Kondenserte fasers fysikk Modul 4
|
|
- Kurt Berntsen
- 7 år siden
- Visninger:
Transkript
1 FYS3410 Kondenserte fasers fysikk Modul 4 Sindre Rannem Bilden 9. mai 2016
2 Oppgave 1 - Metaller og isolatorer Metaller er karakterisert med et delvis fyllt bånd kallt ledningsbåndet. I motsetning til metaller har isolatorer et tomt ledningsbånd og et fullt valensbånd. For å avgjøre om materialet er metallisk eller isolerende bør man først sammenligne antall tilstander i et bånd med antallet tilgjengelige elektroner som kan fylle tilstandene, samt ta høyde for båndoverlapp. a) Se på en endimensjonell krystall med en gitterkonstant a satt sammen av enten mono- eller divalente atomer. Avgjør om krystallene er metaller eller isolatorer. Svar: Hvert atom gir to energitilstander. Monovalente atomer gir ett elektron per atom som kan okkupere tilstander og fyller derfor opp halve båndet og blir metallisk. Divalente atomer gir to elektroner som kan okkupere tilstander, de vil okkupere alle tilgjengelige tilstander og bli isolatorer siden det kun finnes én dimensjon. b) Se på en tredimensjonell krystall med for eksempel en primitiv kubisk enhetcelle bestående av mono- eller divalente atomer. Vil definisjonene i én dimensjon holde for tredimensjonelle krystaller? Svar: For en primitiv kubisk enhetcelle vil avstanden til Brillouinsonen være lik i alle dimensjoner. Man kan se på hver dimensjon for seg og får samme situasjon som i a). Siden alle dimensjonene er like vil det som var en isolatoren i én dimensjon fortsatt være isolator i tre dimensjoner. Om man derimot ser på andre enhetceller vil situasjonen være anderledes, siden avstandene til Brillouinsonene er forskjellige i for eksempel BCC vil båndene i forskjellige dimensjoner overlappe og fylles slik at krystallen blir metallisk. Oppgave 2 - Effektiv masse Introduser idéen om effektiv masse m ved å sammenlikne dispersjonsrelasjonen for FEFG og en tenkt E k) som er Taylorutviklet fra fra et minimum/maksimumspunkt. Legg ved en graf av E k) med første og andre deriverte av tilnærmingen. Legg også ved en graf med den effektive massen som funksjon av k innen innen første Brillouinsonefor en endimensjonell krystall. Svar: Om man ser på en partikkel i et periodisk potensiale, kan man få en god tilnærming av energien ved et minimum/maksimumspunkt, Ek 0 ), om man bruker en andregrads Taylorutvikling om minimum/maksimumspunktet. Dette gir en funksjon om k 0 som er E k) =Ek 0 ) + k k 0 ) k Ek 0) k k 0) 2 2 k 2 Ek 0) Ek 0 ) er en ukjent konstant. Siden E k) er en Taylorutvikling om et minimum/maksimumspunkt vil k Ek 0) = 0 og leddet forsvinner. Vi sitter igjen med 1 2 k k 0) 2 2 k 2 Ek 0) Dette kan skrives om til 2 ) k k 0 ) 2 Ek k 2 0 ) 2 Uttrykket ligner svært mye på energien til et fritt elektron E = 2m k2 så vi introduserer m = 2 1 Ek k 2 0 )) 2 og får 2m k k 0) 2 Dette gir relasjonene vist i Figur 1.
