Econ 2130 uke 16 (HG)

Like dokumenter
Econ 2130 uke 18 (HG) Hypotesetesting II P-verdi

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

Fasit for tilleggsoppgaver

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Introduksjon til inferens

Hypotesetesting. mot. mot. mot. ˆ x

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk H2010 (19)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

TMA4240 Statistikk H2010 (20)

Verdens statistikk-dag.

Hypotesetesting av λ og p. p verdi.

Kapittel 9 og 10: Hypotesetesting

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

TMA4240 Statistikk H2010 (22)

ST0202 Statistikk for samfunnsvitere

6.2 Signifikanstester

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ST0202 Statistikk for samfunnsvitere

i x i

TMA4240 Statistikk Høst 2016

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

β(µ) = P(akseptere H 1 µ)

Fra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: Signifikansnivå α. evt.

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Hypotesetest: generell fremgangsmåte

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsynlighetsregning med statistikk, våren

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

TMA4240 Statistikk Høst 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

STK Oppsummering

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

STK Oppsummering

Kapittel 9 og 10: Hypotesetesting

Løsning eksamen desember 2017

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

SFB LØSNING PÅ EKSAMEN HØSTEN 2018

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån.

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

ECON240 VÅR / 2016 BOKMÅL

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TMA4240 Statistikk 2014

Løsning eksamen desember 2016

Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU

TMA4240 Statistikk Høst 2015

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Kapittel 10: Hypotesetesting

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Estimering og hypotesetesting

Forkaste H 0 "Stikkprøven er unormal" Akseptere H 0 "Stikkprøven er innafor normalen" k kritisk verdi. Utgangspunkt for H 0

ST0202 Statistikk for samfunnsvitere

LØSNINGSFORSLAG ) = Dvs

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU

TMA4240 Statistikk Eksamen desember 2015

UNIVERSITETET I OSLO

STK1100 våren 2019 Mere om konfidensintevaller

Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i.

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1

ST0202 Statistikk for samfunnsvitere

TMA4245 Statistikk Eksamen desember 2016

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

ECON2130 Kommentarer til oblig

Kapittel 7: Inferens for forventningerukjent standardavvik

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

TMA4240 Statistikk Høst 2015

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen

TMA4240 Statistikk Høst 2009

Estimering og hypotesetesting

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Eksamensoppgave i TMA4240 Statistikk

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

Transkript:

Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1

Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling (B) for en litt mindre lidelse gir gjennomsnittlig helbredelsestid 15 dager (regner man med). La Y være helbredelsestid (behandling B) for en vilkårlig pasient. Antakelse basert på erfaring: E( Y ) = 15 og SD( Y ) = var( Y ) = 3. Ny behandling (BNY) foreligger. Legen ønsker å teste BNY. La X være helbredelsestid (BNY) for en vilkårlig pasient. Legen antar: E( X) = µ ( ukjent) SD( X ) = σ = 3 (kjent) DATA: BNY brukt på n = 71 pasienter: x1, x2,, xn x = 14.5 PROBLEM: Tyder dette på at vi kan påstå " µ < 15" med sterk evidens? 2

MODELL: X1, X2,, Xn uavhengige og identisk normalfordelte ( N ( µσ, ) ) med E X = ukjent X = = = k t i = 2,, n 2 2 ( i) µ ( ) og var( i) σ 9 3 ( jen ), 1, σ Estimator: ˆ µ = X ˆ µ forventningsrett ( E( ˆ µ ) = µ ) og normalfordelt ( X ~ N( µ, )) n Estimat: ˆ µ = X = x = 14.5 obs obs To hypoteser om den ukjente er aktuelle: H µ H 1 : µ 15 ("null-hypotesen") : µ < 15 ("alternativ hypotese") Vi vet at x µ, men vi vet ikke hvor langt vekk fra µ x er! Merk at µ = 15 er en kjent hypotetisk verdi bestemt av problemstillingen. 3

