Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering

Størrelse: px
Begynne med side:

Download "Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering"

Transkript

1 Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag,

2 Oversikt 1 Oversikt Introduksjon. Hva er et reservoar?

3 Oversikt 1 Oversikt Introduksjon. Hva er et reservoar? Matematisk modell. Hvordan beskrive et reservoar i matematikkens språk?

4 Oversikt 1 Oversikt Introduksjon. Hva er et reservoar? Matematisk modell. Hvordan beskrive et reservoar i matematikkens språk? Simulering / numerisk metoder. Hvordan løse ligningene i den matematiske modellen?

5 Oversikt 1 Oversikt Introduksjon. Hva er et reservoar? Matematisk modell. Hvordan beskrive et reservoar i matematikkens språk? Simulering / numerisk metoder. Hvordan løse ligningene i den matematiske modellen? Visualisering av strøm i en- og to-dimensjoner.

6 Introduksjon. 2 Introduksjon. Et reservoar består av selve berggrunnen - den faste fasen,

7 Introduksjon. 2 Et reservoar består av Introduksjon. selve berggrunnen - den faste fasen, olje - den ikke-vetende fasen - og

8 Introduksjon. 2 Et reservoar består av Introduksjon. selve berggrunnen - den faste fasen, olje - den ikke-vetende fasen - og vann - den vetende fasen.

9 Introduksjon. 2 Et reservoar består av Introduksjon. selve berggrunnen - den faste fasen, olje - den ikke-vetende fasen - og vann - den vetende fasen. Generelt vil det være flere faser - spesielt gass - men la oss holde det enkelt.

10 Introduksjon. 3 Hver fase kan bestå av flere komponenter. Oljefasen består for eksempel av mange forskjellige hydrokarboner. Vannfasen derimot består som regel bare av vann.

11 Introduksjon. 3 Hver fase kan bestå av flere komponenter. Oljefasen består for eksempel av mange forskjellige hydrokarboner. Vannfasen derimot består som regel bare av vann. Generelt vil det også være transport av masse mellom fasene (faseovergang), men vi vil ikke bry oss med det. Hvis man tillater faseovergang, så vil man vanligvis betrakte massen av komponentene i steden for av fasene.

12 Introduksjon. 4 Oljeutvinning foregår vet at man borer et hull ned i reservoaret. Til å begynne med er trykket høyt nok til at oljen kommer opp av seg selv. Etter hvert vil trykket falle, og man må bore en brønn til hvor man injiserer for eksempel vann for å holde trykket oppe.

13 Introduksjon. 5 For å forstå den prosessen må man lage matematiske modeller. Disse modellene gjør en i stand til å vite når, hvor mye og hvor man skal injisere.

14 Introduksjon. 5 For å forstå den prosessen må man lage matematiske modeller. Disse modellene gjør en i stand til å vite når, hvor mye og hvor man skal injisere. I tillegg er geologiske data helt nødvendig - ellers vet man jo ikke hvordan berggrunnen ser ut. Her gjør geologene en fremragende jobb så dette er vanligvis ikke noe problem.

15 Matematisk modell 6 Matematisk modell For å lage vår modell må vi definere noe variabler: V b V p V l φ = V p /V b S l = V l /V p K k rl bulkvolum porevolum volum av fase l porøsitet metning av fase l absoluttt permeabilitet relativ permeabilitet for fase l

16 Matematisk modell 7 u l hastighet for fase l u tot = u o + u w totalhastighet µ l viskositet for fase l λ l = k rl /µ l mobilitet for fase l p l trykk i fase l P c = p o p w kapillærtrykk ρ l tettheten til fasen l g tyngdens konstant kilde/slukledd for fase l q l

17 Matematisk modell 8 Permeabilitet er ledningsevnen til berggrunnen. Den kan også betraktes som inversen av motstanden. Permeabiliteten vil vanligvis variere med bergarten. Den relative permeabiliteten blir innført fordi forskjellige faser har forskjellig ledningsevne i den samme bergarten.

