Kondenserte fasers fysikk Modul 3

Størrelse: px
Begynne med side:

Download "Kondenserte fasers fysikk Modul 3"

Transkript

1 FYS3410 Kondenserte fasers fysikk Modul 3 Sindre Rannem Bilden 20. april 2016

2 Oppgave 1 - Fri elektron gass At fri veilengde for elektroner er i størrelsesordenen med atomavstandene er en av de grunnleggende antagelsene i Drude-modellen. Om denne antagelsen er diskuterbar vil tolkningen av transportfaktorer som termisk ledningsevne κ og elektrisk ledningsevne σ kunne betviles. Bruk fri elektron gass modellen og utled forholdet L = κ σt i Widemann-Franz lov og vurder hvorfor L ser ut til å stemme godt med eksperimentelle verdier selv om κ og σ ikke er gode tolkninger i seg selv. Gjør en forbedring ved å innføre fri elektron fermi gass, ta spesielt høyde for at C el = π 2 Nk BT 2T F og bruk v F for elektronhastigheten. Svar: Ved fri elektron gass modellen Drude) vil elektronene ha en naturlig kinetisk energi lik den termiske energien. 1 2 mv2 t = 3 2 k bt Elektrisk ledningsevne kan finnes ved å se på hastigheten til partikler i et elektrisk felt. vt) = eet m Elektronenes frie veilengde antas å være λ a som gir en gjennomsnittlig tid mellom kollisjoner på τ = λ v t Om man erstatter t med τ får elektronene en gjennomsnittelig drifthastighet. v = eeτ m Strømfluks er definert som ladninger gjennom et areal per tidsenhet Fra modul 2 har man allerede en termisk ledningsevne for fononer lik κ = 1 3 τc V v 2 t Ved å sette inn τ og v t fra fri elektron gass modellen vil man få et uttykk som har samme tidsavgengighet som σ. Om man tenker på kriteriene satt for fri veilengde hos elektroner vil λ antagelgvis være litt feil når det gjelder termisk ledningsevne. Om man ser på LT = κ σ får vi LT = C V v 2 t m 3ne 2 E T = 3k2 B 2e 2 T Dette er relativt likt den kvantemekaniske løsningen π 2 kb 2 3 e 2 T = LT På denne måten er forholdet mellom κ og σ være relativt godt selv om de hver for seg er mindre gode tilnærminger. j = en v A = ne2 τ m E Siden j = σe vil man få en elektrisk ledningsevne σ lik σ = ne2 τ m

3 Oppgave 2 - Born-von Karman Introduser Born-von Karman grensebetingelser og utled tilstandstettheten for FEFG i en avgrenset tredimensjonell prøve. Beregn verdiene ε F,k F,v F og T V. Med andre ord: fermienergien, bølgevektoren, fermihastighet og fermitemperatur, for alkalimetaller. Forklar trenden. Svar: Antar at prøven er kubisk avgrenset og innfører Born - von Karman grensebetingelser. Dette gir kriteriet om en periodisk bølgefunksjon i hver dimensjon: y k F k min ɛ F x ψ x x + L) = ψ x x) En planbølgeløsning i tre dimensjoner tilfredstiller kravet om periodisitet ψ r) = A cosk r) + ib sink r) e ikx Der k-vektoren er kvantisert i alle dimensjoner k x = 2π L n x for n x = 1, 2, 3,... Om man ser bort fra potensialet i schrödingerlikningen får man Ĥψ r) =Êψ r) 2 2 2m e ψ r) + U r)ψ r) =Êψ r) 2 2 2m e ψ r) =Êψ r) E = 2 k 2 2m e Vi får fra dette at ɛ F = 2 2m e kf 2. Det vil være to elektroner per k-tilstand på grunn av spinn DOS = 2 1 = 2π L ) 3 2 L 2π )3 = V 4π 3 ). k F danner en sfære i k- rommet med volum V F = 4π 3 k3 F som vil romme N = V F DOS = k3 F V 3 okkuperte tilstander Figur 1). Vi vet at N π 2 også er lik antall valenselektroner i krystallen da dette er det maksimale antallet Figur 1: Illustrasjon av todimensjonelle k- vektorer i forhold til fermienergien. okkuperte tilstander. Skriver vi om dette finner vi verdien til k F og ɛ F : 3π 2 N k F = V ) 1/3 ɛ F = 2 3π 2 N 2m e V ) 2/3 Dette gjelder kun for alkalimetaller, en grov tilnærming for metaller med Z valenselektroner er å erstatte N med ZN. Vi kan finne fermihastigheten v F ved å sette ɛ F = 1 2 mv2 F da potensialet er null. Da får vi 2ɛF v F = m = 3π 2 ) 1/3 N = k F m e V m e På samme måte finner vi fermitemperatur ved k B T F = ɛ F og får T F = 2 3π 2 N 2m e k B V ) 2/3

