0.1 Kort introduksjon til komplekse tall



Like dokumenter
Enkel introduksjon til kvantemekanikken

TMA4120 Matematikk 4K Høst 2015

Forelesning Matematikk 4N

Fourier-Transformasjoner

MAT Grublegruppen Uke 36

Løsningsforslag. og B =

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

Løsningsforslag. og B =

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 8 I kapittel 8 er integrasjon og integrasjonsteknikker det store tema

MAT Grublegruppen Notat 6

Matematikk 1 Første deleksamen. Løsningsforslag

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall

Komplekse tall og komplekse funksjoner

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

dg = ( g P0 u)ds = ( ) = 0

ANDREAS LEOPOLD KNUTSEN

LØSNINGSFORSLAG. Skriv følgende komplekse tall både på kartesisk form som a + bi og på polar form som re iθ (r 0 og 0 θ < 2π). a) 2 + 3i.

Forelesning Matematikk 4N

Forkurs, Avdeling for Ingeniørutdanning

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai eksamensoppgaver.org

MA1102 Grunnkurs i analyse II Vår 2019

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Komplekse tall: definisjon og regneregler

Løsningsforslag AA6516 Matematikk 2MX desember eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember eksamensoppgaver.org

9 + 4 (kan bli endringer)

Løsningsforslag Matematikk 2MX - AA mai 2006

FYS2140 Kvantefysikk, Løsningsforslag Oblig 7

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

1 Stokastisk variabel

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 7. desember Vidaregåande kurs II / Videregående kurs II

Notat om trigonometriske funksjoner

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

ST0202 Statistikk for samfunnsvitere

TMA4105 Matematikk 2 vår 2013

Fakta om fouriertransformasjonen

EKSAMEN Løsningsforslag

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor

En innføring i Fourrierrekker

Eksamensoppgave i TMA4135 Matematikk 4D

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall

Eksamensoppgave i TMA4135 Matematikk 4D

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

1 Mandag 1. februar 2010

MA1410: Analyse - Notat om differensiallikninger

Løsningsforslag. 3 x e. g(x) = 1 + x4 x 2

TMA4245 Statistikk Høst 2016

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA eksamensoppgaver.org

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

MA1102 Grunnkurs i analyse II Vår 2019

Oppfriskningskurs i matematikk 2008

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir

Løsningsforslag AA6526 Matematikk 3MX - 8. desember eksamensoppgaver.org

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.

Elektrisk potensial/potensiell energi

Prøve i R2 Integrasjonsmetoder

MA1102 Grunnkurs i analyse II Vår 2014

a 2 x 2 dy dx = e r r dr dθ =

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Løsningsforslag AA6524 Matematikk 3MX 3. juni eksamensoppgaver.org

TMA4135 Matematikk 4D Høst 2014

UNIVERSITETET I OSLO. Løsningsforslag

Eksamen i TMA4122 Matematikk 4M

Forelesningsplan M 117

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai eksamensoppgaver.org

Funksjoner - i et litt annet lys?

Løysingsframlegg øving 1

Løsningsforslag til eksamen i MAT 1100 H07

Forkurs, Avdeling for Ingeniørutdanning

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

TMA4120 Matte 4k Høst 2012

MAT Grublegruppen Uke 37

13.1 Fourierrekker-Oppsummering

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

Transkript:

Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på detaljerte utledninger. Dette gjelder spesielt enkelte kompliserte integraler, som vi også kan nne frem til på egen hånd ved å slå opp i matematiske formelsamlinger. Vi starter med en introduksjon av komplekse tall. 0. Kort introduksjon til komplekse tall Siden kvantefysikken er formulert ved bruk av komplekse tall, skal vi her gi en kort innføring i bruken av slike tall. Den imaginære størrelsen i er denert som kvadratroten av, eller som Dette gir uten videre at i = p i = Det komplekse tallet z kan skrives som z = x + iy. Den kompleks konjugerte av et kompleks tall fremkommer ved å erstatte alle forekomstene av det imaginære tallet i med i. Den kompleks konjugerte av z skrives som z og er gitt ved z = x iy. Tallverdien av z er denert som jzj = p zz = p (x + iy) (x iy) = p x + y Argand-diagrammet Det komplekse tallet z = x + iy kan representeres som a) punktet P (x; y) i xy-planet eller som b) vektoren OP! fra origo til punktet P. (Se gur nedenfor). I begge tilfeller kalles x-aksen for den reelle aksen, mens y-aksen kalles imaginæraksen. Denne representasjonen kalles et Argand-diagram. Figur : Argand-diagram