18 Matematisk modell 8 Permeabilitet er ledningsevnen til berggrunnen. Den kan også betraktes som inversen av motstanden. Permeabiliteten vil vanligvis variere med bergarten. Den relative permeabiliteten blir innført fordi forskjellige faser har forskjellig ledningsevne i den samme bergarten. Viskositet er et mål på seigheten eller den indre friksjonen i en væske eller gass.

19 Matematisk modell 8 Permeabilitet er ledningsevnen til berggrunnen. Den kan også betraktes som inversen av motstanden. Permeabiliteten vil vanligvis variere med bergarten. Den relative permeabiliteten blir innført fordi forskjellige faser har forskjellig ledningsevne i den samme bergarten. Viskositet er et mål på seigheten eller den indre friksjonen i en væske eller gass. Kilde- og slukledd er i denne sammenhengen brønner.

20 Matematisk modell 9 for to-fase-strøm Darcys lov u l = Kk rl µ l ( p l ρ l g z). (1)

21 Matematisk modell 9 for to-fase-strøm Darcys lov u l = Kk rl µ l ( p l ρ l g z). (1) for to faser Massekonservering (φs l ρ l ) t + (u l ρ l ) = q l. (2)

22 Matematisk modell 10 nå at vi har: Anta 1. Strøm kun i den horisontale dimensjonen!!

23 Matematisk modell 10 nå at vi har: Anta 1. Strøm kun i den horisontale dimensjonen!! 2. Samme trykk i begge fasene.

24 Matematisk modell 10 nå at vi har: Anta 1. Strøm kun i den horisontale dimensjonen!! 2. Samme trykk i begge fasene. 3. Konstant viskositet, porøsitet og tetthet.

25 Matematisk modell 10 nå at vi har: Anta 1. Strøm kun i den horisontale dimensjonen!! 2. Samme trykk i begge fasene. 3. Konstant viskositet, porøsitet og tetthet. 4. Porevolumet er fullstendig fylt S w + S o = 1

26 Matematisk modell 10 nå at vi har: Anta 1. Strøm kun i den horisontale dimensjonen!! 2. Samme trykk i begge fasene. 3. Konstant viskositet, porøsitet og tetthet. 4. Porevolumet er fullstendig fylt S w + S o = 1 5. Ingen kilde- eller slukledd.

27 Matematisk modell 10 nå at vi har: Anta 1. Strøm kun i den horisontale dimensjonen!! 2. Samme trykk i begge fasene. 3. Konstant viskositet, porøsitet og tetthet. 4. Porevolumet er fullstendig fylt S w + S o = 1 5. Ingen kilde- eller slukledd. Dette gir...

28 Matematisk modell 11 Forenklet massekonservering for to faser φ S w t + u w x = 0, og Darcys lov φ S o t + u o x = 0 (3) u l = Kk rl µ l p l x. (4)

29 Matematisk modell 12 Ved å legge sammen de enkle massekonserveringsligningene (3) får vi (u o + u w ) x siden S w + S o = 1. = u tot x = 0 u tot = konstant (5) Ved hjelp av ligningene (3), (4) og (5) kan vi utlede...

30 Matematisk modell 13 Fraksjonstrømformuleringen Følgende enkle ligning beskriver strømmen av to faser i et horisontalt en-dimensjonalt reservoar (hvor trykka i fasene er like): S t + u φ f(s) x = 0 (6) S er vannmetningen og f(s) er den tilhørende fraksjonstrømfunksjonen.

31 Matematisk modell 14 Fraksjonstrømfunksjonen er gitt som f(s) = u w u tot = λ w λ w + λ g (7) hvor λ l er mobilitetene. Ligning (6) kalles gjerne Buckley-Leverett-ligningen og er en klassisk ikke-lineær hyperbolsk differensialligning.

32 Simulering 15 Simulering Her vil bare den aller enkleste metoden bli presentert - endelig differanser. Det første du gjør er å dele opp området ditt i intervaller. På hvert intervall vil vannmetningen - løsning av ligning (6) være konstant.

33 Simulering 15 Simulering Her vil bare den aller enkleste metoden bli presentert - endelig differanser. Det første du gjør er å dele opp området ditt i intervaller. På hvert intervall vil vannmetningen - løsning av ligning (6) være konstant. Deretter tilnærmer du de partielt deriverte med (endelige) differanser på for eksempel følgende måte:

34 Simulering 16 hvor T m j S(x j, t m ) t f(s(x j, t m )) x T j m+1 t T m j f(t m j ) f (T m j 1 ) x er den tilnærmede verdien for S(j x, m t)..