4 Elektronkonsentrasjoner er hentet fra s.139 i læreboken. import numpy as np import matplotlib. pyplot as plt import math # DEFINE CONSTANTS kb = 8.617E -5 #evk -1 Ee = E6 # ev c = 3.0 E10 #cm/s hbarc = # evnm Alkali = np. array [[ Li,4.7 e22 ],[ Na,2.65 e22 ],[ K,1.4 e22 ],[ Rb,1.15 e22 ],[ Cs,0.91 e22 ]]) Figur 2: Trend for fermi k-vektor def kfnpv ): return 3.0* np.pi **2)**1./3)\ * NpV **1./3) def EFkF ): return hbarc *kf )**2.0/2* Ee )) def vfef ): return np. sqrt 2.0* EF/Ee )*c Figur 3: Trend for fermienergi def TFEF ): return EF/ kb numbers = np. linspace 1, len Alkali )\,len Alkali )) k_list = [] E_list = [] v_list = [] T_list = [] for i in range 0, len Alkali [:,0])): k = kf float Alkali [i,1])) k_list. append k) E=EFk*1E -7) E_list. append E) v_list. append vfe)) T_list. append TFE)) Figur 4: Trend for fermihastighet Man kan tydelig se at verdiene synker med en lavere elektronkonsentrasjon. Det er logisk når man ser at alle verdiene er avhengig av k-vektor som er avhengig av elektronkonsentrasjonen. Figur 5: Trend for fermitemperatur

5 Oppgave 3 - Varmekapasitet Se på oppvarmingen av den tredimensjonelle prøven opp til T > 0. Lag en tilnærming for elektronenes varmekapasitet som tar rede for at kun en begrenset mengde elektroner, i grensen ε F, bidrar til en økt total varmekapasitet. Forklar hvorfor. Svar: Vi har en elektronisk varmekapasitet N C el = U el T Vi kan gjøre en tilnærming for energien ved å se på Figur 6. Man kan se at elektroner innenfor k B T k B T k B T DOS Oppgave 4 - FEFG i én og to dimensjoner Se på FEFG i en og to dimensjoner. Svar: a) Vis at DOS i to dimensjoner er uavhengig av elektronenes energi. DOS 2D k)dk =2 ) 1 2 2πk 2 π π Lx = k L z π dk DOS 2D E)dE =DOS 2D k)dk DOS 2D E) = DOS 2Dk) de dk = k L z π = m 2 L z π 2m 2 1 2k L y ) 1 V dk b) Vis at DOS i én dimensjon er proporsjonal med E 1/2. Figur 6: Tilstandstetthet i tre dimensjoner. ɛ F under fermienergien vil kunne eksitere til et område k B T over fermienergien, med et hopp på k B T. ɛ Svar: DOS 1D k)dk =2 ) 1 1 ) 1 2 π V dk Lx = 1 1 π L y L z DOS 1D E) = DOS 1Dk) de dk = 1 1 2m 1 π L y L z 2 2k = m π L y L z k ) 2m 1/2 k = E 1/2 2 m DOS 1D E) = E ) 1/ π L y L z