3 E v g a m Potential k Potential k kpotential kpotential a) Hvorfor er den effektive massen forskjellig fra hvilemassen til elektronet? Svar: Den effektive massen påvirkes av miljøet elektronet er i og bevegelsesmengden til elektronet p = k). b) Kan den effektive massen bli negativ? Hva betyr det? Introduser konseptet hull. Svar: Den effektive massen kan være negativ nær en Brillouinsone siden energien flater ut til en forbudt k-verdi. Elektroner med negativ masse vil gi motsatt reaksjon av hva et elektron med positiv effektiv masse gir. Siden reaksjonen er det negative vil mange tolke det som en motsatt ladd partikkel, da en negativ masse er et fjærnt konsept. Dette leder til tanken om positivt ladde hull i tilstandsbåndene. c) Anta at energien til elektroner i grenseflaten av ledningsbåndet er Ek) = Ak 2 med A = 5e 37Jm 2 = 3.12eV nm 2. Beregn den effektive massen i grenseflaten av ledningsbåndet. Svar: Ved å bruke relasjonen m = 2 k 2 Ek 0 )) 1 2 får vi Figur 1: Relasjon mellom elektronets effektive masse, akselerasjon, gruppehastighet og energi. ) m 2 1 = k 2 Ek 0) 2 = 2A) 1 2 = 2A = 2A c 2 2π) 2 c 2 2π) eV nm)2 = 2A2π) 2 c 2 =6241 ev c m 0
4 Oppgave 3 - Lette og tunge hull GaAs er en halvleder med et direkte båndgap på 1.42eV i romtemperatur. Eksperimentelle verdier for de effektive massene er 0.067,0.082 og 0.45 av massen til et fritt elektron. Massene er målt for et elektron i ledningsbåndet og for lette og tunge hull i toppen av valensbåndet i respektiv rekkefølge. Beregn de korresponderende energi dispersjonrelasjonene og tegn båndstrukturen til GaAs om Γ-punktet. Hva er grunnen til lette og tunge hull? Svar: Om man bruker relasjonen får man 2m k Γ)2 =C + Ak 2 2 2m =A A 1 m = 0.067m 0 ) =0.569eV nm 2 A 2 m = 0.082m 0 ) = 0.465eV nm 2 A 3 m = 0.45m 0 ) = 0.085eV nm 2 dette gir båndstrukturen vist i under. Om hullet/elektrinet er lett eller E g Γ A 1 E C A 2 A 3 E V tungt kommer av energikrumningen i k- rommet, en slak krumning gir tunge hull/elektroner og krappe gir lette. Krumningen defineres delvis av gitterparameteren a i de forskjellige dimensjonene. Oppgave 4 - Hydrogenlike dopanter Se på forsfordonorer i en silisiumkrystall med en effektiv-masse tilnærming for hydrogenlike atomer. a) Beregn energien som behøves for å eksitere elektronet fra donornivået til ledningsbåndet. Svar: Energien til elektronet i et hydrogen er definert som E 0 = me4 8 2 ε n 2 Et forsforatom i en silisiumkrystall kan ses på som et hydrogenlignende atom siden fosfor har ett valenselektron mer enn silisium. Ser man på en effektiv masse tilnærming får man E C E d = m e εε 0 ) 2 1 n 2 = E 0 m m ) 1 ε 2 Dette gir at man behøver E = E m ) 1 0 m for å eksitere elektronet ε 2 fra donornivå til ledningsbåndet. Setter man inn den effektive massen m = 0.2m til forsfor i silisium og permitiviteten til silisium ε = 11.7 får man E 0.02eV. b) Beregn Bohr radiusen til elektronene og beregn hvilken dopingkonsentrasjon som må til for å gå fra lokaliserte tilstander til et bånd. Svar: Radiusen til hydrogenatomet er gitt ved r 0 = ε 0 2 πme 2 n2 på samme måte som for energien blir radiusen i et hydrogenlikt atom lik r d = εε 0 2 πm e 2 n2 = r 0 m m ) ε
5 Setter man inn de samme parameterene som i a får man r d 3.1nm. For at tilstandene skal være lokaliserte og ikke overlappe må det være d = 2r d i avstand mellom hvert fosforatom. Med andre ord kun være ett fosforatom per volum V d = 4 3 πr3 d. Om man så ser på en kubikkcentimeter vil man få plass til 1cm 3 V d = ) π ) P cm 3 Som virker som en logisk maksimal dopingkonsentrasjon. Oppgave 5 - Ladningsbærere Se på ladningsbærerkonsentrasjonen som funksjon av temperatur i homogent dopet silisium med N d = P cm 3. Se på svært lave temperaturer, normale og svært høye temperaturer, som tilsvarer donorfrysing, full donoraktivitet og intrinsisk oppførsel. a) Beregn likevektskonsentrasjonen for elektroner og hull. Plott elektronkonsentrasjonen som funksjon av 1/T ). Svar: Vi har at ladningsbærerkonsentrasjonen for lave temperaturer er domineret av donorelektroner ved n = N C exp E d k B T ), når den termiske energien bli så høy at alle donorelektronene eksiteres til ledningsbåndet blir ladningsbærerkonsentrasjonen lik n d = N d og når temperaturen stiger så mye at valenselektroner kan eksitere oppover vil konsentrasjonen følge n i = N C exp Eg 2k B T ). Vi får krysninger ved N d = N C exp E d k B T ) og N d = N i exp Eg 2k B T ) som tilsvarer T 0 = T 1 = E d k B ln Nd N C ] 40.8K E g 2k B ln Nd N C ] K for en ladnindsbærerkonstentrasjon på N C = cm 3 i ledningsbåndet. logn] T 1 T 0 n = /T b) Beregn fermienergien E F relativt til E i. Plott ferminivået ε F som funksjon av 1/T ). Svar: Fermienergien vil ligge mellom E d og E C siden E d er den høyeste okkuperte tilstanden ved T ] = 0K. E C E F = k B T ln n0 n C Ferminivået ligger nært fermienergien ved svært lave temperaturer men vil falle etterhvert som den termiske energien eksiterer elektroner fra donortilstander til ledningsbåndet.e C E F 40.8K) = ln eV Når temperaturen blir høy nok til å eksitere elekroner fra valensbåndet og opp vil materialet oppføre seg som et intrinsisk materiale siden effekten fra valensbåndet vil dominere over tilstandene fra dopingen. E F K) E i = ] ln eV Disse verdiene er ligger på donornivå og på intrinsisk nivå som er logisk med tanke på temperaturene. E E F E i ] T 1 T 0 1/T E C Ed E V
Kondenserte fasers fysikk Modul 2
FYS3410 Kondenserte fasers fysikk Modul Sindre Rannem Bilden 1. mai 016 Oppgave 1 - Endimensjonal krystall (Obligatorisk Se på vibrasjoner i en uendelig lang endimensjonell krystall med kun ett atom i
DetaljerBasis dokument. 1 Solcelle teori. Jon Skarpeteig. 23. oktober 2009
Basis dokument Jon Skarpeteig 23. oktober 2009 1 Solcelle teori De este solceller er krystallinske, det betyr at strukturen er ordnet, eller periodisk. I praksis vil krystallene inneholde feil av forskjellige
DetaljerEksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid:
Side 1 av 9 Løsningsforslag Eksamen i TMT 4185 Materialteknologi Tirsdag 12. desember 2006 Tid: 09 00-13 00 Oppgave 1 i) Utherdbare aluminiumslegeringer kan herdes ved utskillingsherding (eng.: age hardening
DetaljerCMOS billedsensorer ENERGIBÅND. Orienteringsstoff AO 03V 2.1
NRGIBÅND Orienteringsstoff AO 03V 2.1 nergibånd Oppsplitting av energitilstander i krystallstruktur Atom (H) Molekyl Krystallstruktur Sentrifugal potensial 0 0 0 ffektivt potensial Columb potensial a a
DetaljerFys2210 Halvlederkomponenter
Fys2210 Halvlederkomponenter Forelesning 2 Kapittel 3 ENERGY BANDS AND CHARGE CARRIERS IN SEMICONDUCTORS Repetisjon: I faste materialer danner elektronene energibånd N st Si atoms Filled; 2N Unfilled;
DetaljerSpenningskilder - batterier
UKE 4 Spenningskilder, batteri, effektoverføring. Kap. 2 60-65 AC. Kap 9, s.247-279 Fysikalsk elektronikk, Kap 1, s.28-31 Ledere, isolatorer og halvledere, doping 1 Spenningskilder - batterier Ideell spenningskilde
DetaljerFys2210 Halvlederkomponenter. Kapittel 1
Fys2210 Halvlederkomponenter Kapittel 1 Materialets struktur kan være - Amorft - Polykrystallinsk - Enkrystallinsk www.physics-in-a-nutshell.com Enkrystallinske materialer kan ha ulik atomstruktur De vanligste
DetaljerLøsningsforslag FY6019 Moderne fysikk kl fredag 12. juni 2015
Løsningsforslag FY6019 Moderne fysikk kl 09.00-14.00 fredag 12. juni 2015 Oppgave 1. Flervalgsoppgaver. (Poeng: 2.5 8 = 20) a) Hva er forventningsverdien av posisjonen, x, til en partikkel i grunntilstanden
DetaljerLØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00
NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:
DetaljerLøsningsforslag til ukeoppgave 15
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 15 Oppgave 18.11 Se. s. 544 Oppgave 18.12 a) Klorofyll a absorberer fiolett og rødt lys: i figuren ser vi at absorpsjonstoppene er ved 425 nm
DetaljerEnergibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge.
Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. 1 Innholdsfortegnelse. Sammendrag...3 Innledning... 4 Hvorfor kvantemekanisk
DetaljerSpenningskilder - batterier
UKE 4 Spenningskilder, batteri, effektoverføring. Kap. 2, s. 60-65 AC. Kap 9, s.247-279 Fysikalsk elektronikk, Kap 1, s.28-31 Ledere, isolatorer og halvledere, doping 1 Spenningskilder - batterier Ideell
DetaljerSolceller - Teori og praksis Solcellers virkningsgrad, effekt og elektriske egenskaper.
Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Solceller - Teori og praksis Solcellers virkningsgrad, effekt og elektriske egenskaper. Sindre Rannem Bilden 27. april 2016 Labdag: Tirsdag
DetaljerUKE 4. Thevenin Spenningskilde og effektoverføring Fysikalsk elektronikk Ledere, isolatorer og halvledere, doping Litt om AC
UKE 4 Thevenin Spenningskilde og effektoverføring Fysikalsk elektronikk Ledere, isolatorer og halvledere, doping Litt om AC 1 Thévenin s teorem Helmholtz 1853 Léon Charles Thévenin 1883 Ethvert lineært,
DetaljerFysikk og teknologi Elektronikk FYS ) Det betyr kjennskap til Ohms lov : U = R I og P = U I
Fysikk og teknologi Elektronikk FYS 1210 Skal vi forstå moderne elektronikk - må vi først beherske elementær lineær kretsteknikk - og litt om passive komponenter - motstander, kondensatorer og spoler 1
DetaljerEKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29.
Side 1 av 4 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF406 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk
DetaljerEKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:
DetaljerEnergiband i krystallar. Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi
Energiband i krystallar Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi Energibandstrukturen til eit material avgjer om det er ein leiar (metall), halvleiar, eller isolator Energiband
DetaljerFysikk og teknologi - Elektronikk Mål for opplæringen er at eleven skal kunne
14. Jan 06 Den nye læreplanen i fysikk Fysikk og teknologi - Elektronikk Mål for opplæringen er at eleven skal kunne 1. gjøre rede for forskjellen mellom ledere, halvledere og isolatorer ut fra dagens
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk august 2004
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)
DetaljerKondenserte fasers fysikk Modul 3
FYS3410 Kondenserte fasers fysikk Modul 3 Sindre Rannem Bilden 20. april 2016 Oppgave 1 - Fri elektron gass At fri veilengde for elektroner er i størrelsesordenen med atomavstandene er en av de grunnleggende
DetaljerEKSAMENSOPPGAVE I FYS-2001
Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.