35 Simulering 17 Differanseskjema Bruker man disse differansene får man følgende skjema hvor t og x er diskretiseringen i henholdsvis tid og rom. T m+1 j = T m j t x [f(t m j ) f(t m j 1)] (8) Se neste side for visualisering av et eksempel som er løst ved hjelp av dette skjemaet.

36 Visualisering 18 Her er noen eksempler: Visualisering Simulering av en-dimensjonal to-fase strøm i et homogent reservoar - uten kapillærtrykk - ved hjelp av et differanseskjema (8). Simulering av to-dimensjonal to-fase strøm i et heterogent reservoar. Simulering av et to-dimensjonalt reservoar ved hjelp av en nettverkmodell.

37 Visualisering 19 SLUTT! Du finner hele presentasjonen på min hjemmeside: hansfn

38 Visualisering 20 Et reservoar

39 Visualisering 21 Et to-dimensjonalt grid

40 Visualisering 22 Utledning av fraksjonstrømformuleringen Med utgangspunktet i (4) og at p w = p o får vi u w Kλ w = u o Kλ o. (9) Hvis du bytter ut u o med u u w i ligning (9) og løser for u w, så får du u w u tot = λ w λ w + λ g def = f(s w ). (10)

41 Visualisering 23 Sett dette inn ligning (3) for vannmetningen, S w, og du får S w t + u φ f(s w ) x = 0. (11) Dette kalles fraksjonstrømformuleringen og var det vi skulle utlede. Gå videre.

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag, 01.02.2000. Oversikt 1 Oversikt Introduksjon. Hva er

Detaljer

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en Skisse til løsning Eksamen i Reservoarteknikk. september, 998 Oppgave a) v k dφ s µ ds ; () hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en v s : volumhastighet, cm/s k : permeabilitet,

Detaljer

Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede

Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede ResTek1 Øving 5 Oppgave 1 Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede kjerneplugger: 1000 md prøve 200 md prøve P c psi S w P c psi S w 1.0 1.00 3.0 1.00 1.5

Detaljer

ResTek1 Løsning Øving 12

ResTek1 Løsning Øving 12 ResTek1 Løsning Øving 12 Oppgave 1 Den totale kompressibiliteten er gitt ved, Fra plottet ser vi at. Dette gir Skinfaktoren er gitt ved Fra grafen i figur 1 ser en at. Dette gir en skadet brønn. Det kan

Detaljer

HØGSKOLEN I STAVANGER ...(1) Hvordan blir denne ligningen dersom skilleflaten mellom fasene er en kuleflate?

HØGSKOLEN I STAVANGER ...(1) Hvordan blir denne ligningen dersom skilleflaten mellom fasene er en kuleflate? HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG EKSAMEN I: TE 0195 Reservoarteknikk 1 VARIGHET: kl. 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET BESTÅR AV: 5 sider MERKNADER:

Detaljer

SIG4010 STRØMNING I PORØSE MEDIA / FLUDMEKANIKK ØVING 4

SIG4010 STRØMNING I PORØSE MEDIA / FLUDMEKANIKK ØVING 4 SIG4 STRØMNING I PORØSE MEDIA / FLUDMEKANIKK ØVING 4 Oppgave Nedenfor vises laboratorieresultater fra kapillærtrykksmålinger av systemet kerosen (parafin) som fortrenger formasjonsvann for tre kjerner

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

d) Beregn trykket i brønnen ved bruk av data fra tabell 1.

d) Beregn trykket i brønnen ved bruk av data fra tabell 1. HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG DATO: 21. SEPTEMBER 1998 EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET

Detaljer

KJ1042 Øving 12: Elektrolyttløsninger

KJ1042 Øving 12: Elektrolyttløsninger KJ1042 Øving 12: Elektrolyttløsninger Ove Øyås Sist endret: 14. mai 2011 Repetisjonsspørsmål 1. Hva sier Gibbs faseregel? Gibbs faseregel kan skrives som f = c p + 2 der f er antall frihetsgrader, c antall

