Løsningsforslag 1T Eksamen. Høst Nebuchadnezzar Matematikk.net Øistein Søvik
|
|
- Odd Gabrielsen
- 9 år siden
- Visninger:
Transkript
1 Løsningsforslag 1T Eksamen 6 Høst Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere gitte eksamener. Dessverre er disse ofte bare åpne for betalende medlemmer. Videre vil dette løsningsforslaget legge seg på en litt annen kurs enn andre løsningsforslag. I første del vil fasitsvaret til alle regneoppgaver bli oppgitt. Dette gjøres slik at om ønsket kan raskt se om en har regnet riktig eller ei. Har en regnet feil, kan en selv regne på nytt uten å få fremgangsmåten spolert. Deretter vil vi ta for oss oppgavene i tur og orden gjerne litt nøyere en hva som kreves under eksamen. Vi vil også skrive små kommentarer om vanlige feil elever gjør til en del oppgaver, og også hva som bør nevnes til hver oppgave. Til tider vil vi også vise alternative måter å løse oppgavene på. Og et fåtall ganger vil vi streife utenfor pensum og vise alternative metoder. Dette er et annerledes løsningsforslag, men vi håper den som leser dette vil få glede av det. Det viktigste å huske på før en eksamen er å opparbeide seg en god forståelse, og en bred faglig kompetanse. Dokumentet her er ment å hjelpe leser et lite steg i den retningen.
2 MAT1017-1T Høst Karaktergrenser og Vurderingsskjema Gjeldende poengfordeling Del 1 Del 2 Sum a 6b 6c 7 8a b 8c 9a 9b 9c a 1b 2a 2b 2c 3a 3b 4a 4b 4c a 5b 6a 6b 6c 7a 7b 7c Totalt antall poeng 60 Karaktergrenser Karakter I Poeng I prosent Nebuchadnezzars synspunkter om årets eksamen En stort sett grei eksamen. Oppgavene på del 1 var kreative, og arbeidsmengden var passelig. Arbeidsmengden på del to var forholdsvis høy. Dog var de fleste oppgavene av normal vanskelighetsgrad. Noen vil antakeligvis ha problemer med geometrioppgaven og siste deloppgave på oppgaven med flyet. Forhåndssensur Forhåndssensur blir ikke lagt ut for høst-eksamener. II
3 MAT1017-1T Høst Fasitsvar til regneoppgaver Oppgave 1 a) x 5 x+5 b) x = 1/2. c) a 1/2 = a d) h = 12/5 = 2.4 e) 1) x [1, 3] Som også kan skrives som 1 x 3 2) x (, 0) (5, ) Som også kan skrives som x < 0 eller x > 5 f) h = 3/2 = 1.5 g) Bevis oppgave f (x) = 2x h) Vis at Oppgave 2 a) Bunnpunkt (1, 1) b) y = 2x + 2 Oppgave 3 a) Tilnærmet 230F. Riktig 212F. Differanse 18F b) C = 10, F =. Oppgave 4 a) Bevis oppgave b) A = 15 7/4 10 eller c) A = (7 11)/2 = 38.5 Oppgave 5 a) Vis at oppgave b) Vis at oppgave V (2) = 8π Oppgave 6 a) 6000 liter. 13.6% prosent av oljen renner ut b) Tegning c) 4 timer 44 minutter og ca 30 sekunder, for å være pinlig nøyaktig. d) F (2) 655. Oppgave 7 a) L = g T 2 4π 2 b) L 0.25 m eller 25 cm. c) g Oppgave 8 a) P (T ) = 3/ 0.06 = 6% b) Forklar at oppgave c) (47/) % d) 1.88% Oppgave 9 a) c = 0 b) b = 3 III