og Uttrykt i polarkoordinater (r; ) har vi at x = r cos og y = r sin z = r (cos + i sin ) der polarvinkelen er argumentet til z. Vi ser at lengden r på vektoren! OP er gitt ved r = p x + y = p zz = jzj Det komplekse tallet uttrykt ved en eksponensialfunksjon Fra algebraen vet vi at e x = + x + x + + n! xn + setter vi inn x = i, nner vi e i = i x! + 4! 4 6! 6 + + 3! 3 + 5! 5 7! 7 + der vi har ordnet de reelle og de imaginære leddene hver for seg. Vi kjenner igjen de to parantesene som cosinus- og sinus-seriene, slik at vi kan skrive e i = cos + i sin som er kjent som Eulers formel. Det komplekse tallet z kan derved skrives som Som et eksempel ser vi at Andre eksempler Fra Eulers formel ser vi umiddelbart at z = x + iy = r (cos + i sin ) = re i jzj = zz = r e i e i = r cos = ei + e i og sin = i e i e i Fra e i = cos + i sin = e i e i = (cos + i sin ) = cos sin + i ( sin cos )

nner vi ved å sammenligne de reelle og de imaginære delene at Generellt kan vi skrive at cos = cos sin og sin = sin cos e in = cos n + i sin n = (cos + i sin ) n der n er et vilkårlig positivt heltall. Vi kan også enkelt nne uttrykk for sin + sin og cos + cos : Vi starter med e i + e i = cos + cos + i (sin + sin ) Venstresiden kan skrives som e i + e i = e i= e i= e i= e i= + e i= e i= e i= e i= i( )= = e i= e i= e i( )= + e = e i(+)= ( ) cos der vi har brukt ligning 0.. Siden e i(+)= ( + ) ( + ) = cos + i sin nner vi ved å sammenligne de reelle og de imaginære delene med ligning 0. at og cos + cos = cos ( ) cos ( + ) ( ) ( + ) sin + sin = cos sin Disse uttrykkene får vi bruk for senere i kurset. Som nevnt er kvantefysikken vanligvis formulert ved hjelp av komplekse funksjoner. Om Z(x; t) er en slik funksjon (i dette tilfellet en funksjon av de reelle variablene x og t), betyr dette ikke annet enn at vi generelt kan skrive jz (x; t)j = X (x; t) + iy (x; t) der X (x; t) og Y (x; t) er to reelle funksjoner av x og t. På samme måte som ovenfor er Hyperbolsk sinus og cosinus sinh = e Når er meget stor, kan vi tilnærmet skrive Når er meget liten, kan vi tilnærmet skrive jz (x; t)j = X (x; t) + Y (x; t) e og cosh = e + e sinh cosh e = sinh og cosh 3

0. Noen elementer fra statistikk Fra statistikken henter vi to nyttige størrelser, middelverdi og standardavvik. For N målinger x i av en variabel x i en kontinuerlig fordeling er middelverdien gitt ved NX x = N i= x i Standardavviket, som er et mål på usikkerhet eller feilanslag er gitt ved v NP u t (x i x) i= x(= x ) = N Ofte er sannsynlighetsfordelinger beskrevet ved den såkalte gaussfordelingen som er gitt ved! (x a) f (x) = C exp b der a, b og C er konstanter. For en sannsynlighetsfordeling kreves det at R + f(x)dx =. Vi sier at funksjonen er normert, og konstanten C kalles da ofte en normaliseringskonstant. Denne kan nnes til C = = ( p b). Middelverdien for N målinger av størrelsen x med denne fordelingen vil gå mot x = a når N!, og standardavviket vil gå mot = b. Middelverdien kan beregnes fra og standardavviket fra x = Z + xf(x)dx = a s Z + = x f(x)dx = b Dette kan skjekkes fra standard formelsamlinger. 0.3 Fouriertransformasjoner Innledning Fouriers teorem sier at enhver periodisk funksjon f (x) med bølgelengde 0 (bølgetall k 0 = = 0 ) kan skrives som en uendelig sum f (x) = a 0 + X [a n cos (nk 0 x) + b n sin (nk 0 x)] n= Legg merke til at når for eksempel x = 0, så er k 0 x =, som betyr at fasen (k 0 x) varierer fra 0 til når x går fra 0 til 0. Koefsientene a m og b m kan nnes ved å multiplisere begge sider av ligningen med henholdsvis cos (mk 0 x) og sin (mk 0 x) og integrere over en bølgelengde. 4