Sett fra et vitenskapelig ståsted: Hypotesene H og H inngår ikke symmetrisk i problemstillingen. 1 Hensiktsmessig valg av mulige konklusjoner: i) Det er sterk evidens i data for å påstå at H : µ < 15 1 er sann. ii) Det er ikke nok informasjon i data til å kunne skille mellom H1 og H med sterk evidens. For å uttrykke dette brukes ofte formuleringer som, Si ingen ting eller Uavklart problem e.l. Eksempel på en beslutningsregel (forkastningsregel): Forkast H, dvs. påstå H1 : µ < 15 dersom X k, der k er kritisk verdi. Ikke si noe hvis X k. Bestem den kritiske verdien k hensiktsmessig. Hvis x faller her, "Ikke si noe" påstå µ < 15 med sterk evidens. PROBLEM: Hvordan bestemme k? 4

Bestemme kritisk verdi k Forkastningsregel (= testkriterium): Forkast H hvis X k Ikke si noe hvis X > k X kalles testobservator k kalles kritisk verdi Feiloversikt: Konklusjon Ikke forkast ikke si noe Forkast (påstå ) H 1 H H Den ukjente sannheten H : 15 H : 15 1 feil Feil av type II (ikke så alvorlig) Feil av type I (anses alvorlig) feil Velg k slik at i) og ii) er oppfylt: i) Velg k slik at P(feil I) α der α er liten og subjektivt valgt. Vanlige valg er.5,.1,.1. α kalles signifikansnivå. ii) Velg k slik at P(feil II) blir minst mulig. 5

Et viktig hjelpemiddel: Styrkefunksjonen. Definisjon. En (statistisk) test består av et (observerbart) forkastningskriterium som (i prinsippet) formuleres før (a priori) data er kjent. Styrkefunksjonen for en gitt test er definert som P(forkast H) - tolket som en funksjon av de ukjente parameterene i modellen. I eksemplet. Test: Forkast H hvis X k. Styrkefunksjon: P(forkast H) = PX ( k) Utledning: σ X µ X ~ N µ, Z = ~ N(,1) n σ n La som før tabell E.3(D.3) Gx ( ) = PZ ( x) X µ k µ k µ k µ P(forkast H) = PX ( k) = P = P Z = G σ n σ n σ n σ n som er en funksjon av µ ( σ kjent), som vi skriver γ ( µ ) ( γ er "gamma" - gresk g) k µ Styrkefunksjonen i eksemplet: γ ( µ ) = PX ( k) = G σ n 6

Det er styrkefunksjonen vi bruker til å vurdere egenskapene til en test. Sammenhengen mellom styrkefunksjonen og feil av type I og II. hvis µ < 15 ( H1) P(feil I) = P(forkast H) = γ ( µ ) hvis µ 15 ( H) P(ikke forkast H) = P(feil II) = 1 γ ( µ ) hvis µ < 15 ( H1) hvis µ 15 ( H) Konklusjon Ikke forkast ikke si noe Forkast H (påstå ) H 1 H Den ukjente sannheten H : µ 15 H : µ < 15 1 feil Feil av type I (anses alvorlig) Feil av type II (ikke så alvorlig) feil Kravene i) og ii) uttrykt ved styrkefunksjonen. i) Velg k slik at P(feil I ) α Velg k slik at γ ( µ ) α hvis µ 15 ( H ) ii) Velg k slik at P(feil II) blir minst mulig Velg k slik at 1 γ ( µ ) blir minst mulig når µ < 15 ( H ) Velg k slik at γ ( µ ) blir størst mulig når µ < 15 ( H ) 1 1 Løsning: Kravene i) og ii) Velg k som løsningen av ligningen γ( 15) = α 7

Vi trenger å vite: k µ Styrkefunksjonen i eksemplet γ ( µ ) = G er en avtagende funksjon av µ σ n Fordi: Gz ( ) = PZ ( z) er en stigende funksjon av z. Så, hvis µ øker, vil k σ µ n avta ( ) k µ γ µ = G avtar når µ øker. σ n 8

γ ( µ ) To tester med kritisk verdi k = 14.2 og k=14.6 h.h.v. γ ( µ ) for k = 14.2 γ ( µ ) for k = 14.6 γ ( µ ) = P (forkast H ) µ Krav: γ ( µ ) størst mulig her for µ < 15 α α Krav: γ ( µ ) α her µ H 1 H 9

Optimal løsning m.h.p. i) og ii) (15) k 14.41 γ ( µ ) γ = α = γ ( µ ) for k = 14.41 γ ( µ ) = P (forkast H ) µ γ ( µ ) størst mulig her for µ < 15 14 α γ (15) H 1 α γ ( µ ) α her H µ 1