4 Del 1 Uten hjelpemidler Oppgave 1 (14 poeng) a) Skriv så enkelt som x 2 25 x x + 25 Dette er en øvelse i kvadratsetningene. Disse sier at a 2 b 2 = (a + b)(a b) og (a + b) 2 = a 2 + 2ab + b 2. Ved å skrive om brøken ovenfor ser vi at x 2 25 x x + 25 = x (x 5)(x + 5) x 2 = x + 52 (x + 5) 2 = (x 5) (x + 5) = x 5 (x + 5) 2 x + 5 Svaret ovenfor kan videre skrives om til 1 10 om det er noe forenkling får være opp til x + 5 leser. Svaret ovenfor godtas som et fullgodt svar. Alternativt kan vi bruke andregradsformelen til å finne faktorisere nevner, men dette blir noe mer arbeid. x = 10 ± = 10 ± = 5 Det som uansett er lurt etter en har faktorisert, eller å sette inn noen enkle verdier før og etter faktoriseringen. Da dette som oftest luker ut slurvefeil. Setter vi inn 5 i vårt ser vi at begge uttrykkene blir null. Setter vi inn 0, får vi 1. Det er derfor rimelig å anta at faktoriseringen vår er fri for slurv. b) Løs likningen 3 2x 1 = 1 Her kan vi også se løsningen med en gang. Eneste gangen et positivt tall opphøyet i noe blir en, er dersom eksponenten er null.altså a f (x) = 1 hvis og bare hvis a 0 og f(x) = 0 for en eller annen x. Dette gir 2x 1 = 0 x = 1/2. Den mer vanlige metoden er å benytte oss av logaritmeregler. Dog leder dette frem til akkuratt samme konklusjon. (At f(x) = 0) 3 2x 1 = 1 log ( 3 2x 1) = log(1) (2x 1) log(3) = 0 x = 1 2 Som ønsket. Her ble det benyttet at log(a b ) = b log(a) og at log(1) = 0. 1 av 12
5 MAT1017-1T Del 1 Høst c) Skriv så enkelt som mulig a 1 4 a ( ) 3 a 3 4 a 2 Her testes ut kunnskapene om potensregler. Følgende logaritmeregler er nyttige her. a n/m = (a n ) 1/m = ( a 1/m) n og ab a c = a b+c og a = a 1/2. Det er og viktig å ta ting rolig for å unngå slurv. a 1 4 a ( ) 3 a 3 4 a 2 Alternativt kan vi og føre det som følger. = a1/4 a ( ) 1/2 a1/4+1/2 = = a 3/4 : a 1/4 = a 3/4 1/2 = a a 3/4 3 a 2 a 9/4 2 a 1 4 a ( ) 3 a 3 4 a 2 a 2 = a 1 4 ( ) 9 a a 2 = ( 1 ) 8 a a 2 = a a2 a 1 4 a 1 4 d) C 3.0 h 4.0 A D 5.0 Figur 1 B Gitt ABC ovenfor, AB = 5.0, AC = 4.0 og BC = 4.0 Bestem høyden h ved regning. Her kan vi for eksempel bruke formlikhet. Trekant ACD er formlik med ABC, dette ser vi utifra at de har en felles side AC og en felles vinkel A. Da kan vi sette det opp slik katetet ACD hypotenus ACD = katetet ABC hypotenus ABC h 3 = 4 5 h = 12 5 = = 2.4 En alternativ løsning går ut på å betrakte arealet av trekanten. Fra Pytagoras ser vi at ABC er en rettvinklet trekant ( = 5 2 ) slik at vinkel C er 90. Arealet av trekanten er da A = 1 2 gh = 1 2 AC AB = = 6 Vi kan også se at arealet av figuren også kan bli skrevet som Løser vi denne for h, får vi at A = 1 2 AB h h = 2 A AB = 2 6 = = = av 12
6 MAT1017-1T Del 1 Høst som før. y x Figur 2 e) I koordinatsystemet ovenfor har vi tegnet grafene til funksjonene f og g. Bruk grafene til å løse de to ulikhetene nedenfor 1) f(x) 0 2) f(x) > g(x) 1) Litt dårlig tegning her. Utifra figuren ser vi i det minste at f(x) er over x-aksen unntatt når x er mellom 1 og 2. Ved matematisk sjargong kan vi skrive svaret som f(x) < 0 når x [1, 2]. Klammene betyr at vi tar med endepunktene. 2) f(x) > g(x) dette er når f(x) er høyere oppe enn g(x), vi ser at dette skjer når x < 0 eller x > 5 f) Gitt ABC der = 90, AB = 3.0 og tan C = 2. Bestem lengden av AC. Her hjelper det gjerne å tegne figur. C A 3.0 B Trekanten er rettvinklet, og vi kan dermed bruke våre klassiske trigonometriske sammenhenger. Spesielt bruker vi den som involverer tangens. tan(c) = Motstående hosliggende = AB AC 2 = 3 AC Altså er lengden av AC lik 3/2 meter eller 1.5 m 3 av 12