Detaljer

ResTek1 Løsning Øving 5

ResTek1 Løsning Øving 5 ResTek1 Løsning Øving 5 Ogave 1 Bruker at cr = h(ρ w ρ o ) 62:4=144, når er i si, h ft, ρ g/cm 3,ogat cl = σ L =σ R cr, som gir at cl = 0:188h. Dette gir følgende tabell, 1000 md røve 200 md røve h[ft]

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

ResTek1 Løsning Øving 11

ResTek1 Løsning Øving 11 ResTek Løsning Øving Oppgave a) La L bety lengde, M masse, T tid i et hvilket som helst konsistent sett av enheter. Da er [k] =L 2, [µ] =M/LT, [p] =(ML/T 2 )/L 2 = M/LT 2, [c] =LT 2 /M, og da blir [ ]

Detaljer

Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010.

Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010. 1 Fakultet for teknisk naturvitenskapelige fag Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010. Tid: 09.00-13.00 Tillatte hjelpemidler: Enkel kalkulator Oppgavesettet består av: 8 sider inkludert

Detaljer

KJ1042 Øving 5: Entalpi og entropi

KJ1042 Øving 5: Entalpi og entropi KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Oppgave 1. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, a) p c = 2σ/R hvor R = R 1 = R 2.

Oppgave 1. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, a) p c = 2σ/R hvor R = R 1 = R 2. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, 003 Oppgave 1 a) p c = σ/r hvor R = R 1 = R. b) Arbeidet utført ved volumutvidelsen er netto kraft multiplisert med veien kraften har virket. Kraften

Detaljer

STREAMFLOW ROUTING. Estimere nedstrøms hydrogram, gitt oppstrøms. Skiller mellom. hydrologisk routing hydraulisk routing

STREAMFLOW ROUTING. Estimere nedstrøms hydrogram, gitt oppstrøms. Skiller mellom. hydrologisk routing hydraulisk routing STREAMFLOW ROUTING Estimere nedstrøms hydrogram, gitt oppstrøms Skiller mellom hydrologisk routing hydraulisk routing Hydraulisk routing er basert på løsning av de grunnleggende differensial ligninger

Detaljer

ResTek1 Løsning Øving 11

ResTek1 Løsning Øving 11 ResTek Løsning Øving Oppgave a) La L bety lengde, M masse, T tid i et hvilket som helst konsistent sett av enheter. Da er [k] L 2, [µ] MLT, [p] (MLT 2 )L 2 MLT 2, [c] LT 2 M, og da blir t D p D» kt φµcr

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

PROSJEKT- OG MASTEROPPGAVER VED SINTEF IKT, AVD. FOR ANVENDT MATEMATIKK

PROSJEKT- OG MASTEROPPGAVER VED SINTEF IKT, AVD. FOR ANVENDT MATEMATIKK PROSJEKT- OG MASTEROPPGAVER VED SINTEF IKT, AVD. FOR ANVENDT MATEMATIKK SINTEF er Skandinavias største uavhengige forskningsorganisasjon. Rundt 1700 ansatte arbeider med å finne smarte og lønnsomme løsninger

Detaljer

Differansemetoder for to-punkts randverdiproblemer. Innledning. Anne Kværnø

Differansemetoder for to-punkts randverdiproblemer. Innledning. Anne Kværnø Differansemetoder for to-punkts randverdiproblemer. Anne Kværnø Innledning Tidligere i kurset har dere diskutert parabolske, elliptiske og hyperbolske differensialligninger, og hvordan disse kan løses

Detaljer

Bevarelsesmetoder for elliptiske differensialligninger

Bevarelsesmetoder for elliptiske differensialligninger Bevarelsesmetoder for elliptiske differensialligninger Ivar Aavatsmark Anvendt og beregningsorientert matematikk Universitetet i Bergen Bergen 2007 Innhold Modelligninger 4. Enfasestrømning i porøse stoffer.................

Detaljer

σ cosθ φ (1) Forklar kort de størrelser som inngår, deres benevning i et konsistent sett av enheter og hva J-funksjonen brukes til.