6 c) Forklar DOS trenden for kvantebrønner og kvantetråder i forhold til bulk. Det samme fenomenet finnes i kvantedotter, der degenerasjonen kommer av kombinasjonen mellom n x,n y og n z. Svar: Kvantebrønner har en trappeformet DOSE), k-vektoren vil ligge i et plan med z-komponent lik k z,1 frem til k 2 x + k y ) 2 er så stor at kz kan eksiteres, der k-vektoren er så lang at k z kan eksitere fra n z = 1 til n z = 2. Da vil DOS gjøre et steg opp til DOS 3D og så fortsette konstant til neste eksitasjon fra n z = 2 til n z = 3 og videre. Dette vil si at DOS 2D E) er null for E < 2 2m k2 x + ky 2 + kz,1 2 ) og hopper for hver økning i n z. I én dimensjon vil k-vektoren kun ha én fri dimensjon, for eksempel x og derfor skaleres langs x-aksen helt til k 2 x+k 2 y,1 + k 2 z,1 ) er stor nok til å eksitere k y eller k z. Her vil DOS 1D E) gjøre et hopp og så minke med E 1/2 som vist i b), den vil minke helt til den på nytt kan eksitere k y eller k z og videre. d) Forklar degenerasjon i kvantetråder. Svar: Om man antar at de nedskalerte dimensjonene, y og z, har samme lengde L y = L z = L, vil man kunne se på energien som En x, n y, n z ) = 2 2m k2 x+ 2m ) 2π 2 n 2 y + n 2 ) z L Hvis man setter n 2 = n 2 y + n 2 z kan man se at energien En) vil være det samme uavhengig av n y og n z så lenge n 2 = n 2 y +n 2 z gjelder. Derfor vil degenerasjon i kvantetråder komme fra de mulige fordelingene av verdier for n, for eksempel vil En 2 = 5) ha degenerasjon 2 siden det kommer fra n y = 2 og n z = 1 i tillegg til n y = 1 og n z = 2.

7 Oppgave 5 - Konig-Penney Løs den tidsuavhengige schrödingerlikningen TUSL) hvor du introduserer et potensiale med formen som en deltafunksjon med størrelse V 0. Illustrer hvordan diskontinuitet i løsningen kan relateres til forbudte energinivåer. Bruk denne løsningen til å undersøke grensen V 0 0 og V 0. V x) α x Svar: 1a 0a 1a 2a Om man starter med et system hvor potensialet er V x) = V 0 δ der δ er 1 om x = na og 0 for x na, vil bølgefunksjonen for α være med k = β V 0 Ψ α x) = Ae ikx + Be ikx 2mE. Bloch teoremet sier at 2 den generelle bølgefunksjonen Ψx) kan uttrykkes som Ψx) = ux)e ikx 1) der K er en bølgevektor uavhenig av k. Vi vet fra 1 at Ψ0) = u0) og Ψa) = ua)e ika. Siden vi vet at ua+x) = ux) forholdet Ψa) Ψ0) = ua)eika u0) = e ika gi relasjonen Ψa) = Ψ0)e ika som også kan skrives Ψ β x) = Ψ β x) = Ψ α x a)e ika [ Ae ikx a) + Be ikx a)] e ika 2) Siden den generelle bølgefunksjonen Ψx) må være kontinuerlig vil Ψ α a) = Ψ β a) som gir Ψ α a) =Ψ β a) Ae ika + Be ika = [A + B] e ika Ae ika + Be ika =Ae ika + Be ika [ A e ika e ika] [ = B e ika e ika] 3) Et annet krav til Ψx) er at den deriverte også skal være kontinuerlig. Fra TUSL har vi et uttrykk for den andrederiverte 2 EΨx) = 2 Ψx) + V x)ψx) 2m x2 2 Ψx) =2m [V x) E] Ψx) x2 2 For å finne et uttykk for den førstederiverte av Ψx) integreres dette uttrykket over grensen i a fra a δ til a + δ) og vi får x=a+ x=a 2 x 2 Ψx) =2m [V x) E] Ψx) x Ψx)dx =2m x=a+ x=a Når 0 vil V x) V 0 og vi får : 2m 2 V 0Ψa) = x [Ψ βx) Ψ α x)] x=a 4) Dette blir [V x) E] Ψx)dx 2m 2 V 0 [A + B] e ika = [ ika e ika e ika] ikb [e ika ikbe ika]