7 MAT1017-1T Del 1 Høst g) Line har tre blå, to røde og èn grønn tusj i pennalet sitt. Hun trekker tilfeldig to tusjer 1) Bestem sannsynligheten for at hun ikke trekker den grønne tusjen Første gang Line skal trekke en penn så er det 6 mulige penner, og 5 penner hun ønsker å trekke. (Alle bortsett fra den grønne) neste gang line trekker så har hun allerede trukket en blyant, da er det 5 mulige penner igjen, og 4 av disse ønsker hun å trekke. Så sannsynligheten blir dermed P ( G G ) = = % Her kan og hypergeometrisk fordeling benyttes. Som kommer tilbake i R1. ( )( ) 5 1 P ( G G ) = 2 0 ( ) = 6 2 (5 4/2)(1) 6 5/2 = 4 6 = 2 3 Dette blir å skyte spurv med kanon, men er svært nyttig på mer kompliserte trekninger. Den siste måten blir å tenke ønskelige utfall over mulige utfall. Det er i praksis hva hypergeometrisk fordeling gjør. 2) Bestem sannsynligheten for at hun trekker èn blå og èn rød tusj. Her kan det være lurt å tegne. Line kan enten trekke en rød pen først, også en blå penn. Eller så kan Line treke en blå penn først også en rød. Sannsynligheten for å trekke en rød og en blå penn er gitt ved summen av disse to, altså Blå først Rød først {}}{ {}}{ P (B R) = P (B R) + P (R B) = + = 2 6 }{{} 5 6 }{{} % Så Rød Så Blå h) Funksjonen f er gitt ved f(x) = x Bruk definisjonen av den deriverte til å vise at f (x) = 2x Litt slem oppgave å gi, men det går fint om en husker definisjonen og holder tungen bent i munnen. Definisjonen av den deriverte er Med innsatte verdier får vi at f (x) = lim h 0 f(x + h) f(x) h = lim h 0 = lim h 0 ( (x + h) ) ( x ) h ( x 2 2xh + h ) ( x ) x 2 2xh + h x 2 1 = lim h 0 h 2xh + h 2 = lim h 0 h = lim 2x + h h 0 = 2x h 4 av 12
8 MAT1017-1T Del 1 Høst som var det vi ønsket å vise. Her holder det ikke å bare skrive at f (x) = (x 2 + 1) = 2 1x = 2x. Man må benytte seg av definisjonen. Oppgave 2 (6 poeng) Funksjonen f er gitt ved f(x) = x 2 + 2x 2 a) Vis ved regning at grafen til f ikke har nullpunkter Det er flere måter i vise dette på. En metode er å fullføre kvadratet, da får vi f(x) = x 2 + 2x 2 = ( (x 2 2x + 1) + 1 ) = ( (x 1) ) Her ser vi at den minste verdien (x 1) 2 kan ha er 1. Siden funksjonen stiger når x vokser eller synker. Slik at ( (x 1) ) er negativ for alle x. Alternativt kan vi bruke andregradsformelen. Dersom diskriminanten er negativ har ikke funksjonen noen reelle nullpunkter. Raskt ser vi at = b 2 4ac = 2 2 4( 1)( 2) = 4 diskriminanten er det som står under rottegnet i andregradsformelen (og det enste som er viktig for å bestemme antall røtter) eg. x = b ± 2a vi kan ikke løse denne oppgaven ved tegning, da det står eksplisitt at det skal vises via regning. den siste metoden er å finne toppunktet til f og vise at dette er under x-aksen, og vise at f(x) synker når x stiger og synker. b) Bruk f (x) til å finne ekstremalpunktet på grafen til f. Tegn grafen til f. Det enkleste blir å først finne ekstremalpunktet til f. Det enkleste blir