Filtrering i Frekvensdomenet II
|
|
|
- Isak Larsen
- 8 år siden
- Visninger:
Transkript
1 Filtrering i Frekvensdomenet II Lars Vidar Magnusson March 7, 2017 Delkapittel 4.8 Image Smoothing Using Frequency Domain Filters Delkapittel 4.9 Image Sharpening Using Frequency Domain Filters
2 Low-Pass Filtere Vi begynner med å se på tre ulike low-pass (lavpass) filtere. Ideelt Butterworth Gaussian Felles for alle disse er at de filtrerer vekk innhold med høy frekvens (raske endringer)
3 Ideelt Low-Pass Filter Et ideelt low-pass filter sender gjennom alle frekvenser enn en gitt grense uten svekkelse (attenuation). Beholder alle frekvense lavere enn en gitt grense (radius) D 0. { 1 if D(u, v) D 0 H(u, v) = 0 if D(u, v) > D 0 hvor D 0 er en positiv konstant kalt cutoff frequency og D(u, v) er avstanden fra (u, v) til senter. D(u, v) = (u P/2) 2 + (v Q/2) 2 Husk P og Q er henholdsvis bredden og høyden til frekvensbildet.
4 Ideelt Low-Pass Filter Under ser du et ideelt filter, samt en profilplot.
5 Ideelt Low-Pass Filter Her er spatial versjonen av filteret.
6 Ideelt Low-Pass Filter Vi skal utføre en rekke utjevninger med cutoff-frekvensene gitt i bildet til høyre. Lars Vidar Magnusson Bildebehandling og Mønstergjenkjenning 2017
7 Ideelt Low-Pass Filter Utjevnet med ideelt filter med D 0 = 10.
8 Ideelt Low-Pass Filter Utjevnet med ideelt filter med D 0 = 30.
9 Ideelt Low-Pass Filter Utjevnet med ideelt filter med D 0 = 60.
10 Ideelt Low-Pass Filter Utjevnet med ideelt filter med D 0 = 160.
11 Ideelt Low-Pass Filter Utjevnet med ideelt filter med D 0 = 460.
12 Butterworth Low-Pass Filter Butterworth lowpass filter er et alternativ for støyreduksjon. Et filter av orden n med cutoff frequency D 0 er definert som.. H(u, v) = [D(u, v)/d 0 ] 2n Har ikke skarpe kanter, så hvor er cutoff frekvensen? Normalt blir det satt en grense når H(u, v) er en viss prosent av maks En mellomting mellom ideelt og Gaussian.
13 Butterworth Low-Pass Filter Et Butterworth filter av n = 2, samt en profilplot av noen varianter.
14 Butterworth Low-Pass Filter Her er spatialutgaven av n = 1 og n = 2.
15 Butterworth Low-Pass Filter Her er spatialutgaven av n = 5 og n = 20.
16 Butterworth Low-Pass Filter Utjevnet med Butterworth filter med n = 2 og D 0 = 10.
17 Butterworth Low-Pass Filter Utjevnet med Butterworth filter med n = 2 og D 0 = 30.
18 Butterworth Low-Pass Filter Utjevnet med Butterworth filter med n = 2 og D 0 = 60.
19 Butterworth Low-Pass Filter Utjevnet med Butterworth filter med n = 2 og D 0 = 160.
20 Butterworth Low-Pass Filter Utjevnet med Butterworth filter med n = 2 og D 0 = 460.
21 Gaussian Low-Pass Filter Gaussian lowpass filter er muligens det mest brukte filteret for støyreduksjon. H(u, v) = e D2 (u,v)/2σ 2 hvor σ er variansen (spredningen/bredden). Vi kan erstatte denne med D 0 og få.. H(u, v) = e D2 (u,v)/2d 2 0