8 som videre gir relasjonen [ A ike ika ike ika 2m ] 2 V 0e ika [ B ike ika ike ika + 2m ] 2 V 0e ika = 5) Likningen som oppfyller kravene i både 3 og 5 er coska) = 2mV 0 2 sinka) ka + coska) 6) Man kan se at venstre side av likningen kun gir verdier mellom 1 og 1, som vil defineres som det gyldige spekteret til høyre side av likningen. Høyre side vil endre sin oppførsel om V 0 endres. Om man lager en graf av høyre side vil man kunne se illustrativt områdene der det er lovlige tilstander og der det er ulovlige tilstander. Oppgave 6 - Brillouinsoner Anta at monovalente atomer krystaliserer i et primitivt kubisk gitter med a som gitterparameter. a) Beregn størrelsen til fermivektoren k F ) og sammenlign den med den korteste avstanden fra Γ-punktet til kanten på Brillouinsonen i det primitive kubiske gitteret k BZ ). Svar: Basert på Oppgave 2 finner man 3π 2 N k F = V ) 1/3 for monovalente atomer der volumet per atom er V = a 3. Vi setter N. Fra Modul 1 vet vi at k BZ,1D = 1 2 G [100] = 1 2 k max = π a for en primitiv kubisk enhetscelle og gir k BZ,3D π a da vektorene i de andre retningene antas å være neglisjerbare. Man kan se på π 3π 2 ) 1/3 at k F er nesten like stor som k BZ. 0 k Om man ser på grensen V 0 0 vil likning 6 bli coska) = coska) og alle tilstander blir tillatt, dette tilsvarer en fri partikkel. Om man ser på grensen V 0 vil sinusledder i likning 6 dominere og man får kun gyldige tilstander når sinka) = 0. Dette gir ka = nπ som tilsvarer k = nπ 2 a og E = nπ ) 2 2m a som er svært likt energioppslittingen til et enkeltatom, eller en partikkel i boks.

9 b) Om k F < k BZ vil det være ledige tilstander i båndet siden det er ledige tilstander opp til k = k BZ. Beregn nummerisk hvor mange divalente atomer som må legges til det primitive kubiske gitteret for å få k F = k BZ i blandingen. Ville en slik blanding gi bedre eller dårligere elektrisk ledningsevne? Svar: import numpy as np import matplotlib. pyplot as plt a = 1 N = 1 c = np. linspace 0,1,1000) def kfx): Z = 1 -x )+2* x e1 = 3* np.pi **2)**1./3) e2 = Z*N )**1./3)/ N*a) return e1* e2 Når dette skjer vil antallet ledige tilstander minke og man får dårligere ledningevne. Natrium er kjent som et av de beste metallene. Det krystalliserer i BCC struktur med to atomer i hver enhetscelle. c) Gjenta beregninene i a) på BCC strukturen til natrium. Svar: En BCC struktur kan beskrives av vektorer som gir et volum V = 1 2 a3. Dette gir N = V F DOS = k3 F V 3 π 2 og ved samme fremgangsmåte som i Oppgave 2 får man kbz = np. ones len c ))* np.pi/a C = c[kfc )[:] > kbz [ -1]][0] print C plt. plot c *100, kfc)/ kbz, label = $k_f$ ) plt. plot c *100, kbz /kbz, label = $k_ {BZ}$ ) plt. scatter C *100,1, label = x =%.3 f %C)) plt. xlim 0,100) plt. ylabel k- vector [ $k_ {BZ}$] ) plt. xlabel Compostition [%] ) plt. legend ) plt. show ) 6π 2 N k F = V ) 1/3. I en BCC celle vil lengste avstand til et tilsvarende atom være 2a i retning [110], dette gir en z k BZ 2π a a 1 y a 2 a 4 Man kan se at ved en blanding det 4.8% av atomene er divalente vil fermivektoren rekke ut til kanten av Brillouinsonen. a 3 x

10 d) Beregn hvor mye magnesium som må blandes inn med natriumet for at k F = k BZ i den korteste retningen fra Γ- punktet til kanten av Brillouinsonen. Anta at blandingen beholder BCC struktur. Svar: Ved å legge dette inn i programmet vil prosenten stige til 48%. e) Foreslå et scenario for utviklingen til den elektriske ledningevnen i en slik blanding som funksjon av blandingsforhold. Svar: Man tenke seg at den elektriske ledningsevnen vil være konstant frem til k F nærmer seg k BZ derifra vil ledningsevnen synkte kraftig til k F når k BZ og vil stige igjen når k F øker ytterligere. Dette kan man relatere til blandingsforhold: σ Na [x = 0.48] Na 1 x) Mg x

Kondenserte fasers fysikk Modul 2

Kondenserte fasers fysikk Modul 2 FYS3410 Kondenserte fasers fysikk Modul Sindre Rannem Bilden 1. mai 016 Oppgave 1 - Endimensjonal krystall (Obligatorisk Se på vibrasjoner i en uendelig lang endimensjonell krystall med kun ett atom i

Detaljer

Kondenserte fasers fysikk Modul 4

Kondenserte fasers fysikk Modul 4 FYS3410 Kondenserte fasers fysikk Modul 4 Sindre Rannem Bilden 9. mai 2016 Oppgave 1 - Metaller og isolatorer Metaller er karakterisert med et delvis fyllt bånd kallt ledningsbåndet. I motsetning til metaller

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018 Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.

