PARAMETERFRAMSTILLING FOR EN KULEFLATE

Like dokumenter
Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

R2 - Kapittel 1: Vektorer

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Fredag 7. desember 2007 kl Løsningsforslag. Bokmål

1 Geometri R2 Oppgaver

Fasit til utvalgte oppgaver MAT1100, uka 18/10-22/10

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

R2 eksamen høsten 2017 løsningsforslag

Trigonometriske funksjoner (notat til MA0003)

Geometri R2, Prøve 2 løsning

TFE4120 Elektromagnetisme

Matematikk og fysikk RF3100

Løsning eksamen R1 våren 2008

Eksamen R2 høsten 2014 løsning

TMA4105 Matematikk 2 vår 2013

Løsning 1med teori, IM3 høst 2011.

1 Geometri R2 Løsninger

Eksamen R2 høst 2011, løsning

Eksamen REA3022 R1, Våren 2012

Forkunnskaper i matematikk for fysikkstudenter. Vektorer.

DEL 1. Uten hjelpemidler. er a2 4 og a5 13. a) Bestem den generelle løsningen av differensiallikningen.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.

Eksamen R2, Våren 2011 Løsning

Løsning til utvalgte oppgaver fra kapittel 14 (12).

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 7. desember Vidaregåande kurs II / Videregående kurs II

Matematikk R1. Odd Heir Gunnar Erstad Ørnulf Borgan Håvard Moe Per Arne Skrede BOKMÅL

Sammendrag R mai 2009

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Deriver funksjonene gitt ved. Polynomet P er gitt ved

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13

Eksamen våren 2008 Løsninger

MA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5

Navigasjon. Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar Tom Hetty Olsen

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

Forkunnskaper i matematikk for fysikkstudenter. Trigonometri. Omregning mellom grader og radianer skjer etter formelen nedenfor:

Eksamen R2, Va ren 2014

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011

Trigonometri. Kompetansemål: Sti 1 Sti 2 Sti Formlikhet 200, 201, 202, 203, 204, , 210, 211, 212, 213, , 220, 221, 222, 223, 224

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5

Eksamen R1 høsten 2014

Innlevering i matematikk Obligatorisk innlevering nr. 5 Innleveringsfrist: 18. februar 2011 kl Antall oppgåver: 5 Ein skal grunngi alle svar.

Eksamen REA3022 R1, Våren 2011

Eksamen MAT1013 Matematikk 1T Våren 2013

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) S( x) 1 e e e. Deriver funksjonene. Bestem integralene

β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1) = 2rcosθsinθi r +r( sinθsinθ+cosθcosθ)i θ

Eksamen R1, Våren 2015

R2 - kapittel 5 EF og 6 ABCD

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Eksamen R1 høsten 2014 løsning

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (3 poeng) Deriver funksjonene. En funksjon f er gitt ved

DEL 1. Uten hjelpemidler. Oppgave 1 (4 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. g( x) e x. x x x.

Eksamen MAT1013 Matematikk 1T Våren 2013

Geografisk navigasjon. Lengde- og breddegrader

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Eksamen 1T våren 2016

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember Vidaregåande kurs I / Videregående kurs I

MA0002 Brukerkurs i matematikk B Vår 2013

Løsning 1 med teori, IM3 høst 2012.

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

Eksamen 1T, Høsten 2012

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

DEL 1 Uten hjelpemidler

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Eksamen R2 høsten 2014

Elektrisk potensial/potensiell energi

Fysikk 2 Eksamen våren Løsningsforslag

Eksamen R2, Høsten 2015, løsning

E K S A M E N. Matematikk 3MX LÆRINGSSENTERET. Elevar / Elever. AA juni 2004

β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1)

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Løsning eksamen R1 våren 2009

DEL 1 Uten hjelpemidler

Kapittel 5. Areal, omkrets, volum og overflate

MA1102 Grunnkurs i analyse II Vår 2019

R1 eksamen høsten 2016

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Løsningsforslag R2 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik

Eksamen REA3022 R1, Våren 2009

R2 eksamen våren 2018 løsningsforslag

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Oppgaver og fasit til seksjon

Eksamen R2, Høst 2012, løsning

R2 - Vektorer i rommet

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?

Løsningsforslag uke 42

( ) DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Px ( ) er altså delelig med ( x 2) hvis og bare hvis k = 8. f x x x. hx ( x 1) ( 1) ( 1) ( 1)

Prøve i R2 Integrasjonsmetoder

Notat om trigonometriske funksjoner

Transkript:

1 PARAMETERFRAMSTILLING FOR EN KULEFLATE Vi har tidligere sett hordan i kan lage en parameterframstilling for et plan ed å uttrykke koordinatene ed to parametere, f. eks s og t. Fra 1.2 et i at x = x0 + a1s+ a2t y = y0 + b1s+ b2t z = z0 + c1s+ c2t er en parameterframstilling for planet som går gjennom punktet ( x0, y0, z 0) og er parallelt med ektorene [ a1, b1, c 1] og [ a2, b2, c 2]. Vi kan også lage parameterframstillinger for flater som ikke er plane. Før i ser på parameterframstilling for en kuleflate minner i om parameterframstillingen for en sirkel fra R1. I planet har en sirkel med sentrum i origo og radius r parameterframstillingen x = rcos y = rsin, [0º, 360º Dette bruker i som utgangspunkt når i skal utlede en parameterframstilling for en kuleflate. Vi plasserer kula i et koordinatsystem slik at kulesenteret ligger i origo. Vinkelrett på z-aksen har i lagt to plan, det ene ed z = 0 og det andre ed z = a. De to planene skjærer kuleflaten i her sin sirkel. Radien er r i den ene sirkelen og r 1 i den andre.

