 2011 Informasjon og orientering Alle obligatoriske oppgaver ved IFI skal følge instituttets reglement for slike oppgaver. Det forutsettes at du gjør deg kjent med innholdet i reglementet

Detaljer

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3

Detaljer