DetaljerFYS1120 Elektromagnetisme - Ukesoppgavesett 2
FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden
DetaljerMeir om halvleiarar. Halvleiarteknologi
Meir om halvleiarar. Halvleiarteknologi YF 42.6, 42.7 (Halvleiarar vart introduserte i fila Energiband i krystallar, som denne fila er eit framhald av.) Hol Leiingsband Valensband E g Eksitasjon av eit
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerSolceller og halvledere
Prosjekt i Elektrisitet og Magnetisme. Solceller og halvledere Kristian Rød Innlevering 23.april 2004-0 - Innholdsfortegnelse: 1. Sammendrag 2. Innledning 3. Solceller, generelt 4. Halvledere 4.1. Elementært
DetaljerFYS2140 Kvantefysikk, Oblig 3. Sindre Rannem Bilden,Gruppe 4
FYS40 Kvantefysikk, Oblig 3 Sindre Rannem Bilden,Gruppe 4. februar 05 Obliger i FYS40 merkes med navn og gruppenummer! Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver
DetaljerElektronikk med prosjektoppgaver FYS 1210
Elektronikk med prosjektoppgaver FYS 1210 Lindem 29 jan. 2008 Komponentlære Kretselektronikk Elektriske ledere/ halvledere Doping Dioder - lysdioder Bipolare transistorer Unipolare komponenter FET, MOS,
DetaljerFY juni 2015 Side 1 av 6
FY6019 12. juni 2015 Side 1 av 6 Oppgave 1. Flervalgsoppgaver. (Poeng: 2.5 8 = 20) a) Hva er forventningsverdien av posisjonen, x, til en partikkel i grunntilstanden i en endimensjonal potensialboks mellom
DetaljerUniversitetet i Oslo MENA3000. Oppsummering. Skrevet av: Ingrid Marie Bergh Bakke & Sindre Rannem Bilden
Universitetet i Oslo MNA3000 Oppsummering Skrevet av: 31. mai 2015 Del I nhetscellen og strukturer Punktgrupper Rotasjonsakse: r = 2, 3, 4,.. Speilplan: m Inversjon: r Normalt på: / ksempel 3/m - Trefoldig
DetaljerBasis dokument. 1 Introduksjon. 2 Solcelle teori. Jon Skarpeteig. 11. november 2009
Basis dokument Jon Skarpeteig 11. november 2009 1 Introduksjon Solceller er antatt å dominere energisektoren de neste hundre år. For at dette skal bli tilfelle trengs det billige og eektive solceller.
DetaljerLøsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
DetaljerEKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, LØSNINGSFORSLAG -
EKSAMEN I EMNE SIK5005 MATERIALTEKNOLOGI 2 MANDAG 5. MAI, 200 - LØSNINGSFORSLAG - Oppgave 1. a) Fast løsningsherding er beskrevet på side 256-257 i læreboken. Fig. 9.6 gir en skjematisk fremstilling av
DetaljerProsjekt i Elektrisitet og magnetisme (FY1303) Solceller. Kristian Hagen Torbjørn Lilleheier
Prosjekt i Elektrisitet og magnetisme (FY133) Solceller Av Kristian Hagen Torbjørn Lilleheier Innholdsfortegnelse Sammendrag...3 Innledning...4 Bakgrunnsteori...5 Halvledere...5 Dopede halvledere...7 Pn-overgang...9
DetaljerFY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
DetaljerLøsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018
Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.
DetaljerTFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
DetaljerEnergiband i krystallar
Energiband i krystallar YF 42.4 Energibandstrukturen avgjer om krystallen er ein leiar (metall), halvleiar, eller isolator Diskrete degenererte energinivå for individuelle atom splittar opp når atoma blir
DetaljerTermodynamikk og statistisk fysikk Oblig 4
FYS216 ermodynamikk og statistisk fysikk Oblig 4 Sindre Rannem Bilden 23. september 215 Oppgave.5 - Rotasjon av diatomiske molekyler a) Skriv ned partisjonsfunksjonen Z R ( ) Z R ( ) =Σ j g(j)e ε jβ =(2j
DetaljerFYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3
FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerFYS2140 Hjemmeeksamen Vår 2014
FYS2140 Hjemmeeksamen Vår 2014 18. mars 2014 Viktig info: Merk besvarelsen med kandidatnummer, ikke navn! Innleveringsfrist fredag 28. mars kl. 14.30 i skranken på ekspedisjonskontoret. (Ikke oblighylla!)
DetaljerEksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)
1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:
DetaljerLøsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
DetaljerUniversitetet i Oslo FYS Labøvelse 3. Skrevet av: Sindre Rannem Bilden Kristian Haug
Universitetet i Oslo FYS1110 Labøvelse 3 Skrevet av: Sindre Rannem Bilden Kristian Haug 1. november 014 PRELAB-Oppgave 1 1 x0 = [ 0 1 3 4 ] ; y = [ 5 7 4 3 ] ; 3 n = ; 4 x = l i n s p a c e ( min ( x0
DetaljerOPPGAVESETTET BESTÅR AV 5 OPPGAVER PÅ 3 SIDER + 3 SIDER VEDLEGG
DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (BIM120-1 Materialmekanikk) DATO: 09.12.2008 TID FOR EKSAMEN: 4 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator:
DetaljerSolceller. Josefine Helene Selj
Solceller Josefine Helene Selj Silisium Solceller omdanner lys til strøm Bohrs atommodell Silisium er et grunnstoff med 14 protoner og 14 elektroner Elektronene går i bane rundt kjernen som består av protoner
DetaljerTheory Norwegian (Norway)
Q3-1 Large Hadron Collider (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på denne oppgaven. I denne oppgaven blir fysikken ved partikkelakseleratoren
DetaljerElektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
DetaljerFYS2140 Kvantefysikk, Løsningsforslag for Oblig 2
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
Detaljer+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER
1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,
DetaljerAST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs
DetaljerOverflateladningstetthet på metalloverflate
0.0.08: Rettet opp feil i oppgave 4 og løsningsforslag til oppgave 8b. Overflateladningstetthet på metalloverflate. Ei metallkule med diameter 0.0 m har ei netto ladning på 0.50 nc. Hvor stort er det elektriske
DetaljerFYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerNivåtettheten for ulike spinn i 44 Ti
7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.
DetaljerFYS2140 Kvantefysikk, Obligatorisk oppgave 10. Nicolai Kristen Solheim, Gruppe 2
FYS2140 Kvantefysikk, Obligatorisk oppgave 10 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 10 Oppgave 1 a) Ligningene 1, 2 og 3 er egenverdifunksjoner, mens ligning 4 er en deltafunksjon. b)
DetaljerFY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Oppgave 1 LØSNINGSFORSLAG Eksamen i TMT 4185 Materialteknologi Fredag 18. desember 2009 Tid: 09 00-13 00 (a) (b) Karakteristiske
DetaljerFasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 19. august 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).
DetaljerTirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
DetaljerFYS1120 Elektromagnetisme H10 Midtveiseksamen
FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren
DetaljerFYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4
FYS240 Kvantefysikk, Oblig 8 Sindre Rannem Bilden, Gruppe 4 9. april 205 Obliger i FYS240 merkes med navn og gruppenummer! Denne obligen dreier seg om partikkel i en endelig brønn. Dere får bruk for Python
DetaljerNorsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIEN 005 006 ndre runde: / 006 Skriv øverst: Navn, fødselsdato, hjemmeadresse og e-postadresse, skolens navn og adresse.