2 De to sirklene på figuren får da parameterframstillingene x = rcos y = rsin z = 0 og x = r cos y = r sin z = a 1 1 Den enkleste parameterframstillingen får i nå ed å uttrykke z- koordinaten a og sirkelradien r 1 ed en felles parameter, nemlig inkelen u på figuren. Ser du at a = rsin u, og at r1 = rcos u? Vi lar Px (, y, z ) ære et punkt på kuleflaten som har radius r og sentrum i origo. Så lar i Q ære fotpunktet for normalen fra P på xy-planet. u er inkelen mellom xy-planet og OP. For den positie z-aksen er u = 90º. For den negatie z-aksen er u = 90º. er inkelen mellom den positie x-aksen og OQ. A trekant OQP får i at OQ = OP cos u = r cos u. x-, y- og z-koordinaten til P kan i nå uttrykke ed kuleradien r og inklene u og : x = OQ cos = r cos u cos y = OQ sin = r cos u sin z = OP sin u = r sin u Lar i parameteren u ha erdier i interallet [ 90º, 90º ] og ha erdier i [0º, 360º, får i med alle punktene på kuleflaten. NB! Vinkelen u regner i som negati når z-koordinaten til punktet P er negati.

3 Eksempel 1 Punkter på kuleflate Figuren iser en kuleflate med sentrum i origo. Punktene A og B ligger på kuleflaten. Vi skal lage en parameterframstilling for kuleflaten og finne parametererdiene som sarer til punktene A og B. Både A og B har astanden 7 fra origo, og i får parameterframstillingen x = 7 cos u cos y = 7 cos u sin z = 7 sin u Da A ligger på y-aksen er inkelen mellom OA og xy-planet 0º. Det betyr at u = 0º. Vinkelen = 90º. For punktet B setter i inn x-, y- og z-koordinatene i parameterframstillingen og løser med hensyn på u og. For z får i For x får i 6 = 7 sin u 6 sin u = 7 1 6 sin = 59,0º 7 u = 59,0º 2 = 7 cos59,0º cos 2 cos = = 0,5547 7 cos59,0º = 56, 3º 1 cos 0,5547 = 56,3º Kontroller sel at u = 59,0º og = 56,3º gir riktig y-erdi. Oppgae 1 a Lag en parameterframstilling for en kuleoerflate med radius 12 og sentrum i origo. b Finn punktet som sarer til parametererdiene u = 30º og = 45º i parameterframstillingen x = 4cos u cos y = 4cos u sin z = 4sin u

4 c Punktet P = (2, 1, 2) ligger på en kuleflate med sentrum i origo. Finn en parameterframstillling for kuleflaten og bestem parametererdiene som sarer til P. Oppgae 2 Bestem parametererdiene u og for punktet P i kuleflaten med sentrum i origo. a b Oppgae 3 2 2 Bruk den trigonometriske formelen cos + sin = 1 til å ise at parameterframstillingen x = rcos u cos y = rcos u sin z = rsin u 2 2 2 2 gir likningen x + y + z = r. Oppgae 4 En kuleflate er gitt ed x = cos u cos y = cos u sin z = sin u, u 90º [, 90º ] og [ 0º, 360º. a Hor finner i de punktene som har parametererdien u = 60º? b Hor finner i de punktene som har parametererdien = 45º?