σ cosθ φ (1) Forklar kort de størrelser som inngår, deres benevning i et konsistent sett av enheter og hva J-funksjonen brukes til. AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET BESTÅR AV: 7 sider MERKNADER: Ingen DATO: 3.JUNI

Detaljer

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,

Detaljer

Notat: Analytisk løsning

Notat: Analytisk løsning Notat: Analytisk løsning I dette notatet er utledet en analytisk løsning på det problemet som simuleres i øving 1: Strøm av en svakt kompressibel fase (olje) gjennom et horisontalt, endimensjonalt, reservoar

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

Fuktig luft. Faseovergang under trippelpunktet < > 1/71

Fuktig luft. Faseovergang under trippelpunktet < > 1/71 Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71

Detaljer

Resultanten til krefter

Resultanten til krefter KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet

Detaljer

ResTek1 Øving 12. Oppgave 1 Trykkfallstest. Oppgave 2 Trykkfallstest

ResTek1 Øving 12. Oppgave 1 Trykkfallstest. Oppgave 2 Trykkfallstest ResTek1 Øving 12 Oppgave 1 Trykkfallstest Følgende formasjons- og produksjonsdata er gitt for denne trykkfallstesten, tabell 1, Trykkdata er gitt i tabell 2, Beregn permeabilitet og skinfaktor fra transient

Detaljer

, tilsvarende terskeltrykket p d

, tilsvarende terskeltrykket p d HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG DATO: 3. SEPTEMBER 1999 EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET

Detaljer

Rekning i fjord og fjell! Geiranger Matematikk som kan forlenge oljealderen. Helge K. Dahle Matematisk institutt

Rekning i fjord og fjell! Geiranger Matematikk som kan forlenge oljealderen. Helge K. Dahle Matematisk institutt Matematikk som kan forlenge oljealderen Helge K. Dahle Matematisk institutt Rekning i fjord og fjell Ålesund -19. september, 2011 Oversyn Modellar Prinsipp for modellering Litt modellering Henry Darcyog

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

Oppgave 3. Skisse til løsning Eksamen i Reservoarteknikk 14. desember, a) Se forelesningene. b) Fra Darcys lov,

Oppgave 3. Skisse til løsning Eksamen i Reservoarteknikk 14. desember, a) Se forelesningene. b) Fra Darcys lov, Skisse til løsning Eksamen i Reservoarteknikk 14 desember 2006 Oppgave 3 a) Se forelesningene b) Fra Darcys lov u = k dp µ dr Darcy-hastigheten u er uttrykt ved u r = q/a hvor tverrsnittsarealet A er gitt

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

CO 2 injeksjon for økt oljeutvinning i kalk

CO 2 injeksjon for økt oljeutvinning i kalk CO 2 injeksjon for økt oljeutvinning i kalk Masteroppgave i reservoarfysikk Kamal N. Ahmed Institutt for fysikk og teknologi Universitetet i Bergen Juni 2013 2 Sammendrag Denne masteroppgaven studerer

Detaljer

Simulerings-eksperiment - Fysikk/Matematikk

Simulerings-eksperiment - Fysikk/Matematikk Simulerings-eksperiment - Fysikk/Matematikk Tidligere dette semesteret er det gjennomført et såkalt Tracker-eksperiment i fysikk ved UiA. Her sammenlignes data fra et kast-eksperiment med data fra en tilhørende

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Enkle generiske klasser i Java

Enkle generiske klasser i Java Enkle generiske klasser i Java Oslo, 7/1-13 Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo Del 1: Enkle pekere Før vi tar fatt på det som er nytt i dette notatet, skal vi repetere litt

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

Figur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1):

Figur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1): Skisse til løsning Eksamen i Reservoarteknikk 3. september, 999 Oppgave Figur : Skisse av den ene armen til en sentrifuge; kjerne i beholder. a Akselerasjonen er ω r. Kraftbidraget df fra masse dm i volumelement

Detaljer

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann.