å bruke hva vi viste i i forrige oppgave. Vi har at f(x) = x 2 + 2x 2 = (x 1) 2 1 Herfra ser vi at den minste verdien f(x) kan ha er 1 når x = 1. Siden da er f(x) er minst når (x 1) 2 er minst. Altså er toppunktet til funksjonen (1, 1). Alternativt kan vi derivere å tegne fortegnsskjema. Deriverer f (x) = 2x + 2 = 2(x 1) Slik at f (x) = 0 når x = 1. Fortegnsskjema gir oss at c) Grafen til f har en tangent i punktet (2, 2). Bestem likningen for denne tangenten ved regning. 5 av 12
9 MAT1017-1T Del 1 Høst y x Figur 3 Oppgave 3 (4 poeng) En tilnærmet regel for å gjøre om fra grade celsius (C) til grader fahrenheit F er F = 2C + 30 Den nøyaktige regelen for å gjøre om fra grader celsius (C) til grader fahrenheit (F ) er 5F = 9C a) Gjør om 100 C til grader fahrenheit ved å bruke den tilnærmede regelen og den nøyaktige regelen. Hvor stor er differansen mellom svarene du får? b) Løs likningssystemet [ F = 2C + ] 30 5F = 9C Hva forteller løsningen om den tilnærmede regelen? 6 av 12
10 Del 2 Med hjelpemidler Oppgave 4 (8 poeng) I en trekant er lengden av sidene 4.0 cm, 5.0 cm og 6.0 cm. a) Vis ved regning at denne trekanten ikke er rettvinklet. b) Bestem arealet av trekanten ved regning En av sidene i en trekant skal ha lengde 7.0 cm. En annen side skal ha lengde 11.0 cm c) Bestem det største arealet denne trekanten kan ha. d) Gjør beregninger og vis hvordan trekanten kan se ut dersom arealet er 30 cm 2. Oppgave 5 (4 poeng) Siv skal lage en rett sylinder. Høyden h og diameteren d kan varier, men d + h = 6. Vi setter radius i sylinderen lik x a) Vis at volumet V av sylinderen da kan skrives som V (x) = 6πx 2 2πx 3, x (0, 4) b) Bruk V (x) til å vise at det største volumet sylinderen kan få, er nøyaktig lik π8. 7 av 12
11 MAT1017-1T Del 2 Høst Oppgave 6 (8 poeng) Det går hull på en oljetank, og det begynner å lekke ut olje. Funksjonen F F (x) = x, x [0, 24], viser hvor mange liter olje F det er igjen i tanken x timer etter at det begynner å lekke ut olje. a) Hvor mange liter olje, var det i tanken før lekkasjen? Hvor mange prosent av oljen i tanken lekker ut per time? b) Tegn grafen til F. 6,000 5,0 5,000 4,0 4,000 3,0 3,000 2,0 2,000 1,0 1,000 0 y f(x) = x x Figur 4: fig: II: 6:a c) Hvor lang tid tar det før halvparten av oljen som var i tanken før lekkasjen har lekket ut? d) Bestem en tilnærmet verdi for den momentane vekstfarten til F etter to timer. Hva forteller dette svaret om lekkasjen? 8 av 12
12 MAT1017-1T Del 2 Høst Oppgave 7 (6 poeng) L Figur 5 Ovenfor ser du en pendel. Pendelen er en kule som henger i en snor med lengde L meter. Tiden T sekunder som det tar for pendelen å bevege seg èn gang fram og tilbake kalles svingetiden. Svingetiden er avhengig av snorens lengde. Sammenhengen er gitt ved formelen Her er g 9.81 m/s 2. T = 2π a) Gjør om på formelen ovenfor slik at du får en formel for L uttrykt ved T. Vi deler likningen på 2π, forså kvadrere begge sider. Dette gir L g T = 2π L/g L/g = T/2π L/g = (T/2π) 2 ( T L = g 2π som var det vi ønsket å finne. I siste linje ganger vi begge sider med g. b) Bestem lengden av snoren