CMOS billedsensorer ENERGIBÅND. Orienteringsstoff AO 03V 2.1
|
|
- Vidar Frantzen
- 7 år siden
- Visninger:
Transkript
1 NRGIBÅND Orienteringsstoff AO 03V 2.1
2 nergibånd Oppsplitting av energitilstander i krystallstruktur Atom (H) Molekyl Krystallstruktur Sentrifugal potensial ffektivt potensial Columb potensial a a a a Ref: Alonso - Finn AO 03V 2.2
3 nergibånd nergitetthet 6 x ( ν) 8πhν c hν kt e ºK 4000 ºK 3000 ºK 2000 ºK λ [m] x 10-6 Synlig lys: 450 nm nm Planck: Atomene opptrer som harmoniske oscillatorer, hver oscillator kan absorbere eller emittere energi proporsjonalt med dens frekvens: hν (2.1) der ν er frekvens, h er Plancks konstant: x Js h h/2π x Js nergien til oscillatorene er kvantisert. n nhν der n er positive heltall. Kinetisk energi og moment p: cp λν p hν Der bølgelengen λ c/ν Innfører begrepet bølgetall k 2π/λ λ : h ω hω 2π p p -- h λ h k 2π hk (2.2) (2.3) Vanlig symbol for h: h Ref: Alonso - Finn AO 03V 2.3
4 nergibånd lektronet i potensialbrønn ψ(x) ψ(x) 2 lektronet bundet til et ion ψ(x) 2 lektronets dualitet: Både partikkelnatur og bølgenatur. Bølgefunksjon, amplituden til materiefelt: Ψ(x) Sannsynlighet tetthetsfunksjon: Px ( ) Ψx ( ) Ψ( x) Ψx ( ) 2 I 3 dimensjoner: P(x) Ψ(x,y,z) 2 Bølgefunksjon for elektronet i en dynamisk tilstand: p m p ( x) p 2 2m [ p ( x) ] I kvantemekanikken gjelder Schrödingers ligning: h d2 Ψ m dx 2 + p ( x)ψ Ψ Sannsynliggjøres ved å se på ligningen for en stående bølge: d 2 ξ dx 2 + k 2 ξ 0 ξ( x)er amplituden k 2π λ (2.4) (2.5) (2.6) Setter inn bølgefunksjonen og bruker ligning (2.3) og (2.5): d Ψ dx 2 + 2m h 2 [ p ( x) ]Ψ 0 (2.7) som lett omformes til ligning (2.6). Ref: Alonso - Finn AO 03V 2.4
5 nergibånd t fritt elektron uten påvirkning fra felt, dvs p (x) 0. Løser (2.6), dvs (2.7): h d2 Ψ m e dx 2 Ψ d 2 Ψ dx 2 2m Ψ h 2 0 d 2 Ψ dx 2 + k 2 0 Differensial-ligningen har løsningene: Ψ 1 ( x) C 1 e ikx Ψ 2 ( x) C 2 e ikx (2.8) t elektron beveger seg fritt i ledningsbåndet i en krystall. Bølgefunksjonen finnes ved å løse (2.7). Antar en uendelig krystall, og ser først bort ifra det periodiske potensialet. Fra (2.3) og (2.5): h 2 k m e (2.9) Sannsynligheten for å finne et fritt elektron er like stor over hele krystallet: Ψ( x) Ψ( x) Ψx ( ) k Ref: Alonso - Finn AO 03V 2.5
6 nergibånd ndelig krystall (lineær) med lengde L Antall ioner: N ioner Avstanden mellom ionene: a LNa. Stående bølger: n(λ / 2)L (n er positivt heltall). k π nπ λ L nπ Na dn d Grunntilstand ved 0 ºK F max F max For nn: k maks (2.10) Høyeste besatte energinivå når elektronene fyller alle de laveste nivåene kalles Fermi energien, F. π -- a h 2 π 2 maks m e a 2 Ref: Alonso - Finn AO 03V 2.6 dn d ksitert tilstand F max F max
7 nergibånd lektronet i periodisk struktur: Ψ( x) e ikx ux ( ) ux ( + a ) ux ( ) Bølgefunksjon (krystall, 8 ioner) Høyest nivå k er fremdeles elektronets bølgetall og hk blir midlere moment 4. nivå 2. nivå Lavest nivå u(x) Separat for hvert ion AO 03V 2.7 a Ref: Alonso - Finn
8 nergibånd Bragg-refleksjon: 2asinΘ nλ (2.1) Θ a Θ asinθ For Θ π/2: 2a 2a nλ n π k k 2πn n π -- 2a a (2.2) Θ π/2 a For k nær nπ/2 hindres elektronets bevegelse. Det betyr diskontinuitet i energien vs. bølgefunksjon, dvs energigap i båndet. Området -π/ π/2 til π/2 kalles 1. Brillouin sone Ref: Alonso - Finn AO 03V 2.8
9 nergibånd Uniformt potensial nergibånd krystall 2. Brillouin sone 1. Brillouin sone. -2π/a -π/a 0 π/a 2π/a. k -2π/a -π/a 0 π/a 2π/a k.... k -2π/a -π/a 0 π/a 2π/a k -2π/a -π/a 0 π/a 2π/a Ref: Alonso - Finn / Kittel AO 03V 2.9
10 nergibånd nergigap og bølgetall er bestemmende for sannsynligheten for absorbsjon og emmitering av fotoner. Ved direkte båndgap: Transisjon for fotoner med ubetydelig k. Foton med g ωh (eller større) absorberes (moment ~ 0). Ved indirekte båndgap: Transisjonen involverer moment i tillegg. Krever mer totalenergi enn g ωh ωh g + hω, der Ω er frekvensen til et utsendt fonon. Krystallen tilføres varme. Ved høyere temperaturer kan fononer absorberes fra krystallen slik at nødvendig fotonenergi er ωh g - hω Direkte båndgap Indirekte båndgap Ledningsbånd Ledningsbånd Ω ω ω Valensbånd Valensbånd k k Ref: Kittel AO 03V 2.10