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann. Sisse til løsning Esamen i Reservoarteni 3. juni, 999 Oppgave a) Kapillartry er differansen i try mellom to faser på hver side av den infinitesimale overflaten som siller fasene. Det følger av en minimalisering

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Løsningsforslag til prøve i fysikk

Løsningsforslag til prøve i fysikk Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Simulering og Analyse av 3-fase Strømningseksperimenter. Masteroppgave Arne Kristian Schille

Simulering og Analyse av 3-fase Strømningseksperimenter. Masteroppgave Arne Kristian Schille Simulering og Analyse av 3-fase Strømningseksperimenter Masteroppgave Arne Kristian Schille Institutt for Fysikk og Teknologi Centre of Integrated Petroleum Research Juni 29 II Forord Oppgaven er skrevet

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

Figur 1: Isoterm ekspansjon. For en gitt temperatur T endrer trykket seg langs den viste kurven.

Figur 1: Isoterm ekspansjon. For en gitt temperatur T endrer trykket seg langs den viste kurven. Fysikk / ermodynamikk åren 00 6. Gassers termodynamikk 6.. Ekspansjon av ideelle gasser vslutningsvis skal vi se på noen viktige prosesser som involverer ideelle gasser. isse prosessene danner i sin tur

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,

Detaljer

Skaleringskriterier for vannflømming i sandstein og tertiær oljeutvinning ved bruk av CO 2

Skaleringskriterier for vannflømming i sandstein og tertiær oljeutvinning ved bruk av CO 2 Skaleringskriterier for vannflømming i sandstein og tertiær oljeutvinning ved bruk av CO 2 Mastergradsoppgave i reservoarfysikk Sigurd Nybø Institutt for fysikk og teknologi Universitetet i Bergen Norge

Detaljer

Løsningsforslag Øving 12

Løsningsforslag Øving 12 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 013 Oppgave 9-89 Løsning Vi skal finne et uttrykk for trykket som funksjon av x og y i et gitt hastighetsfelt. Antagelser 1 Strømningen er stasjonær.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1001 Eksamensdag: 12. juni 2019 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (3 sider).

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MEK1100, vår Obligatorisk oppgave 1 av 2. Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). 28. februar 2019 Innleveringsfrist MEK1100, vår 2019 Obligatorisk oppgave 1 av 2 Torsdag 28. februar 2019, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

ResTek1 Løsning Øving 12

ResTek1 Løsning Øving 12 ResTek1 Løsning Øving 12 Oppgave 1 Den totale kompressibiliteten c t er gitt ved, c t = c o S o + c w S w + c g S g + c f = 10.95 10 6 psi 1. Fra plottet ser vi at m = 8.1 psi/dekade. Dette gir k o = 162.6Q

Detaljer

Overslag FRA A TIL Å

Overslag FRA A TIL Å Overslag FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overslag 2 2 Grunnleggende om overslag 2 3 Å gjøre overslag 6 4 Forsiktighetsregler 7 4.1 Når overslaget ikke

Detaljer

Studieretning for geofag og petroleumsteknologi

Studieretning for geofag og petroleumsteknologi Studieretning for geofag og petroleumsteknologi Leting etter og utvinning av olje og gass stiller store krav til datamodellering. Blant de aller største bruksområdene for datakraft i verden i dag er seismisk

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA423/TMA425 Matematikk 4M/4N Vår 203 Løsningsforslag Øving 2 La y = yx være funksjonen som tilfredstiller differensialligningen

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 04 05 Andre runde: 5/ 05 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: klokketimer

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

Studieretning for geofag og petroleumsteknologi

Studieretning for geofag og petroleumsteknologi Studieretning for geofag og petroleumsteknologi Leting etter og utvinning av olje og gass stiller store krav til datamodellering. Blant de aller største bruksområdene for datakraft i verden i dag er seismisk

Detaljer

EKSAMENSOPPGAVE. Oppgavesettet er på 5 sider inklusiv forside Kontaktperson under eksamen: Stian Normann Anfinsen Telefon:

EKSAMENSOPPGAVE. Oppgavesettet er på 5 sider inklusiv forside Kontaktperson under eksamen: Stian Normann Anfinsen Telefon: EKSAMENSOPPGAVE Eksamen i: Fys-1001 Mekanikk Dato: Torsdag 4. desember 2014 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator

Detaljer

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK [bokmål] Faglig kontakt under eksamen: Navn: Helge Redvald Skullerud Tlf: 73593625 EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7 mai 2001 Tid:

Detaljer

(a) Alternativt lineært eller radielt system, (b) Innlesing av nye data ved tid tqchg: qo(1), qo(mx), delmin, delmax, dtmult, dpmax, pconst, tqchg.