slik at svingetiden blir 1.0 s Vi har allerede funnet et uttrykk for L i forrige oppgave, mens verdien til g er oppgitt. Innsetning gir da L = g (T/2π) 2 ) 2 L = 9.81 (1/2π) Her burde enheten til L være m. (Får vi ikke dette betyr det at vi har regnet feil tidligere.) Vi regner bare med enhetene og sjekker. som var det vi ønsket å vise. L = m/s 2 (s/1) 2 L = m Verdien til g varierer litt etter hvor på jordkloden du befinner deg.ved et forsøk der snorlengden var m, viste det seg at pendelen svingte fram og tilbake 1000 ganger i løpet av 6345 s. 9 av 12
13 MAT1017-1T Del 2 Høst c) Bruk dette til å bestemme g på stedet der forsøket ble gjort. Oppgi svaret med tre desimaler. Oppgave 8 (6 poeng) I Norge er det nå ca, innbyggere. Av disse bor ca i Sør-Trøndelag. Vi velger tilfeldig èn person som bor i Norge. a) Bestem sannsynligheten for at personen bor i Sør-Trøndelag. Sannsynligheten for at en person bor i Sør-trøndelag er nok enklest å bestemme ved å se på ønskelige over mulige utfall. Her blir det P (ST ) = = Hvor ST står for sør-trøndelag, er de ønskelige utfallene og er de mulige. Vi velger nå tilfeldig 10 personer som bor i Norge, og registrerer hvor mange av dem som bor i Sør-trøndelag b) Forklar at dette kan ses på som et binomisk forsøk Dette er et binomisk forsøk siden utfallene er uavhengige av hverandre. At en person bor i Sør-trøndelag (Herfra refferert til som ST) har ingen innvirkning på om en annen person bor i ST. Vi antar og at sannsynligheten for at en person bor i ST holder seg konstant. c) Bestem sannsynligheten for at ingen av de 10 bor i Sør-Trøndelag Vi definerer en binomisk fordeling som følger P (X = k) = ( ) ( ) k ( ) 10 k k hvor k er antall personer som bor i ST. Sannsynligheten for at en person ikke bor i ST er gitt som 1 3. Sannsynligheten for at 10 personer ikke bor i ST blir dermed = 47 ( ) ( ) 47 = ( ) Her kan vi og sette direkte inn i den binomiske fordelingen og få P (X = 0) = ( ) ( ) 0 ( ) 10 0 = 0 ( ) % d) Bestem sannsynligheten for at minst 3 av de 10 bor i Sør-Trøndelag. Kalkulatormat P (X = k) = = 10 k=3 10 k=3 P (X = k) ( ) ( ) k ( ) 10 k k 10 av 12
14 MAT1017-1T Del 2 Høst hvor k er antall personer som bor i ST. Sannsynligheten for at en person ikke bor i ST er gitt som 1 3. Sannsynligheten for at 10 personer ikke bor i ST blir dermed = 47 ( ) 47 ( ) ( ) 47 ( ) 47 = ( ) Her kan vi og sette direkte inn i den binomiske fordelingen og få P (X = 0) = ( ) ( ) 0 ( ) 10 0 = 0 ( ) % Oppgave 9 (4 poeng) La andregradsfunksjonen f være gitt ved hvor a, b og c er reelle tall. f(x) = a (x b) 2 + c a) Bestem c slik at grafen til f har nøyaktig ett nullpunkt uansett hvilke verdier vi velger for a og b b) Bestem b slik at grafen til f har et ekstremalpunkt i x = 3 uansett hvilke verdier vi velger for a og c. 11 av 12
15 MAT1017-1T Del 2 Høst Denne siden er med hensikt blank. 12 av 12
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (14 poeng) a) Skriv så enkelt som mulig x x 5 10x 5 b) Løs likningen x 1 3 1 c) Skriv så enkelt som mulig a a 1 4 3 4 a 3 a d) Gitt ABC ovenfor. AB 5,0, AC 3,0 og BC 4,0.