Detaljer

FYS2140 Kvantefysikk, Oblig 7. Sindre Rannem Bilden, Gruppe 4

FYS2140 Kvantefysikk, Oblig 7. Sindre Rannem Bilden, Gruppe 4 FYS214 Kvantefysikk, Oblig 7 Sindre Rannem Bilden, Gruppe 4 11. mars 215 Obliger i FYS214 merkes med navn og gruppenummer! Denne obligen dreier seg om (bølgepakker av fri partikkel tilstander og om såkalte

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018 Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene

Detaljer

Termodynamikk og statistisk fysikk Oblig 7

Termodynamikk og statistisk fysikk Oblig 7 FYS2160 Termodynamikk og statistisk fysikk Oblig 7 Sindre Rannem Bilden 4. november 2015 Oppgave 0.11 - Fase likevekt i en van der Waals system a) is at trykket, p(n,, T ), til van der Waals gassen er

Detaljer

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008 Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen

Detaljer

EKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29.

EKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29. Side 1 av 4 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF406 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk

Detaljer

FYS2140 Hjemmeeksamen Vår Kandidat 11

FYS2140 Hjemmeeksamen Vår Kandidat 11 FYS2140 Hjemmeeksamen Vår 2015 Kandidat 11 20. mars 2015 Det er i alt mulig på en god dag å få 20 poeng på denne hjemmeeksamen. Noen av oppgavene skal løses numerisk. Kompendiet om programmering, samt

Detaljer

Løsningsforslag Matematisk fysikk, 28. mai 2001

Løsningsforslag Matematisk fysikk, 28. mai 2001 Løsningsforslag Matematisk fysikk, 8. mai Oppgave a) Det er trykkfeil i oppgaven. Riktig uttrykk er Vi har sin n θ = π cosx sin θ) = π π = n= n= n= = J x). π n n!). ) n x sin θ) n n= ) n x n ) n x n )

Detaljer

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00

Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Termodynamikk og statistisk fysikk Oblig 4

Termodynamikk og statistisk fysikk Oblig 4 FYS216 ermodynamikk og statistisk fysikk Oblig 4 Sindre Rannem Bilden 23. september 215 Oppgave.5 - Rotasjon av diatomiske molekyler a) Skriv ned partisjonsfunksjonen Z R ( ) Z R ( ) =Σ j g(j)e ε jβ =(2j

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:

Detaljer

FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4

FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4 FYS2140 Kvantefysikk, Oblig 11 Sindre Rannem Bilden og Gruppe 4 30. april 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen er satt sammen av den første delen av eksamen våren 2010

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015

Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015 Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015 12. mars 2015 Det er i alt mulig på en god dag å få 20 poeng på denne hjemmeeksamen. Noen av oppgavene skal løses numerisk. Kompendiet om programmering, samt

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag Oblig 7

FYS2140 Kvantefysikk, Løsningsforslag Oblig 7 FYS4 Kvantefysikk, Løsningsforslag Oblig 7 4. mars 8 Her finner dere løsningsforslag for Oblig 7 som bestod av Oppgave.,.45 og.46 fra Griffiths, og et løsningsforslag for Oppgave., som var tilleggsoppgave.