22 Gaussian Low-Pass Filter Et Gaussian lowpass filter og en profilplot med noen alternative D 0.
23 Gaussian Low-Pass Filter Utjevnet med Gaussian filter med D 0 = 10.
24 Gaussian Low-Pass Filter Utjevnet med Gaussian filter med D 0 = 30.
25 Gaussian Low-Pass Filter Utjevnet med Gaussian filter med D 0 = 60.
26 Gaussian Low-Pass Filter Utjevnet med Gaussian filter med D 0 = 160.
27 Gaussian Low-Pass Filter Utjevnet med Gaussian filter med D 0 = 460.
28 High-Pass Filtere Nå har tiden kommet for å se på high-pass (høypass) filtere. Ideelt Butterworth Gaussian Laplacian Felles for alle er at de fremhever fine detaljer (skjærper). De kan utledes fra et lavpassfilter H LP (u, v) med følgende.. H HP (u, v) = 1 H LP (u, v)
29 Ideelt High-Pass Filter Et ideelt high-pass filter er definert som.. { 0 if D(u, v) D 0 H(u, v) = 1 if D(u, v) > D 0 Her er et eksempel samt en profilplot.
30 Ideelt High-Pass Filter Skjærpet med ideelt filter med D 0 = 30.
31 Ideelt High-Pass Filter Skjærpet med ideelt filter med D 0 = 60.
32 Ideelt High-Pass Filter Skjærpet med ideelt filter med D 0 = 160.
33 Butterworth High-Pass Filter Butterworth high-pass filter er definert som.. H(u, v) = [D 0 /D(u, v)] 2n Her er et filter og noen varianter i en profilplot.
34 Butterworth High-Pass Filter Skjærpet med Butterworth filter med n = 2 og D 0 = 30.
35 Butterworth High-Pass Filter Skjærpet med Butterworth filter med n = 2 og D 0 = 60.
36 Butterworth High-Pass Filter Skjærpet med Butterworth filter med n = 2 og D 0 = 160.
37 Gaussian High-Pass Filter Gaussian high-pass filter er definert som... H(u, v) = 1 e D2 (u,v)/2d 2 0 Her er et filter og noen varianter i en profilplot
38 Gaussian High-Pass Filter Skjærpet med Gaussian filter med D 0 = 30.
39 Gaussian High-Pass Filter Skjærpet med Gaussian filter med D 0 = 60.
40 Gaussian High-Pass Filter Skjærpet med Gaussian filter med D 0 = 160.
41 Laplacian i Frekvensdomenet Det kan vises at Laplacian kan implementeres i frekvensdomenet med følgende. H(u, v) = 4π 2 (u 2 + v 2 ) eller uttrykt med D(u, v) så får vi.. H(u, v) = 4π 2 D 2 (u, v) Da får vi følgende uttryk for Laplacian-bildet. 2 f (x, y) = F 1 {H(u, v)f (u, v)}
Spatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters
Spatial Filtere Lars Vidar Magnusson February 6, 207 Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Hvordan Lage Spatial Filtere Det er å lage et filter er nokså enkelt;
Prøve- EKSAMEN med løsningsforslag
Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg
Eksempel: Ideelt lavpassfilter
Filterdesign i frekvensdomenet Lavpassfiltre Romlig representasjon av ideelt lavpassfilter Slipper bare gjennom lave frekvenser (mindre enn en grense D 0 som kalles filterets cut-off-frekvens) I signalbehandling
01-Passivt Chebychevfilter (H00-4)
Innhold 01-Passivt Chebychevfilter (H00-4)... 1 0-Aktivt Butterworth & Besselfilter (H03-1)... 04 Sallen and Key lavpass til båndpass filter... 3 05 Butterworth & Chebychev (H0- a-d):... 5 06 Fra 1-ordens
Intensitetstransformasjoner og Spatial Filtrering
Intensitetstransformasjoner og Spatial Filtrering Lars Vidar Magnusson January 23, 2017 Delkapittel 3.1 Background Delkapittel 3.2 Some Basic Intensity Tranformation Functions Spatial Domain Som vi allerede
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling
Fourier-Transformasjoner IV
Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde
Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling
- iskret Fourier-Transform FT INF 3 igital bildebehandling FILTRERING I FREKVENS-OMÈNET II Konolusjons-teoremet Lapass- øypass- og Båndpass-filter esign a filtre i frekens-doménet Rask implementasjon a
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.
FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
UNIVERSITETET I OSLO
Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er
Kantdeteksjon og Fargebilder
Kantdeteksjon og Fargebilder Lars Vidar Magnusson April 25, 2017 Delkapittel 10.2.6 More Advanced Techniques for Edge Detection Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Marr-Hildreth
TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2
TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 07.03.2013 I dette oppgavesettet skal vi se på ulike måter fouriertransformasjonen anvendes i praksis. Fokus er på støyfjerning i signaler. I tillegg
IIR filterdesign Sverre Holm
IIR filterdesign IIR filterdesign Sverre Holm Filterspesifikasjon IIR kontra FIR IIR filtre er mer effektive enn FIR færre koeffisienter for samme magnitudespesifikasjon Men bare FIR kan gi eksakt lineær
303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)
303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...
01 Laplace og Z-transformasjon av en forsinket firkant puls.
Innholdsfortegnelse 0 Laplace og Z-transformasjon av en forsinket firkant puls.... 0 Sampling og filtrering og derivering av en trekant strømpuls... 03_Digitalt Chebyshev filter... 3 04 Digitalisering
FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
TMA Matlab Oppgavesett 2
TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å
IIR filterdesign Sverre Holm
IIR filterdesign Sverre Holm Filterspesifikasjon 1 IIR kontra FIR IIR filtre er mer effektive enn FIR færre koeffisienter for samme magnitude- spesifikasjon Men bare FIR kan gi eksakt lineær fase Lineær
FYS Forslag til løsning på eksamen våren 2014
FYS1210 - Forslag til løsning på eksamen våren 2014 Oppgave 1 Figure 1. viser en forsterker sammensatt av 2 operasjonsforsterkere. Operasjonsforsterkeren 741 har et Gain Band Width produkt GBW = 1MHz.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling
INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein
INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2400 Digital signalbehandling 16. 23. april 2004,
Praktiske målinger med oscilloskop og signalgenerator Vi ser på likerettere og frekvensfilter
Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: Praktiske målinger med oscilloskop og signalgenerator Vi ser på likerettere og frekvensfilter
Forelesning og oppgaver 8 Filtrering
Digital bildebehandling for Radiografer Side 1 av 9 Forelesning og oppgaver 8 Filtrering 8.1 Om forelesningen 8.1.1 Mål Dere skal vite hvordan vanlige filtre fungerer og ha prøvd å bruke de vanligste typene
Kap 7: Digital it prosessering av analoge signaler
Kap 7: Digital it prosessering av analoge signaler Sverre Holm Temaer 1. Sampling og rekonstruksjon 2. Finne spektret til samplet signal 3. Gjenvinning med forskjellige interpolasjoner 4. Nullinnsetting
Prosjekt 3 - Introduksjon til Vitenskapelige Beregninger
Prosjekt 3 - Introduksjon til Vitenskapelige Beregninger Studentnr: 755110, 759144 og 753717 April 2016 1 Oppgave 1 Røntgenstråler emittert fra en wolfram-anode har en karakteristisk energi E k 60 kev,
Basisbilder - cosinus v Bildene
Repetisjon Basis-bilder 737 Midlertidig versjon! INF 3 9 mars 7 Diskret Fouriertransform del II Ortogonal basis for alle 4x4 gråtonebilder Kjapp repetisjon Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet
Forslag til løsning på eksamen FYS1210 våren 2010
Forslag til løsning på eksamen FYS1210 våren 2010 Oppgave 1 n seriekopling av solceller forsyner ubest med elektrisk energi. Ubelastet måler vi en spenning på 5 volt over solcellene (Vi måler mellom og
INF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
Lab 2 Praktiske målinger med oscilloskop og signalgenerator
Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 2 Praktiske målinger med oscilloskop og signalgenerator 17. februar 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Knekkfrekvens Et enkelt
Utkast med løsningshint inkludert UNIVERSITETET I OSLO
Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00
Repetisjon: LTI-systemer
Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state
( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.
Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall
Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I
Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
Repetisjon: Standardbasis
INF230 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II Ole Marius Hoel Rindal, foiler av Andreas Kleppe Kort repetisjon av forrige mandagsforelesning Konvolusjonsteoremet og bruk av dette: Design
f(t) F( ) f(t) F( ) f(t) F( )
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for
INF2310 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II. Andreas Kleppe
INF230 Digital bildebehandling FORELESNING 9 FOURIER-TRANFORM II Andreas Kleppe Kort repetisjon av forrige mandagsforelesning Konvolusjonsteoremet og bruk av dette: Design av konvolusjonsfiltre med bestemte
Lydproduksjon. t.no. ww ww.hin. Forelesning 9 Signalbehandling (processing) og effekter MMT205 - F9 1
MMT205 Lydproduksjon t.no ww ww.hin Forelesning 9 Signalbehandling (processing) og effekter MMT205 - F9 1 F9 - Innhold MMT205 - F9 2 Introduksjon Signalbehandlingsmetoder: Akustiske/mekaniske, eks. mikrofonplassering,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 11. desember 01 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 1 sider. Vedlegg:
Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019
Transformanalyse Jan Egil Kirkebø Universitetet i Oslo [email protected] 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer
LABORATORIEØVELSE C FYS LINEÆR KRETSELEKTRONIKK 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER
FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE C 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER 3. PI REGULATOR 4. FILTRE Maris Tali(maristal) [email protected]. uio.no
INF3470/4470 Digital signalbehandling. Introduksjon Sverre Holm
INF3470/4470 Digital signalbehandling Introduksjon Sverre Holm Hvordan virker... CD og lydkoding (mp3 ~1:12) Lyd-filtrering og -effekter Shazam (gjenkjenning av låter, Iphone) GPS Se kap 7.6-7.10 for
Grunnleggende Matematiske Operasjoner
Grunnleggende Matematiske Operasjoner Lars Vidar Magnusson January 16, 2017 Delkapittel 2.6 Array vs Matrise Operasjoner Det er vanlig med både array- og matrise-operasjoner på bilder. Array-multiplikasjon
Grunnleggende om Digitale Bilder (ITD33515)
Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og
Filtrering. Konvolusjon. Konvolusjon. INF2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I
Filtrering INF30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Andreas Kleppe Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W:.6., 3., 3.4-3.5,
Praktiske målinger med oscilloskop og signalgenerator
Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: Praktiske målinger med oscilloskop og signalgenerator Vi ser på likerettere og frekvensfilter
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Elektronikk Målform: Bokmål Dato: 24. mai 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side) Antall
Uke 12: FIR-filter design
Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/47 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/47 Tema
INF2310 Digital bildebehandling
Filtrering INF30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDEDOMENET I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W:.6., 3., 3.4-3.5,
Uke 12: FIR-filter design
Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:
Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I
Lokale operasjoner INF 30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny/utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 8. juli 015 Tid: 0900-100 Antall sider (inkl. forside og 1 side Vedlegg): 5 Antall oppgaver:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag
Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.
Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen
Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester
Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):
Sikkerhetsrapportering
Innhold Sikkerhetsrapportering... 2 Bestilling av rapporter... 2 Forklaring av rapporten i rapportvinduet... 4 Rapport-trestruktur... 4 Filtrering... 4 Implisitt tilgjengelig data... 4 Oppfrisking av rapporten...
Uke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg
FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet
UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s
UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan
Generell informasjon om faget er tilgjengelig fra It s learning.
Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................
INF2310 Digital bildebehandling
INF230 Digital bildebehandling Forelesning 6 Filtrering i bildedomenet I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Lavpassfiltrering og kant-bevaring G&W: 2.6.2, 3., 3.4-3.5, deler
Brukerveiledning for Styreadministrasjon Helse Midt-Norge RHF
Brukerveiledning for Styreadministrasjon Helse Midt-Norge RHF Innhold: Funksjoner som gjelder for alle brukere: 1. Dokumenter a. Sakliste og protokoll b. Presentasjoner fra styret 2. RSS-feed (kommer)
Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert
Kap.12 Flervegssøketre Sist oppdatert 12.04.10 Studerer 2-3 og 2-4 trær Motivasjon n maks = antall elementer i et fullt binært tre med nivåer 0 k ; (en node har ett element) n maks = 2 0 + 2 1 + + 2 k
Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester
Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Tidsrespons til reaktive kretser RC-integrator/differensiator-respons
Fourier-Transformasjoner II
Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4
Forslag til løsning på eksamen FYS1210 V-2007 ( rev.2 )
Forslag til løsning på eksamen FYS20 V-2007 ( rev.2 ) Oppgave Figur a viser et nettverk med et atteri på 24 volt og 4 motstander. R = 3kΩ, R2 =,5 kω, R3 = 9 kω, R4 = 3 kω a) Hva er spenningen i punktene
