Kantdeteksjon og Fargebilder
|
|
|
- Severin Andersen
- 8 år siden
- Visninger:
Transkript
1 Kantdeteksjon og Fargebilder Lars Vidar Magnusson April 25, 2017 Delkapittel More Advanced Techniques for Edge Detection Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models
2 Marr-Hildreth Kantdeteksjon Marr-Hildreth kantdeteksjon baserer seg på at endringer i et bilde er avhengig av størrelsen (scale). Den første vellykede kantdetektoren som inkluderer mer avansert analyse. De foreslår bruk av Laplacian of Gaussian (LoG) operator 2 G(x, y) = 2 G(x, y) + 2 G(x, y) x 2 y 2 x 2 +y 2 x 2 e 2σ 2 [ x = 2 = x σ 2 e [ x 2 = σ 1 4 σ 2 [ x 2 + y 2 2σ 2 = σ x 2 +y 2 y 2 e 2σ 2 ] x 2 +y 2 2σ 2 + y ] e x2 +y 2 2σ 2 + [ y 2 ] e x2 +y 2 2σ 2 [ y σ 2 e σ 4 1 σ 2 x 2 +y 2 2σ 2 ] ] e x2 +y 2 2σ 2
3 Marr-Hildreth Kantdeteksjon Marr-Hildreth foreslår å bruke 2 G(x, y) operatoren i ulike størrelser for å detektere de ulike kantene. [ x y 2 2σ 2 ] G(x, y) = e x2 +y 2 2σ 2 Maskene kan lages på ulike måter 1 Sample funksjonen over og normaliser koeffisientene slik at de summer til 0 2 Sample G(x, y) = e x2 +y 2 2σ 2 og bruk et Laplacian filter (resultatet av konvolusjon med et filter som summer til 0 summer også til 0) σ 4
4 Marr-Hildreth Kantdeteksjon Algoritmen består i å konvolere bildet med en eller flere utgaver av LoG g(x, y) = [ 2 G(x, y)] f (x, y) Dette kan like gjerne utføres i følgende rekkefølge (det er lineære operasjoner) g(x, y) = 2 [G(x, y) f (x, y)] Algoritmen oppsumert (for én størrelse) 1 Konvoler bildet med et Gaussian filter for å fjerne støy 2 Finn Laplacian bildet ved å konvolere med Laplacian filter 3 Zero-crossing (Nullkrysning) identifiserer kanter
5 Canny Kantdeteksjon Canny algoritmen er de facto standard for kantdeteksjon i mange av dagens platformer. Basert på følgende kriterier Low error rate - så lite feil som mulig) Good localization - identifiserte kanter skal ligge så nærme faktiske kanter som mulig Single edge respons - identifisere bare en kant for hver faktiske kant Kriteriene ble formulert matematisk slik at Canny kunne finnne beste løsning Kommentar HIOF har forsket de siste årene på å forbedre ytelsen til algoritmen på faktiske bilder
6 Canny Kantdeteksjon Canny kom frem til tre ulike steg i sin algoritme Finn et utjevnet gradientbilde ved å bruke førstederiverte av en Gaussian Utfør nonmax suppression (ikkemax-fjerning) Bruk hysteresis thresholding (dual threshold oppsett) for å finne Det finne ulike implementasjoner for hvert av disse stegene
7 Canny Kantdeteksjon - Gradientbildet Canny foreslå å bruke til å finne gradientbildet (gitt i en dimensjon) d x dx e 2 2σ 2 x 2 σ 2 e 2σ 2 = x Dette kan vi approksimere med å først utjevne f s(x, y) = G(x, y) f (x, y) og deretter konvolere med et deriveringsfilter e.g. Sobel Vi finner så og M(x, y) = g 2 x + g 2 y α(x, y) = tan 1 g y g x Det finnes også andre tilnærminger Matlab bruker en-dimensjonal Gaussian og deriveringsmaske
8 Canny Kantdeteksjon - Nonmax Suppression Nonmax suppression prøver å minimalisere antall doble kanter. Algoritmen fungerer ved å utføre følgende på hvert punkt (x, y). 1 Finn retningen d som passer best med kanten i α(x, y) 2 Hvis M(x, y) er mindre enn minst en av sine naboer langs d blir g N (x, y) = 0, hvis ikke g N (x, y) = M(x, y) g N (x, y) er det ikkemaks-fjernede (nonmax suppressed) bildet
9 Canny Kantdeteksjon - Hysteresis Thresholding Hysteresis thresholding er det det siste steget i algoritmen, og det er designet for å minimalisere uekte kanter. Fungerer med å bruke to threshold grenser T H og T L som angir henholdvis en høy og lav grense. Vi lager to nye bilder.. g NH (x, y) = g N (x, y) T H og g NL (x, y) = g N (x, y) T L && g N (x, y) < T H Vi har et bildet g NH (x, y) med strong (sterke) kanter, og et bildet G NL (x, y) med weak (svake) kanter Det endelige bildet g(x, y) inneholder alle kantene i g NH (x, y), samt alle kantene i g NL (x, y) som er koblet (8-koblet) med en kant i g NH (x, y).