DetaljerElektronikk med prosjektoppgaver FYS vår 2009
Lindem 13 jan 2008 Elektronikk med prosjektoppgaver FYS 1210 - vår 2009 Viktig informasjon til alle studenter Husk: 1. februar er siste frist for: betaling av semesteravgift semesterregistrering melding
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys26 Eksamensdag: Fredag 5. desember 24 Tid for eksamen: 43 83 Oppgavesettet er på: 3 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerForelesning nr.8 INF 1411 Elektroniske systemer
Forelesning nr.8 INF 1411 Elektroniske systemer Dioder Praktiske anvendelser 1 Dagens temaer Dioder Halvlederfysikk Diodekarakteristikker Ulike typer halvledere og ladningsbærere Likerettere Spesialdioder
DetaljerEKSAMEN I: (MSK205 Materialmekanikk) DATO: OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 3 SIDER + 2 SIDER VEDLEGG
DET TEKNISK NATURVITENSKAPELIGE FAKULTET EKSAMEN I: (MSK205 Materialmekanikk) DATO: 09.12.2013 TID FOR EKSAMEN: 3 timer TILLATTE HJELPEMIDDEL: Ingen trykte eller håndskrevne hjelpemidler. Kalkulator: HP30S,
DetaljerUNIVERSITETET I OSLO
UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2
DetaljerKapittel 17 Introduksjon til Solid State Components: Diodes
Kapittel 17 Introduksjon til Solid State Components: Diodes Revidert versjon januar 2008 T.Lindem figurene er delvis hentet fra Electronics Technology Fundamentals Conventional Flow Version, Electron Flow
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i
DetaljerLøsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
DetaljerØVELSE 4: FUNKSJONELLE EGENSKAPER: LADNINGSTRANSPORT OG OPTISKE EGENSKAPER. Øvelse 4a-c: Ledningsevne i ulike typer ledere
ØVELSE 4: FUNKSJONELLE EGENSKAPER: LADNINGSTRANSPORT OG OPTISKE EGENSKAPER Fremmøte: MENA1001-lab en i 2. etasje vest i fysikkbygningen, V225 (der første lab var, ved siden av forelesningsauditoriet Lille
DetaljerKapittel 17 Introduksjon til Solid State Components: Diodes
Kapittel 17 Introduksjon til Solid State Components: Diodes Revidert versjon januar 2012 T.Lindem figurene er delvis hentet fra Electronics Technology Fundamentals Conventional Flow Version, Electron Flow
DetaljerKollokvium 4 Grunnlaget for Schrödingerligningen
Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave
DetaljerFYS2140 Hjemmeeksamen Vår Ditt kandidatnummer
FYS2140 Hjemmeeksamen Vår 2018 Ditt kandidatnummer 15. mars 2018 Viktig info: Elektronisk innlevering på devilry med frist fredag 23. mars 2018 kl. 16:00. Leveringsfristen er absolutt. Innleveringen (pdf)
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
DetaljerLøsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
DetaljerKap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 7 Onsdag 11.02.09 og fredag 13.02.09 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Gauss
DetaljerEnkel introduksjon til kvantemekanikken
Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks
DetaljerEksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
DetaljerBYGGING AV LIKESTRØMSKILDE OG TRANSISTORFORSTERKER
BYGGING AV LIKESTRØMSKILDE OG TRANSISTORFORSTERKER OPPGAVE 1. Lag en oppkobling av likespenningskilden skissert i Figur 1. 2. Mål utgangsspenningen som funksjon av ulike verdier på belastningsmotstanden.
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerLadningstransport og optiske egenskaper
Ladningstransport og optiske egenskaper Utført: 0..3 Sted: V5 Innlevert: 08..3 Skrevet av: Sindre Rannem Bilden Veileder: Per Lindberg Innhold 3a-c: Ledningsevne i ulike typer ledere... Innledning... Teori...
DetaljerFY1006/TFY Øving 9 1 ØVING 9
FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt
DetaljerFrivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
DetaljerExamination paper for TFY4220 Solid State Physics
Page 1 of 19 Department of physics Examination paper for TFY4220 Solid State Physics Academic contact during exam: Randi Holmestad Phone: 48170066 Examination date: Saturday 28. May 2016 Examination time
DetaljerInformasjon til lærer
Lærer, utfyllende informasjon Fornybare energikilder Det er egne elevark til for- og etterarbeidet. Her får du utfyllende informasjon om: Sentrale begreper som benyttes i programmet. Etterarbeid. Informasjon
DetaljerTFY løsning øving 9 1 LØSNING ØVING 9
TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,
DetaljerFYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3
FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning
Detaljer