DetaljerNY Eksamen 1T, Høsten 2011
NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)
DetaljerEksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerLøsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R1 Eksamen 6 Høst 28.11.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R2 Eksamen 6 Vår 21.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag R1 Eksamen. Høst 29.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R1 Eksamen 6 Høst 29.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag R2 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R2 Eksamen 6 Vår 3.05.20 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag R1 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R1 Eksamen 6 Vår 31.05.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag 1T Eksamen. Høst Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 24.11.2014 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerEksamen 1T våren 2016 løsning
Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket
DetaljerLøsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 4.11.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerLøsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1
Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5
DetaljerLøsningsforslag 1T Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Vår 19.05.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerEksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål
Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
DetaljerEksamen 1T våren 2016
Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
DetaljerLøsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Vår 25.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerEksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.
DetaljerLøsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen
Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen
Detaljer1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3
Detaljer1T eksamen våren 2018 løsningsforslag
1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1
DetaljerLøsningsforslag heldagsprøve våren 2010 1T
Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y
Detaljer1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
DetaljerEksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
DetaljerDEL 1 Uten hjelpemidler
Eksamen MAT1013 Matematikk 1T Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7,5 10 4,0 10 12 4 Oppgave 2 (4 poeng) Siv har fire blå og seks svarte bukser
DetaljerHeldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
DetaljerEksamen 1T våren 2016 løysing
Eksamen T våren 06 løysing Oppgåve ( poeng) Rekn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av
DetaljerDEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten
Detaljer1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4
3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6
DetaljerEksamen 1T, Høsten 2011
Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt
DetaljerEksamen høsten Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 013 Fag: MAT1006
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) 8 v 6 Bruk trekanten ovenfor til å bestemme sinv. Oppgave ( poeng) Skriv så enkelt som mulig 4x 4 x x 1 Oppgave 3 ( poeng) Løs ulikheten x 4x 1 0 Eksamen MAT1013
DetaljerEksamen 1T, Høsten 2010
Eksamen 1T, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Løs likningssystemet xy4 3x y 8 xy4 3xy8 4x
DetaljerLøsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.
c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5
DetaljerEksamen matematikk S1 løsning
Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen
DetaljerLøsningsforslag heldagsprøve våren 2012 1T
Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b
Detaljer1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
DetaljerEksamen REA3026 S1, Høsten 2012
Eksamen REA3026 S1, Høsten 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 2 2x 8 x b) 33
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerEksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
DetaljerS1 eksamen våren 2017 løsningsforslag
S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0
DetaljerLøsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet
DetaljerS1 eksamen høsten 2016 løsningsforslag
S1 eksamen høsten 016 løsningsforslag Oppgave 1 (4 poeng) Løs likningene a) x 1 3 x 5 3 4 6 Fellesnevner blir 1 x1 3x 5 1 1 1 3 4 6 (x 1)4 (3x )3 5 8x 4 9x 6 10 x 10 6 4 0 x 0 b) lg(x 6) 10 10 lg(x6) x
DetaljerLøsningsforslag matematikk S1 V14
Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2
DetaljerLøsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag R1 Eksamen 6 Vår 31.05.01 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DetaljerR1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DetaljerEksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
DetaljerEksamen MAT1013 Matematikk 1T Våren 2012
Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform
DetaljerEksamen REA3022 R1, Høsten 2010
Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 10 5 000 0,15 Oppgave ( poeng) Løs likningen grafisk 1 1 9 x x Oppgave 3 ( poeng) Løs ulikheten x x 1 0 Oppgave 4 ( poeng)
DetaljerEksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5
DetaljerEksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT03 Matematikk T Høsten 04 Oppgave ( poeng) Regn ut og skriv svaret på standardform 50000000000,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng)
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerR1 eksamen våren 2018 løsningsforslag
R1 eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs
DetaljerDEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten.