Kritisk verdi for testen som best oppfyller kravene i) og ii) Bestem k slik at γ (15) = α k 15 k 15 G = P Z = α σ n σ n k 15 = zα σ n k = 15 z α σ n Signifikansnivå 5%.5 tabell E.4(D.4) α =.5 og z = z = 1.645 α Siden σ = 3 er forutsatt kjent, får vi kritisk verdi 3 k = 15 (1.645) = 14.41 71 Styrkefunksjonen for denne testen er γ ( µ ) 14.41 µ = G 3 71 11

Gjennomføring. Skal teste H: µ 15 ( µ ) mot H1: µ < 15 ( µ ) En test med signifikansnivå 5% er Forkast H hvis (forkastningskriterium) X 14.41 (formulert før data) 14.41 µ Styrkefunksjon: γ ( µ ) = Pµ (forkast H) = G 3 71 Gjennomføring: Data: n = 71 og X obs = 14.5 Konklusjon: Ikke forkast H dvs. Ikke si noe dvs. Det er ikke nok informasjon i data til å forkaste H. 12

Noen egenskaper ved testen. ( kan bestemmes før data er kjent) hvis µ < 15 ( H1) P(feil I) = γ ( µ ) hvis µ 15 ( H) Styrkefunksjonen: γ ( µ ) 14.41 µ = G 3 71 1 γ ( µ ) hvis µ < 15 ( H1) P(feil II) = hvis µ 15 ( H) Sann µ γ ( µ ) P (feil I) P(feil II) 15.5.1.1 H 15.5.5 14.5.4.6 14.87.13 H 1 13.5.995.5 13

Reformulering av testen (mest brukt i praksis). Problemet er å teste H: µ µ mot H1: µ < µ ( µ = 15 i eksemplet) Modell (situasjon I): X, X,, X er uid og X ~ N( µσ, ), der E( X ) = µ er ukjent og SD( X ) = σer kjent. 1 2 n i i i Test A med signifikansnivå : σ α " Forkast H hvis X µ zα " n σ testobservator X, kritisk verdi k = µ zα n Har: σ X µ zα X µ zα zα Test B med signifikansnivå : α testobservator n n σ n X µ ˆ µ µ σ n SE( ˆ µ ) σ X µ " Forkast H hvis Z = zα " X σ µ Z = =, kritisk verdi k = zα n Merk. (i) Test A og B er samme test (!), men med forskjellig testobservator og kritisk verdi. (ii) Det er test B som brukes i praksis ( B-kriteriet er mer generaliserbart) 14

Gjennomføring med test B i eksemplet: n = 71, α =.5 z = z = 1.645 α.5 Testkriterium: 15 " Forkast hvis X µ X H Z = = 1.645 " σ n 3 71 Observert: X obs Konklusjon: Ikke forkast H. 14.5 15 = 14.5 Zobs = = 1.44 3 71 Typiske konsekvenser (tolkninger) av ikke-forkastning: (Kalles et ikke-signifikant resultat.) (1) Legen vil antakelig fortsette å bruke standardbehandlingen (B). Legen opprettholder antakelsen µ = 15 som arbeidshypotese. (2) Produsenten av BNY tror kanskje fortsatt på H : µ < 15 1, men mener (kanskje) at det ikke var mange nok observasjoner til å avsløre det. Disse to tolkningene motsier hverandre og er avhengig av interessene til ulike aktører. M.a.o., tolkningene er avhengige av konteksten for undersøkelsen som ligger utenfor data. Hva som velges som null-hypotese i en undersøkelse er derfor ikke 15 likegyldig.