(a) Alternativt lineært eller radielt system, (b) Innlesing av nye data ved tid tqchg: qo(1), qo(mx), delmin, delmax, dtmult, dpmax, pconst, tqchg. 6. Radielt system Oppgaver 1. Programmet skal utvides til å inkludere (a) Alternativt lineært eller radielt system, (b) Innlesing av nye data ved tid tqchg: qo(1), qo(mx), delmin, delmax, dtmult, dpmax,

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Viktig informasjon. Taylorrekker

Viktig informasjon. Taylorrekker Viktig informasjon Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I dette oppgavesettet har du mulighet til å svare med digital

Detaljer

Detaljert modellering av 'gas blowby'

Detaljert modellering av 'gas blowby' Bilag Innhold BILAG 1 FLYTSKJEMA... 57 B1.1 MODELL 1... 57 B1.2 MODELL2... 58 B1.3 MODELL 3... 59 B1.4 MODELL 4... 60 BILAG 2 DIMENSJONER PÅ UTSTYR... 61 B2.1 DIMENSJONER FOR MODELL 1-3... 61 B2.2 MODELL

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx

lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 2 Avsnitt 3.7 95 Vi antar at > 0 og får Avsnitt 3.8 6 a) 2π/3 b) π/4 c) 5π/6 ln = (ln) 2 = 2ln = 2ln = 2ln ln.

Detaljer

EKSAMEN I FAG TMA4220 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN

EKSAMEN I FAG TMA4220 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Institutt for matematiske fag Faglig kontakt under eksamen: Einar M. Rønquist (73593547 EKSAMEN I FAG TMA422 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Torsdag 3. mai

Detaljer

Null. miljøskadelige. utslipp. til sjø på norsk sokkel

Null. miljøskadelige. utslipp. til sjø på norsk sokkel Olje- og gassindustrien har mål om Null miljøskadelige utslipp til sjø på norsk sokkel Olje- og gassindustrien jobber hele tiden med å utvikle teknologi og systemer som kan redusere utslippene fra virksomheten.

Detaljer

FYS1120 Elektromagnetisme H10 Midtveiseksamen

FYS1120 Elektromagnetisme H10 Midtveiseksamen FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Skriftlig eksamen BOKMÅL Emne: PTEK100 Semester: Høst 2012 Introduksjon til petroleums- og prosessteknologi Dato: 29.11.2012 Kl. (fra-

Detaljer

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten:

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: HAVBØLGER Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: Airy teori, også kalt lineær bølgeteori eller bølger av første orden Fremstillingen her vil temmelig nøyaktig følge kompendiet

Detaljer

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006 Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Bedre gjennom kunnskapsdeling" Grunn gass hendelse på jack-up

Bedre gjennom kunnskapsdeling Grunn gass hendelse på jack-up Bedre gjennom kunnskapsdeling" Grunn gass hendelse på jack-up Vi deler erfaring for å bli bedre Det er nedsatt en felles arbeidsgruppe bestående av personell fra operatørselskapene og boreentreprenørene

Detaljer

For en tid siden ble jeg konfrontert med følgende problemstilling:

For en tid siden ble jeg konfrontert med følgende problemstilling: Normat 55:, 3 7 (7) 3 Bøker på bøker En bokorms øvelse i stabling Ivar Farup Høgskolen i Gjøvik Postboks 9 N 8 Gjøvik ivar.farup@hig.no Innledning For en tid siden ble jeg konfrontert med følgende problemstilling:

Detaljer

Numerisk løsning av PDL

Numerisk løsning av PDL Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014 Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet

Detaljer

FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)

FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00

Detaljer

Emnebeskrivelse og emneinnhold

Emnebeskrivelse og emneinnhold Emnebeskrivelse og emneinnhold Knut STUT 11. mars 2016 MAT-INF1100 Kort om emnet Naturlige tall, induksjon og løkker, reelle tall, representasjon av tall i datamaskiner, numerisk og analytisk løsning av

Detaljer