10 Grunnleggende om Farger Det synlige lys er som vi har vært innom tidligere en del av det elektromagnetiske spektrum.
11 Grunnleggende om Farger Det finnes ingen entydig definisjon om hva som er hva når det gjelder farger CIE definerte i 1931 følgende.. Blå: nm Grønn: nm Rød: 700 nm
12 Grunnleggende om Farger Vi har to måter å blande farger på; additive og subtraktiv
13 Fargemodeller En fargemodel er en metode for å spesifisere en farge colorspace, color system... Hvert system lar deg spesifisere en farge i et koordinatsystem RGB CMY / CMYK HSI En modell er typisk tilpasset hardware eller for sluttvisning
14 Fargemodeller - RGB RGB er en modell som spesifiserer farger ved hjelp av primærfargene rød, grønn og blå En farge angis i et kartesisk system gitt under
15 Fargemodeller - RGB Et punkt består av en 3-tuple (alternativt kan vi se det som tre separate bilder) Hver kanal blir typisk representert med samme antall bits Det er vanlig med 8 bit Et bilde i full-color (fullfarge) har typisk 3 8 = 24 bits per element i bildet Dette gir totalt (2 8 ) 3 = mulige farger Angis enten som.. flyttall i intervallet [0, 1] decimal i intervallet [0, 255] hexadecimal i intervallet [0, ff ]
16 Fargemodeller - CMY CMY bruker sekundærfargene (primær pigmentfargene) til å angi en farge cyan, magenta og yellow En enhet som skal gi en farge (e.g. printer) konverterer typisk fra RGB til CMY C 1 R M = 1 G Y 1 B CMY modellen blir normalt utvidet med en dedikert svart farge (CMYK)
17 Fargemodeller - HSI HSI benytter seg av helt andre begreper for å spesifisere en farge Hue Saturation Intensity Modellen passer bedre med hvordan vi oppfatter farger Skiller farge fra intensitet!
18 Konvertere fra RGB til HSI Vi kan konvertere fra RGB til HSI. { θ if B G H = 360 θ if B > G hvor { } θ = cos 1 0.5[(R G) + (R B)] [(R G) 2 + (R B)(G B)] 1/2 S = 1 3 [min(r, G, B)] R + G + B I = 1 (R + G + B) 3
19 Konvertere fra HSI til RGB Vi kan konvertere fra HSI til RGB, men vi må ta høyde for vinkelen til hue Når 0 H < 120 konverterer vi på følgende vis... [ R = I 1 + S cos H ] cos(60 H) G = 3I (R + B) B = I (1 S)
20 Konvertere fra HSI til RGB Når 120 H < 240 konverterer vi på følgende vis... R = I (1 S) ] S cos H G = I [1 + cos(60 H ) H er H 120 B = 3I (R + G)
21 Konvertere fra HSI til RGB Når 240 H < 360 konverterer vi på følgende vis... R = 3I (G + B) G = I (1 S) H er H 240 ] S cos H B = I [1 + cos(60 H )
Fargebilder. Lars Vidar Magnusson. March 12, 2018
Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder
INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein
INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22
Repetisjon av histogrammer
Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner
Midtveiseksamen Løsningsforslag
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt
Midtveiseksamen. INF Digital Bildebehandling
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:
Grunnleggende Matematiske Operasjoner
Grunnleggende Matematiske Operasjoner Lars Vidar Magnusson January 16, 2017 Delkapittel 2.6 Array vs Matrise Operasjoner Det er vanlig med både array- og matrise-operasjoner på bilder. Array-multiplikasjon
Spatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters
Spatial Filtere Lars Vidar Magnusson February 6, 207 Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Hvordan Lage Spatial Filtere Det er å lage et filter er nokså enkelt;
Løsningsforslag til kapittel 15 Fargerom og fargebilder
Løsningsforslag til kapittel 15 Fargerom og fargebilder Oppgave 1: Representasjon av et bilde Under har vi gitt et lite binært bilde, der svart er 0 og hvit er 1. a) Kan du skrive ned på et ark binærrepresentasjonen
3. obligatoriske innlevering, høsten 2014
3. obligatoriske innlevering, høsten 2014 {Jonathan Feinberg, Joakim Sundnes} {jonathf,sundnes}@simula.no November 3, 2014 Innleveringskrav Denne skal følge malen gitt på emnesidene Legges ut 2. september.
Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6
Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk
Obligatorisk oppgave 1
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Obligatorisk oppgave 1 INF2310, vår 2017 Dette oppgavesettet er på 9 sider, og består av 2 bildebehandlingsoppgaver. Besvarelsen av denne og neste obligatoriske
Filtrering i Frekvensdomenet II
Filtrering i Frekvensdomenet II Lars Vidar Magnusson March 7, 2017 Delkapittel 4.8 Image Smoothing Using Frequency Domain Filters Delkapittel 4.9 Image Sharpening Using Frequency Domain Filters Low-Pass
UNIVERSITETET I OSLO
Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget
SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING
SEGMENTERING IN 106, V-2001 Segmentering er en prosess som deler opp bildet i meningsfulle regioner. I det enkleste tilfelle har vi bare to typer regioner BILDE-SEGMENTERING DEL I Forgrunn Bakgrunn Problemet
Fargetyper. Forstå farger. Skrive ut. Bruke farger. Papirhåndtering. Vedlikehold. Problemløsing. Administrasjon. Stikkordregister
Skriveren gir deg mulighet til å kommunisere i farger. Farger tiltrekker seg oppmerksomhet og gir trykt materiale og informasjon større verdi. Bruk av farger øker lesbarheten, og dokumenter med farger
Farger. Introduksjon. Skrevet av: Sigmund Hansen
Farger Skrevet av: Sigmund Hansen Kurs: Processing Tema: Tekstbasert Fag: Matematikk, Programmering, Kunst og håndverk Klassetrinn: 8.-10. klasse, Videregående skole Introduksjon På skolen lærer man om
INF 2310 Farger og fargerom. Motivasjon. Fargen på lyset. Fargen på lyset. m cos( Zenit-distansen, z, er gitt ved
Temaer i dag : INF 310 Farger og fargerom 1 Farge, fargesyn og deteksjon av farge Fargerom - fargemodeller 3 Overganger mellom fargerom 4 Fremvisning av fargebilder 5 Fargetabeller 6 Utskrift av fargebilder
RF5100 Lineær algebra Leksjon 10
RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser
Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Spredning, absorbsjon, transmisjon. Vi kan skille mellom tusenvis av fargenyanser
Temaer i dag : INF 310 Farger og fargerom 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller 6. Utskrift av
Intensitetstransformasjoner og Spatial Filtrering
Intensitetstransformasjoner og Spatial Filtrering Lars Vidar Magnusson January 23, 2017 Delkapittel 3.1 Background Delkapittel 3.2 Some Basic Intensity Tranformation Functions Spatial Domain Som vi allerede
TMA4123/TMA4125 Matematikk 4M/4N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved
Veiledning om fargekvalitet
Side 1 av 6 Veiledning om fargekvalitet Veiledningen om fargekvalitet hjelper brukerne med å forstå hvordan funksjoner som er tilgjengelige på skriveren, kan brukes til å justere og tilpasse fargene på
Objekt-bilde relasjonen. Vinkeloppløsnings-kriterier. Forstørrelse. INF 2310 Digital bildebehandling
Objekt-bilde relasjonen IN 3 Digital bildebehandling Oppsummering II, våren 7: y f f s s y Avbildning Naboskapsoperasjoner og konvolusjon Segmentering Kompresjon og koding av bilder argerom og bildebehandling
INF 2310 Digital bildebehandling
INF 2310 Digital bildebehandling Forelesning nr 8-2018 Farger og fargerom Temaer i dag : 1. Farge, fargesyn og deteksjon av farge 2. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
Fourier-Transformasjoner IV
Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde
Fourier-Transformasjoner II
Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4
Motivasjon. INF 2310 Farger og fargerom. Fargen på lyset. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser
Temaer i dag : INF 310 Farger og fargerom 1. Farge, fargesyn og deteksjon av farge. Fargerom - fargemodeller 3. Overganger mellom fargerom 4. Fremvisning av fargebilder 5. Fargetabeller 6. Utskrift av
Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.
Dagens temaer Time : Diskret Fourier Transform, del Andreas [email protected], INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering
Grunnleggende om Digitale Bilder (ITD33515)
Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual
Generell informasjon om faget er tilgjengelig fra It s learning.
Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................
INF 1040 Farger og fargerom
INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller
Motivasjon. INF 1040 Farger og fargerom. Fargen på et objekt. Fargen på lyset. Vi kan skille mellom tusenvis av fargenyanser
Temaer i dag : INF 14 Farger og fargerom 1 Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom og overganger mellom dem 4 Fremvisning og utskrift av fargebilder 5 Fargetabeller 6
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
INF 1040 Farger og fargerom
INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom - fargemodeller 4. Overganger mellom fargerom 5. Fremvisning av fargebilder 6.