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningene a) 6 4 0 b) lg lg lg(4 ) Oppgave ( poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC og CB. C P 10 A 0
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerDEL1 Uten hjelpemidler
DEL1 Uten hjelpemidler Oppgave 1 a) Brukopplysningenenedenfortilåfinneuthvaénballkoster,oghvaén hockeykølle koster. 500 kroner 100kroner b) Figuren viser grafene til tre andregradsfunksjoner f, g og h.
DetaljerLøsning eksamen R1 våren 2008
Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 a) Skriv tallet 2460000 på standardform. b) Regn ut: 3 3 3 2 81 4 + 12 5 + 8 + 4 3 c) Løs likningssystemet: 2x y = 3 x+ 2y = 4 d) Løs ulikheten: 2 2x + 2x+ 4 0 e) Løs
DetaljerEksamen REA3026 S1, Høsten 2012
Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6
DetaljerEksamen S1 høsten 2014 løsning
Eksamen S1 høsten 014 løsning Tid: timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) x 10 xx 5 x x 10 x 5x 7x 10 0 7 49 40
DetaljerEksamen 1T våren 2016
Eksamen 1T våren 016 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av 1 punkt. Kvart av tala nedanfor
DetaljerEksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Utan hjelpemiddel Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgåve (1 poeng) Løys likningssystemet x3y7 5xy8 Vel å løyse likninga
DetaljerLøsning eksamen 1T våren 2010
Løsning eksamen 1T våren 010 Oppgave 1 a) 4 3 1 y - -1 1 3 4 5 6-1 x - -3-4 Nullpunktet er gitt ved f ( x) 0 x 30 x 3 3 x 1, 5 Dette ser vi stemmer med grafen. Den skjærer x-aksen i x = 1,5. b) x x 8x
DetaljerEksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål
Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del
DetaljerEksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
DetaljerLøsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007
Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1
DetaljerEksamen REA3022 R1, Våren 2010
Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e
DetaljerEksamen REA3024 Matematikk R2
Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
DetaljerEksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerEksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
DetaljerS1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
DetaljerLøsningsforslag. Høst Øistein Søvik
Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen 1T, Høsten 2010
Eksamen 1T, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Løs likningssystemet xy4 3x y 8 b) Løs
DetaljerEksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
DetaljerS2 eksamen våren 2018 løsningsforslag
S eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x =
DetaljerEksamen REA3026 Matematikk S1
Eksamen REA306 Matematikk S1 Oppgave 1 (3 poeng) Løs likningene a) x 6x 4 0 b) lg xlg lg4 x Oppgave (3 poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC x og CB
DetaljerHjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1006
DetaljerR1 Eksamen høsten 2009 Løsning
R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)
DetaljerEksamen MAT1013 Matematikk 1T Hausten 2014
Eksamen MAT1013 Matematikk 1T Hausten 01 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgåve (1 poeng) Løys likninga 16 lg lg16
Detaljer1T eksamen våren 2018
1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs
DetaljerEksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
DetaljerEksamen MAT 1011 Matematikk 1P Høsten 2013
Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500
DetaljerEksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag
Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved
DetaljerInnlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8
Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln
DetaljerLøsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017
Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx
Detaljer