Detaljer

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9

FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9 FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

B.1 Generelle egenskaper til energiegenfunksjoner

B.1 Generelle egenskaper til energiegenfunksjoner TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner

Detaljer

KJM2600-Laboratorieoppgave 2

KJM2600-Laboratorieoppgave 2 KJM2600-Laboratorieoppgave 2 Sindre Rannem Bilden Gruppe 1 12. mars 2015 1 Hensikt Utdypning av kvantekjemiske begreper ved hjelp av Hückelberegninger. 2 Teori Hückel-teorien bruker den tidsuavhengige

Detaljer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk

Detaljer

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl

EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2. FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy

Detaljer

FYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4

FYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4 FYS240 Kvantefysikk, Oblig 8 Sindre Rannem Bilden, Gruppe 4 9. april 205 Obliger i FYS240 merkes med navn og gruppenummer! Denne obligen dreier seg om partikkel i en endelig brønn. Dere får bruk for Python

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00

Detaljer

FY juni 2015 Side 1 av 6

FY juni 2015 Side 1 av 6 FY6019 12. juni 2015 Side 1 av 6 Oppgave 1. Flervalgsoppgaver. (Poeng: 2.5 8 = 20) a) Hva er forventningsverdien av posisjonen, x, til en partikkel i grunntilstanden i en endimensjonal potensialboks mellom

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons. Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur

Detaljer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer

FYS2140 Hjemmeeksamen Vår Ditt kandidatnummer FYS2140 Hjemmeeksamen Vår 2018 Ditt kandidatnummer 15. mars 2018 Viktig info: Elektronisk innlevering på devilry med frist fredag 23. mars 2018 kl. 16:00. Leveringsfristen er absolutt. Innleveringen (pdf)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

Mandag dq dt. I = Q t + + x (tverrsnitt av leder) Med n = N/ V ladningsbærere pr volumenhet, med midlere driftshastighet v og ladning q:

Mandag dq dt. I = Q t + + x (tverrsnitt av leder) Med n = N/ V ladningsbærere pr volumenhet, med midlere driftshastighet v og ladning q: Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2007, uke Mandag 2.03.07 Elektrisk strøm. [FGT 26.; YF 25.; TM 25.; AF 24., 24.2; LHL 2.; DJG 5..3] Elektrisk strømstyrke = (positiv)

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Torsdag 9. juni, 016 Tid for eksamen: 09:00 13:00 Oppgavesettet

Detaljer

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

CMOS billedsensorer ENERGIBÅND. Orienteringsstoff AO 03V 2.1

CMOS billedsensorer ENERGIBÅND. Orienteringsstoff AO 03V 2.1 NRGIBÅND Orienteringsstoff AO 03V 2.1 nergibånd Oppsplitting av energitilstander i krystallstruktur Atom (H) Molekyl Krystallstruktur Sentrifugal potensial 0 0 0 ffektivt potensial Columb potensial a a

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner

TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk

Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial

Detaljer

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7

FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7 FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon

Detaljer

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7 FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga

Detaljer

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute. EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk

Detaljer

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer) 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

1 d 3 p. dpp 2 e β Z = Z N 1 = U = N 6 1 kt = 3NkT.

1 d 3 p. dpp 2 e β Z = Z N 1 = U = N 6 1 kt = 3NkT. Oppgave a) Partisjonsfunksjonen for én oscillator: Z d p (2π h) (4π)2 8π h 2 π h ( k hω (2mk )/2 ), d re β 2m p2 βmω2 2 r 2 dpp 2 e β ( 2k mω 2 2m p2 ) /2 ( drr 2 e βmω2 2 r 2 dxx 2 e x2 ) 2 der integralet

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial

FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial FY006/TFY45 - Løysing øving 5 Løysing oppgåve LØYSING ØVING 5 Krumning og stykkevis konstante potensial a) I eit område der V er konstant (lik V ), og E V er positiv, er området klassisk tillate og vi

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

Oppgave 1 V 1 V 4 V 2 V 3

Oppgave 1 V 1 V 4 V 2 V 3 Oppgave 1 Carnot-syklusen er den mest effektive sykliske prosessen som omdanner termisk energi til arbeid. I en maskin som anvender Carnot-syklusen vil arbeidssubstansen være i kontakt med et varmt reservoar

Detaljer

Lab 8 Resonanskretser, serie og parallell. Båndbredde (B W ) og Q-faktor.