Egenskaper ved test B (Z-test i situasjon I): X µ Fra før: W = ~ N(,1) uansett µ. σ n Dette brukte vi for å utlede et konfidensintervall for µ. W er ingen observator! Testobservatoren Z X µ X µ + µ µ = = = W σ n σ n µ µ + σ n ~ N µ = µ! (,1) bare hvis Kritisk verdi k = z α bestemt som løsningen av ligningen P (forkast H ) = P ( Z k) = α k = z µ = µ µ = µ α Fordeling for hvis µ < µ Z N (,1) : Fordeling for Z hvis µ = µ 16

Vanlige problemstillinger (uid modellen situasjon I). Problem (i): Testobservator H : µ µ mot H : µ < µ 1 Z µ X µ ˆ µ µ = =. α-nivå : Forkast H hvis σ Ensidig problem n SE( ˆ µ ) Problem (ii) H: µ µ mot H1: µ > µ Ensidig problem α-nivå test: " Forkast H hvis Z z " Problem (iii) H: µ = µ mot H1: µ µ α H 1 H test " Z z " H H 1 µ α µ µ `Tosidig problem µ α-nivå test : " Forkast s Z z eller Z z " H hvi α 2 α 2 α = P (forkast H ) = P ( Z z ) + P ( Z z ) = α 2 + α 2 µ = µ µ α 2 µ α 2 Ford. for Z hvis µ = µ H 1 H µ H 1 Ford. for Z hvis µ < µ N (,1) Ford. for Z hvis µ > µ 17

Z-testen for µ i uid modellen kan også brukes i den mer generelle situasjonen der σ er ukjent (situasjon II) hvis n er stor ( n 3 ca.) MODELL: X1, X2,, Xn uavhengige og identisk fordelte (vilkårlig fordeling) med E X = ukjent X = ukjent i = 1,2,, n der n 3. 2 ( i) µ ( ) og var( i) σ ( ), Vi kan fremdeles bruke Z- testen for alle tre problemene side 18 der den eneste 2 forskjellen er å bytte ut σ med estimatoren S = Σ( X X) ( n 1) PÅ grunn av sentralgrenseteoremet (bl.a.) har vi som for konfidensintervall (se forelesn. uke 12), at X µ tilnærmet W = ~ N(,1) uansett µ. S n X µ tilnærmet Testobservatoren Z = ~ N(,1) hvis og bare hvis µ = µ, S n som er det eneste vi trenger for å bestemme den kritiske verdien ved i Pµ = µ (forkast H ) = α Dermed kan vi bruke de samme Z testene side 17 med σ erstattet med S. Signifikansnivået er tilnærmet α med disse Z-testene. 18

Eksempel. Er feltet drivverdig for utvinning av kadmium? Data stammer fra n = 3 steinprøver. La X være % kadmium i prøve i, i = 1,2,,3 i 2 MODELL: X1, X2,, Xn er uid med E( Xi) = µ ( ukjent), var( Xi) = σ ( ukjent), der µ er gjennomsnittlig % kadmium i feltet. Feltet regnes drivverdig hvis µ > 8. Vi ønsker å teste H : µ 8( µ ) mot H : µ > 8( µ ) 1 X µ = µ = S n tilnærmet Testobservator Z ~ N(,1) hvis 8..1 tabell E4(D4) Velg nivå α =.1 z = 2.326 1%-nivå test: " Forkast H hvis Z z = 2.326"..1 DATA: n = 3, X = 9.6, S = 3.1 obs obs Z obs X obs 8 9.6 8 = = = S 3 3.1 3 obs 2.827 Konklusjon: Forkast H. (dvs. feltet drivverdig). 19

T-test for µ i uid-modellen (situasjon III) Hvis vi i tillegg til forutsetningene under situasjon II, kan forutsette at enkeltobservasjonene kommer fra en normalfordeling, kan vi bruke T-test, som gjelder eksakt for alle n. MODELL: X uavhengige og identisk normalfordelte ( ) der 1, X2,, Xn Xi ~ N ( µσ, ) både µ og σ er ukjente. n er vilkårlig. X µ Som før (for konfidensintervall), W= ~ tn ( 1) fordelt uansett µ. S n X µ Testobservator: T =, som er lik W hvis µ = µ S n T~ tn ( 1) hvis µ = µ (som er nok til å bestemme kritisk verdi). Hvis, f.eks. problemet er H: µ µ mot H1: µ > µ, skal vi forkaste for store verdier av T, dvs. for T k der den kritiske verdien k bestemmes av ligningen P ( T k) k t = = α = µ µ α Eksakt α-nivå test: "Forkast hvis " H T t α (Tilsvarende for de andre problemene side 17 - se regel 6.19 (6.16)). Les eksempel 6.28 ( 6.26) - (uten setningen om p-verdi ) 2