Motivasjon. INF 1040 Farger og fargerom. Fargen på lyset. Et prisme kan vise oss fargene i lyset. Vi kan skille mellom tusenvis av fargenyanser
Temaer i dag : INF 14 Farger og fargerom 1 Fargesyn og deteksjon av farge 2 Digitalisering av fargebilder 3 Fargerom - fargemodeller 4 Overganger mellom fargerom 5 Fremvisning av fargebilder 6 Fargetabeller
Eksempel: s d taylor sin x, x = 0, 9
Maple kan selv konstruere taylorpolynomer til en gitt funksjon om et gitt punkt. Kommandoen er taylor der vi må taste inn funksjonen, punktet a vi finner polynomet om, og hvilken orden n vi vil at polynomet
MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag
MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva
Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper
Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder
Grafisk profilhåndbok Retningslinjer for grafisk profil
Grafisk profilhåndbok Retningslinjer for grafisk profil Rudi Stensvold Versjon: 1 November 2013 Innhold Introduksjon Side 2 Logo Beskrivelse Side 3 Presentasjon Side 4 Fargekoder Side 5 Feil bruk Side
R2 Funksjoner Quiz. Test, 3 Funksjoner
Test, Funksjoner Innhold. Trigonometriske definisjoner.... Trigonometriske sammenhenger... 8. Trigonometriske likninger.... Funksjonsdrøfting....5 Omforme trigonometriske uttrykk av typen a sin kx + b
Valg av PC-skjerm til fotobruk
Valg av PC-skjerm til fotobruk De fleste har nok skiftet ut de svære kassene som CRT-skjermene var med flatskjermer av LCD-typen. Så jeg tenkte kjapt i gå igjennom litt om de ulike teknologiene som brukes
6.6 Anvendelser på lineære modeller
6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man
INF 1040 Farger og fargerom
INF 1040 Farger og fargerom Temaer i dag : 1. Fargesyn og deteksjon av farge 2. Digitalisering av fargebilder 3. Fargerom og overganger mellom dem 4. Fremvisning og utskrift av fargebilder 5. Fargetabeller
INF 2310 Digital bildebehandling FORELESNING 5. Fritz Albregtsen. Pensum: Hovedsakelig 3.3 i DIP HISTOGRAM-TRANSFORMASJONER
Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på
arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100
arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid
Farger Introduksjon Processing PDF
Farger Introduksjon Processing PDF Introduksjon På skolen lærer man om farger og hvordan man kan blande dem for å få andre farger. Slik er det med farger i datamaskinen også; vi blander primærfarger og
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
LO118D Forelesning 2 (DM)
LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst
Denne veiledningen hjelper deg med å forstå hvordan du kan bruke skriverens funksjoner til å justere og tilpasse fargene på utskriftene.
Side 1 av 5 Fargekvalitet Denne veiledningen hjelper deg med å forstå hvordan du kan bruke skriverens funksjoner til å justere og tilpasse fargene på utskriftene. Quality (Kvalitet), meny Print Mode (Utskriftsmodus)
Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering
Hashtabeller Lars Vidar Magnusson 12.2.2014 Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Dictionaries Mange applikasjoner trenger dynamiske sett som bare har dictionary oparsjonene
Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011
Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner
Matematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
UNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
Institutt for informatikk Universitetet i Oslo
Informasjon fra IT-driftsgruppen Lokalguidetilfargeri L A TEX Dag Langmyhr 18. november 2010 Institutt for informatikk Universitetet i Oslo Innhold 1 Angivelse av farger 1 2 Brukavfarger 2 2.1 Fargettekst...
Grunnleggende Grafalgoritmer
Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å
UNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai
PRAKTISK FARGESTYRING
PRAKTISK FARGESTYRING Rapport 2 Malin Milder Mediedesign Vår 2008 1 Praktisk fargestyring Fargestyring er et viktig aspekt når det kommer til design, og noe som alle burde benytte seg av for å få best
Triangle Colorscale. Created for design CMYK GUIDE. Intuitiv, nøyaktig og praktisk
Created for design CMYK GUIDE Intuitiv, nøyaktig og praktisk «Det er lett å finne en farge i CMYK GUIDE. Og den fargen du velger, blir nøyaktig lik på trykk!» INTUITIV Et hurtig verktøy for designere CMYK
Fourier-Transformasjoner
Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.
Konvolusjon og filtrering og frevensanalyse av signaler
Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05
Kartografisk formidling. Fargar og Visuelle variablar
Kartografisk formidling Fargar og Visuelle variablar FARGER Fysikalsk Fysiologisk Psykologisk Synleg lys Synlig område for bølgelengder er mellom 380 og 740 nm (nanometer 10-9 m) Fargene varierer med lyskilden
4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