Integralene forsvinner når n 6= m og for alle de blandete produktene cos (nk 0 x) sin (mk 0 x) slik at vi forholdsvis enkelt nner at a m = 0 Z 0 0 f (x) cos (mk 0 x) dx og b m = 0 Z 0 0 f (x) sin (mk 0 x) dx Ofte kan man få en ganske god tilnærming til funksjonen etter noen få ledd. Vi anbefaler å prøve ved hjelp av Maple eller en grask lommekalkulator å representere en periodisk steppfunksjon som starter med verdien f (x) = for 0 < x < 0 = og f (x) = for 0 = < t < 0. Vi nner at " f(x) = 4 # X (n + ) sin [(n + ) k 0x] n=0 Resultatet er vist på guren under for ett, to, tre, re og ni ledd.vi ser at vi kommer nærmere Figur : Representasjon av en steppfunksjon ved hjelp av fourierserier. og nærmere den ønskete steppfunksjonen når vi tar med ere ledd. Fouriers teorem. Fouriers teorem kan brukes dersom vi istedet for en periodisk funksjon med bølgetallene nk 0 som i ligning 0.3 har et kontinuerlig spektrum av bølgetall k. Vi legger merke til at uttrykket e ikx kan skrives e ikx = cos (kx) + i sin (kx), der vi har brukt Eulers formel. Fouriers teorem sier at om vi kjenner den kontinuerlige fordelingen f e (k) av bølgetallene så kan den kontinuerlige fordelingen i posisjon f(x) representeres av f(x) = p Z + Fordelingen e f (k) kalles ofte spektralinholdet. 5 ef (k) e ikx dk

Dersom f (x) er kjent, kan spektralinnholdet nnes fra ef(k) = p Z + f (x) e ikx dx Disse uttrykkene kalles fouriertransformasjoner, og den første betegnes som den inverse fouriertransformasjonen (k! x), mens den andre betegnes som fouriertransformasjonen (x! k). Disse transformasjonene er meget nyttige når vi skal beskrive kvantemekaniske partikkelbølger. Eksempel. Overgang fra diskontinuerlig til kontimuerlig spektralinnhold. Vi ser igjen på guren. Den første kurven er en enkel sinusbølge f(x) = sin (k 0 x) med bølgetall k 0. Den andre kurven har den samme fundamentale bølgelengden, men har i tillegg en bølge med bølgetallet 3k 0 og tredjedelen av amplityden. Den tredje kurven består av tre bølger med bølgetall k 0, 3k 0 og 5k 0, osv. Disse kurvene kan representeres ved hjelp av grafene a, b og c i guren 3, som viser bølgene representert ved sine spektralinnhold. Figur 3: Tre bølger fra gur representert ved sine spektralinnhold. Vi ser nå på bølger som har spektralinnhold som vist i første del av gur 4. De tilhørende bølgene er vist på samme guren. Vi ser at vi har fått frem noe som likner på bølgepakker, men legg merke til at når vi går fra (a) med tre bølgetall til (b) med ere mellomliggende bølgetall, går de resulterende bølgepakkene fra hverandre. Når vi går over til et kontiuerlig spektralinnhold, får vi uendelig avstand mellom pakkene. Vi skal i kurset vise at en kvantemekanisk partikkel kan representeres som en bølgepuls med lokalisering i et område uttrykt f.eks. med en sannsynlighetsfordeling f (x) av den kontinuerlige variable x, og med spektralinnhold gitt av fordelingen e f(k). Det er derfor meget nærliggende å tenke seg at en partikkelbølge må svare til en bølge med kontinuerlig spektralinnhold f(k). Vi kommer tilbake til dette i kapittel. 6

Figur 4: To bølger med samme fundamentale bølgelengde, men med forskjellige spektralinnhold 7