Lab 8 Resonanskretser, serie og parallell. Båndbredde (B W ) og Q-faktor. Universitetet i Oslo FYS20 Elektronikk med prosjektoppgave Lab 8 Resonanskretser, serie og parallell. Båndbredde ( ) og Q-faktor. Sindre Rannem Bilden. mai 206 Labdag: Tirsdag Labgruppe: 3 Oppgave : Serieresonans

Detaljer

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h

FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse

Detaljer

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002 NTNU Side 1 av 6 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF40 Fysikk Tirsdag 3. desember 00 Dette løsningsforslaget er på 6 sider. Oppgave 1. a) Amplituden

Detaljer

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019 Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4 FYS40 Kvantefysikk, Oblig 3 Sindre Rannem Bilden,Gruppe 4. februar 05 Obliger i FYS40 merkes med navn og gruppenummer! Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver

Detaljer

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er

Detaljer

Løsning til øving 23 for FY1004, våren 2008

Løsning til øving 23 for FY1004, våren 2008 Løsning til øving 23 for FY1004, våren 2008 Diracs δ-funksjon kan defineres ved at δ(x) = 0 for x 0, og dx δ(x) = 1. Vi vil bruke δ-funksjonen som et potensial for en partikkel i en dimensjon. Vi setter

Detaljer

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)

Detaljer

KJM Molekylmodellering

KJM Molekylmodellering KJM3600 - Molekylmodellering Vebjørn Bakken Kjemisk institutt, UiO KJM3600 - Molekylmodellering p.1/29 Introduksjon Introduksjon p.2/29 Introduksjon p.3/29 Molekylmodellering Flere navn på moderne teoretisk

Detaljer

Lab 2 Praktiske målinger med oscilloskop og signalgenerator

Lab 2 Praktiske målinger med oscilloskop og signalgenerator Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 2 Praktiske målinger med oscilloskop og signalgenerator 17. februar 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Knekkfrekvens Et enkelt

Detaljer

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:

Detaljer

University of Oslo KJM2600. Oppsummering

University of Oslo KJM2600. Oppsummering University of Oslo KJM2600 Oppsummering Dette heftet er i tre deler, første del tar for seg grunneleggende kvantemekanikk. Andre del går igjennom oppbygingen av atomer og molekyler, og hvordan energitilstandene

Detaljer

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY45/TFY45 8. august - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august FY45/TFY45 Kvantemekanikk I a. For E < V blir området x > klassisk forbudt, og den tidsuavhengige Schrödingerligningen

Detaljer

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013

Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6. NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Merk: Hver deloppgave teller like mye. Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY417 Fysikk

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar

FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 Frist for innlevering: tirsdag 3. februar Oppgave 1 ØVING 2 Krumningseigenskapar for eindimensjonale energieigenfunksjonar Ein partikkel med masse m

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:

EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid: Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap

Detaljer

KJM2600-Laboratorieoppgave 4

KJM2600-Laboratorieoppgave 4 KJM2600-Laboratorieoppgave 4 Sindre Rannem Bilden Gruppe 1 27. april 2015 Laboratorierapporten tar utganskpunkt i elektronvolt og lengder i nanometer og ångstrøm for enklere regning. Senere konverteres

Detaljer

Termodynamikk og statistisk fysikk Oblig 2

Termodynamikk og statistisk fysikk Oblig 2 FYS6 Termodynamikk og statistisk fysikk Oblig Sindre Rannem Bilden. september 05 Oppgave 0. - Likevekt i et spinnsystem a Hva er antallet mikrotilstander i et system med antall spinn? Svar: Da hver spinn

Detaljer

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid:

Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: Side 1 av 9 Løsningsforslag Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: 09 00-13 00 Oppgave 1 i) Utherdbare aluminiumslegeringer kan herdes ved utskillingsherding (eng.: age hardening

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast

Detaljer

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand

FY2045/TFY4250 Kvantemekanikk I, øving 2 1 ØVING 2. nesten en posisjonsegentilstand FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 2 1 Oppgave 2 1 ØVING 2 nesten en posisjonsegentilstand Vi har sett at en posisjon ikke kan måles med en usikkerhet som er eksakt lik null. Derimot er det

Detaljer

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på

Detaljer

Ein par(kkel i 3 dimensjonar

Ein par(kkel i 3 dimensjonar Ein par(kkel i 3 dimensjonar Kvantemekanisk beskrivelse av ein par0kkel som kan bevege seg i 3 dimensjonar Bølgjefunksjon: Ψ(x, y, z, t) =Ψ(r, t) Ψ(x, y, z, t) dx dy dz Tolking: er sannsynlegheiten for,

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4

FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4 FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i

Detaljer

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl

EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK I Mandag 8. august 2011 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 970355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK

Detaljer