5 I en kuleflate med sentrum i ( x0, y0, z 0), er alle punktene på kuleflaten flyttet ektoren [ x0, y0, z 0] i forhold til en like stor kule med sentrum i origo. Vi har derfor: En kuleflate med sentrum i ( x0, y0, z 0) og med radius r har parameterframstillingen x = x0 + rcos u cos y = y0 + rcos u sin z = z0 + rsin u u [ 90º, 90º ] og [0º, 360º Eksempel 2 Fra likning til parameterframstilling Vi skal bestemme en parameterframstilling for kuleflaten gitt ed likningen x 2 4x+ y 2 + 2y+ z 2 6z = 11. Vi omformer og finner sentrum og radius til kula: 2 2 2 2 2 2 2 2 2 x 4x+ 2 + y + 2y+ 1 + z 6z + 3 = 11 + 2 + 1 + 3 2 2 2 2 ( x 2) + ( y+ 1) + ( z 3 ) = 25= 5 Kuleflaten har sentrum i (2, 1, 3) og radius 5. Parameterframstillingen for kuleflaten er x = 2 + 5cos u cos y = 1 + 5cos u sin z = 3 + 5sin u Oppgae 5 Bestem en parameterframstilling for kuleflaten gitt ed likningen a x 2 + 2x+ y 2 + z 2 8z = 19 b 2x 4x+ 2y 6y+ 2z + 10z = 2 2 2 11 2 Oppgae 6 Bestem likningen for kuleflaten gitt ed parameterframstillingen a x = 4 cos u cos y = 2 + 4 cos u sin z = 1 + 4 sin u b x = 7 cos u cos + 3 y = 1 + 7 cos u sin z = 7 sin u 4 Lengde- og breddegrader Jordoerflaten er delt inn i lengde- og breddegrader. Halsirkelen fra nordpolen til sørpolen som går gjennom Greenwich i London kaller i nullmeridianen (lengdegrad 0º). Så blir alle lengdegrader målt ut fra denne. Norge ligger mellom ca 5º østlig lengde og 31º østlig lengde. Nordlig og sørlig breddegrad blir målt ut fra ekator, som er sirkelen som ligger midt mellom Nord- og Sørpolen. Vi bruker en kuleflate som en tilnærming til jordoerflaten, og tenker oss et koordinatsystem med origo i jordsentret, z-aksen i nord-retningen og x- aksen ut gjennom nullmeridianen. Så setter i opp parameterframstillingen for kuleflaten: x = rcos u cos y = rcos u sin z = rsin u

6 Da il østlig lengde for et punkt på jordoerflaten sare til parameteren. Nordlig breddegrad sarer til parameteren u for positie u-erdier. For negatie inkler u er i sør for ekator. Vi regner jorden som en kule med radius 6371 km. Eksempel 3 Astanden mellom to punkter på en kule På en globus (Google Earth) finner i at Oslo ligger på 60º nordlig bredde og 11º østlig lengde. Reykjaik ligger på 64º nordlig bredde og 22º estlig lengde. Vi skal bruke dette til å finne astanden mellom Oslo og Reykjaik langs jordoerflaten. Vi regner med jordradien 6371 km. x= 6371cos u cos y = 6371cos u sin z = 6371 sin u er en parameterframstilling for jordoerflaten. Parametererdiene for Oslo (P) er u = 60º og = 11º. For Reykjaik (R) er de u = 64º og = 360º 22º = 338º. Det gir koordinatene P = (6371cos60º cos11º, 6371cos60º sin11º, 6371sin60º) = (3127,608, 5517) R = (6371cos64º cos338º, 6371cos64º sin338º, 6371sin64º) = (2589, 1046, 5726) Nå kan i bruke skalarprodukt for å finne inkelen POR (O er origo): OP OR [3127, 608, 5517] [2589, 1046, 5726] cos POR = = = 39 050 177 0,9621 2 OP OR 6371 40 589 641 = 1 POR = cos 0,9621 = 15,8º POR 15,8 Vinkelbuen PR langs jordoerflaten er da 2πr = 2π 6371 = 1757 360º 360 Astanden mellom Oslo og Reykjaik er altså ca 1760 km.

7 Oppgae 7 Lindesnes ligger på 7,05º østlig lengde og 57,98º nordlig bredde. Nordkapp ligger på 25,80º østlig lengde og 71,17º nordlig bredde. a Bestem x-, y- og z-koordinatene til Lindesnes og Nordkapp. b Finn astanden mellom Lindesnes og Nordkapp. Oppgae 8 Madrid og New York ligger begge på ca 40º nordlig bredde. Lengdegradene er 4º estlig lengde og 74º estlig lengde. a Regn ut astanden fra Madrid til New York langs 40. breddegrad. b Ha er den minste astanden fra Madrid til New York (langs jordoerflaten)? Oppgae 9 To punkter A og B på jordoerflaten ligger henholdsis 30º nord for ekator og 30º sør for ekator. De ligger på samme lengdegrad. To andre punkter P og Q ligger henholdsis 30º øst og 30º est for nullmeridianen. De ligger på samme breddegrad. Vurder påstanden: A og B ligger lengre fra herandre enn P og Q. (Astanden målt langs jordoerflaten.)

8 Fasit 1a x = 12cos u cos y = 12cos u sin z = 12sin u b (2, 45, 2, 45, 2) c x= 3cos u cos y = 3cos u sin z = 3sin u u = 41,8º, = 26,6º 2a u = 45º, = 0º b u = 35, 3º, = 225º 4a Sirkel i plan parallelt med xy-planet, (radius 0,5 og sentrum i (0,0,0,87) b Halsirkel mellom (0,0,1) og (0,0, 1)i planet x = y 5a x = 1 + 6 cos ucos y = 6 cos usin z = 4 + 6sin u 7 3 7 5 7 b x= 1 + cos ucos y = + cos usin z = + sin u 2 2 2 2 2 6a x 2 + ( y 2) 2 + (( z + 1) 2 = 16 b ( x 3) 2 + ( y 1) 2 + ( z + 4) 2 = 49 7a x= 3352,2, y = 414,6, z = 5401,9 og x = 1851,6, y = 895,1, z = 6029,9 b 1701 km 8a 5963 km b 5797 km