11 nergibånd Båndstrukturer for reelle krystaller : Indirekte båndgap GaAs: Direkte båndgap AO 03V 2.11
12 HALVLDR AO 03V 2.12
13 Halvledere Ledningsbånd T0 ºK T273 ºK Valensbånd C Ge r nergi-gap Materiale ev lektroner Diamant 5.33 lisium 1.14 Germanium 0.67 Ref: Alonso - Finn AO 03V 2.13
14 Halvledere Lav temperatur Høy temperatur AO 03V 2.14
15 Halvledere Konsentrasjonen av frie ladningsbærere i intrinsik halvleder Ref: Grove AO 03V 2.15
16 Halvledere Tilsetting av fremmedatomer: Doping av halvlederen Donornivå... Akseptornivå Donoratom Akseptoratom As B AO 03V 2.16
17 Halvledere n-type p-type majoritetsbærere minoritetsbærere... minoritetsbærere majoritetsbærere AO 03V 2.17
18 Halvledere Fermi-energien Metall i grunntilstand, T0 ºK Antall elektroner < antall tilstander lektronene fyller opp tilstander til energinivået F Fermi-energien lektronene eksiteres til høyere energinivåer ved høyere temperatur. Ved romtemperatur: kt0.026v << F dn d F max F max Ref: Alonso - Finn AO 03V 2.18
19 Halvledere Fermi-Dirac statistikk: f ( ) ( 1 e f ( F) kt F ) f(): fordelingsfunksjon som angir sannsynligheten for at et energinivå er okkupert av et elektron. For Fermi-nivået er sannsynlighet for okkupasjon lik 1/2. Intrinsik P-type N-type c c c F i v F v v 1/2 1 f() 1/2 1 f() 1/2 1 f() Ref: Grove AO 03V 2.19
20 Halvledere Sannsynligheten for å finne et elektron ved energien : f ( ) ( 1 e F) kt + For e (- F)/kT > 1 og e (- F)/kT < 1 dvs. en energidifferanse (+/-) på noen få kt: a ) b ) ( f ( ) e F) kt > F ( F ) kt f ( ) 1 e < F (2.11) (2.12) ste ledd i b) ligning (2.12) representerer sannsynligheten for besettelse av hull ved energien. N C er tettheten av energitilstander på kanten av ledningsbåndet. og N V tettheten av energitilstander på kanten av valensbåndet. Ladningstettheten kan uttrykkes som: Symmetrisk formel: Intrinsik halvleder: np, F i N v ( e c i ) kt ( e i v ) kt N c N ln v N c ( c i ) + i v kt Bruker (2.14) og omskriver (2.13): 1 i -- ( 2 c + v ) 1 --kt N v ln ( 2 N c 2 c + v ) n i 2 ( n n i e F i ) kt ( p n i e i F ) kt pn N c N v e G kt (2.14) (2.15) (2.16) n ( N c e C F ) kt p ( N v e F V ) kt (2.13) Ref: Grove AO 03V 2.20
21 Halvledere Fermi-nivå som funksjon av temperatur og dopekonsentrasjon Ref: Grove AO 03V 2.21
22 Halvledere Ladningsnøytralitet ρ qp ( n + N D N A ) 0 impliserer at p n N A N D N-type P-type Majoritetsbærere: 2 n n n N D N A + p N D N i A n n 2 2 n n n n [ N D N A ] n i 0 Majoritetsbærere: 2 n p p N A N D + n N A N i D p p 2 2 p p p p [ N A N D ] n i 0 1 n n -- N 2 D N A ( N D N A ) n i (2.17) 1 p p -- N 2 A N D ( N A N D ) n i (2.19) n n N D N A for N D N A» n i p p N A N D for N A N D» n i Minoritetsbærere: Minoritetsbærere: 2 2 n p i n n i n n N D N A (2.18) 2 2 n n i n p i p p N A N D (2.20) AO 03V 2.22
23 Halvledere Konsentrasjon av majoritetsbærere i N-type halvleder som funksjon av temperatur AO 03V 2.23
24 Referanser: Alonso - Finn Fundamental University Physics, Volume III Marcelo Alonso, dward J. Finn Addison - Wesley Publishing Comany Grove Physics and Technology of Semiconductor Devices A.S. Grove John Wiley & sons Kittel Introduction to Solid State Physics Charles Kittel John Wiley & sons inc. AO 03V 2.24
Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
DetaljerBasis dokument. 1 Solcelle teori. Jon Skarpeteig. 23. oktober 2009
Basis dokument Jon Skarpeteig 23. oktober 2009 1 Solcelle teori De este solceller er krystallinske, det betyr at strukturen er ordnet, eller periodisk. I praksis vil krystallene inneholde feil av forskjellige
DetaljerLøsningsforslag FY6019 Moderne fysikk kl fredag 12. juni 2015
Løsningsforslag FY6019 Moderne fysikk kl 09.00-14.00 fredag 12. juni 2015 Oppgave 1. Flervalgsoppgaver. (Poeng: 2.5 8 = 20) a) Hva er forventningsverdien av posisjonen, x, til en partikkel i grunntilstanden
DetaljerEnergibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge.
Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. 1 Innholdsfortegnelse. Sammendrag...3 Innledning... 4 Hvorfor kvantemekanisk
DetaljerFY juni 2015 Side 1 av 6
FY6019 12. juni 2015 Side 1 av 6 Oppgave 1. Flervalgsoppgaver. (Poeng: 2.5 8 = 20) a) Hva er forventningsverdien av posisjonen, x, til en partikkel i grunntilstanden i en endimensjonal potensialboks mellom
DetaljerLøsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018
Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.
DetaljerLøsningsforslag til ukeoppgave 15
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 15 Oppgave 18.11 Se. s. 544 Oppgave 18.12 a) Klorofyll a absorberer fiolett og rødt lys: i figuren ser vi at absorpsjonstoppene er ved 425 nm
DetaljerFys2210 Halvlederkomponenter
Fys2210 Halvlederkomponenter Forelesning 2 Kapittel 3 ENERGY BANDS AND CHARGE CARRIERS IN SEMICONDUCTORS Repetisjon: I faste materialer danner elektronene energibånd N st Si atoms Filled; 2N Unfilled;
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden
DetaljerOppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og
DetaljerKondenserte fasers fysikk Modul 4
FYS3410 Kondenserte fasers fysikk Modul 4 Sindre Rannem Bilden 9. mai 2016 Oppgave 1 - Metaller og isolatorer Metaller er karakterisert med et delvis fyllt bånd kallt ledningsbåndet. I motsetning til metaller
DetaljerLøsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
DetaljerTFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
DetaljerEKSAMENSOPPGAVE I FYS-2001
Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
DetaljerFY mai 2017 Side 1 av 6
FY6019 31. mai 2017 Side 1 av 6 Oppgave 1. Bohrmodellen. (Poeng: 10) I Bohrs modell for hydrogenatomet antar man at elektronet går i sirkelbane rundt kjernen, med kvantisert dreieimpuls, L = L = rmv =
DetaljerEnergiband i krystallar. Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi
Energiband i krystallar Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi Energibandstrukturen til eit material avgjer om det er ein leiar (metall), halvleiar, eller isolator Energiband
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk august 2004
NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)
DetaljerTFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
DetaljerFys2210 Halvlederkomponenter. Kapittel 1
Fys2210 Halvlederkomponenter Kapittel 1 Materialets struktur kan være - Amorft - Polykrystallinsk - Enkrystallinsk www.physics-in-a-nutshell.com Enkrystallinske materialer kan ha ulik atomstruktur De vanligste
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
DetaljerFY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
DetaljerLøsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
DetaljerTFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
DetaljerKondenserte fasers fysikk Modul 2
FYS3410 Kondenserte fasers fysikk Modul Sindre Rannem Bilden 1. mai 016 Oppgave 1 - Endimensjonal krystall (Obligatorisk Se på vibrasjoner i en uendelig lang endimensjonell krystall med kun ett atom i
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden
DetaljerFigur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
DetaljerMeir om halvleiarar. Halvleiarteknologi
Meir om halvleiarar. Halvleiarteknologi YF 42.6, 42.7 (Halvleiarar vart introduserte i fila Energiband i krystallar, som denne fila er eit framhald av.) Hol Leiingsband Valensband E g Eksitasjon av eit
DetaljerFasit for besvarelse til eksamen i A-112 høst 2001
Fasit for besvarelse til eksamen i A-112 høst 21 Oppgave I a Anta at hvert elektron beveger seg i et midlere, sfærisk symmetrisk felt =sentralfelt V r fra kjernen og alle de andre elektronene Ved å velge
DetaljerEKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,
DetaljerLøsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
DetaljerLøsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
DetaljerLøsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og
DetaljerEKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
DetaljerUKE 4. Thevenin Spenningskilde og effektoverføring Fysikalsk elektronikk Ledere, isolatorer og halvledere, doping Litt om AC
UKE 4 Thevenin Spenningskilde og effektoverføring Fysikalsk elektronikk Ledere, isolatorer og halvledere, doping Litt om AC 1 Thévenin s teorem Helmholtz 1853 Léon Charles Thévenin 1883 Ethvert lineært,
DetaljerSpenningskilder - batterier
UKE 4 Spenningskilder, batteri, effektoverføring. Kap. 2 60-65 AC. Kap 9, s.247-279 Fysikalsk elektronikk, Kap 1, s.28-31 Ledere, isolatorer og halvledere, doping 1 Spenningskilder - batterier Ideell spenningskilde
DetaljerTFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer
TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk
DetaljerFYS2140 Kvantefysikk, Løsningsforslag for Oblig 2
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen
DetaljerLøsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
DetaljerLøsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden
DetaljerFY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8
FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives
DetaljerLøsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
Detaljer32π 2 ε 2 0 h2 n 2. e v = 8πε 0 r. E = 1 2 mv2 e2 4πε 0 r = e2. 2 = n h 4πε 0 mr. r n = n 2 4πε 0 h 2 me 2. = 8πε 0 r n 32π 2 ε 2 0 h2 n 2
Løsningsforslag FY6019 31. mai 2017 Oppgave 1. Bohrmodellen. (Poeng: 10) I Bohrs modell for hydrogenatomet antar man at elektronet går i sirkelbane rundt kjernen, med kvantisert dreieimpuls, L = L = rmv
DetaljerNORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
DetaljerOppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerObligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 4 FYS-13 Lars Kristian Henriksen UiO. februar 15 Oppgave 1 Vi betrakter bølgefunksjonen Ψ(x, t) Ae λ x e iωt hvor A, λ og ω er positive reelle konstanter. a) Finn normaliseringen
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
Detaljerψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at
Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk
DetaljerLØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00
NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:
DetaljerEKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte
DetaljerEKSAMEN I FAG SIF4062 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk og matematikk Tirsdag 8. mai 2001 Tid: Sensur faller 29.
Side 1 av 4 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF406 FASTSTOFFYSIKK VK Fakultet for fysikk, informatikk
DetaljerLøsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
DetaljerSolceller og halvledere
Prosjekt i Elektrisitet og Magnetisme. Solceller og halvledere Kristian Rød Innlevering 23.april 2004-0 - Innholdsfortegnelse: 1. Sammendrag 2. Innledning 3. Solceller, generelt 4. Halvledere 4.1. Elementært
DetaljerLøsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
DetaljerTFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem
TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerEnkel introduksjon til kvantemekanikken
Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks
DetaljerFY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
Detaljer(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ
Oppgave 1 Variasjoner over hydrogen Løsningen av den tidsuavhengige Schrødingerligningen for potensialet til hydrogenatomet Vr) = k ee r, 1) er som kjent ψ nlm r,θ,φ) = R nl r)yl m θ,φ), ) hvor R nl r)
DetaljerVÅREN Oppgave II. b) Hamilton-operatoren for en partikkel med masse m på en ring med radius r er gitt ved
VÅREN 1998 Oppgave II a) Bølgefunksjonen for en partikkel på ring er gitt ved ml = 1 " ei ml # m l = 0, ±1, ±, Hvorfor må vi kreve at m l er et heltall? Bestem sannsynlighetstettheten for denne partikkelen.
DetaljerLøsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
DetaljerFY1006/TFY Løsning øving 9 1 LØSNING ØVING 9
FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen
DetaljerLøysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
DetaljerA) λ < 434 nm B) λ < 534 nm C) λ < 634 nm D) λ < 734 nm E) λ < 834 nm
TFY4215 Innføring i kvantefysikk Eksamen 9. august 2017 Side 1 av 9 1) Hva er bølgelengden til fotoner med energi 40 mev? A) 31 µm B) 41 µm C) 51 µm D) 61 µm E) 71 µm 2) Hva er impulsen til fotoner med
DetaljerEKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:
DetaljerLøsningsforslag Matematisk fysikk, 28. mai 2001
Løsningsforslag Matematisk fysikk, 8. mai Oppgave a) Det er trykkfeil i oppgaven. Riktig uttrykk er Vi har sin n θ = π cosx sin θ) = π π = n= n= n= = J x). π n n!). ) n x sin θ) n n= ) n x n ) n x n )
DetaljerLøsningsforslag Eksamen 9. desember 2006 TFY4250 Atom- og molekylfysikk /FY2045 Kvantefysikk
Eksamen TFY450/FY045 9. esember 006 - løsningsforslag 1 Løsningsforslag Eksamen 9. esember 006 TFY450 Atom- og molekylfysikk /FY045 Kvantefysikk Oppgave 1 a. Grunntilstanen ψ 1 (x) har ingen nullpunkter.
DetaljerNTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk øysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
DetaljerFY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9
FY1006/TFY4215 Innføring i kvantefysikk Eksamen 9. august 2016 Side 1 av 9 Hver oppgave teller 2.5% 1) Hva er bølgelengden til et foton med energi 100 ev? A) 0.12 nm B) 12 nm C) 0.12 µm D) 12 µm E) 0.12
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.
FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)
DetaljerInstitutt for fysikk. Eksamen i TFY4215 Innføring i kvantefysikk
Institutt for fysikk Eksamen i TFY4215 Innføring i kvantefysikk Faglig kontakt under prøven: Jon Andreas Støvneng Tlf.: 45 45 55 33 Dato: 3. juni 2019 Tid (fra-til): 15.00-19.00 Hjelpemiddelkode/Tillatte
DetaljerProsjekt i Elektrisitet og magnetisme (FY1303) Solceller. Kristian Hagen Torbjørn Lilleheier
Prosjekt i Elektrisitet og magnetisme (FY133) Solceller Av Kristian Hagen Torbjørn Lilleheier Innholdsfortegnelse Sammendrag...3 Innledning...4 Bakgrunnsteori...5 Halvledere...5 Dopede halvledere...7 Pn-overgang...9
DetaljerEksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)
1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8
FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,
DetaljerBasis dokument. 1 Introduksjon. 2 Solcelle teori. Jon Skarpeteig. 11. november 2009
Basis dokument Jon Skarpeteig 11. november 2009 1 Introduksjon Solceller er antatt å dominere energisektoren de neste hundre år. For at dette skal bli tilfelle trengs det billige og eektive solceller.
DetaljerLøsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerLøsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for
DetaljerEKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
DetaljerFYS2140 Kvantefysikk, Oblig 7. Sindre Rannem Bilden, Gruppe 4
FYS214 Kvantefysikk, Oblig 7 Sindre Rannem Bilden, Gruppe 4 11. mars 215 Obliger i FYS214 merkes med navn og gruppenummer! Denne obligen dreier seg om (bølgepakker av fri partikkel tilstander og om såkalte
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005
NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget
DetaljerFY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3
FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i
DetaljerEKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl
BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK
DetaljerTFY4215/FY1006 Innføring i kvantefysikk Eksamen 10. juni 2017 Side 1 av 8
TFY4215/FY1006 Innføring i kvantefysikk Eksamen 10. juni 2017 Side 1 av 8 1) Hva er energien til fotoner med bølgelengde 1.0 m? A) 1.2 pev B) 1.2 nev C) 1.2 µev D) 1.2 mev E) 1.2 ev 2) Hva er energien
DetaljerTFY4215_S2018_Forside
Kandidat I Tilkoblet TFY4215_S2018_Forside Institutt for fysikk ksamensoppgave i TFY4215 Innføring i kvantefysikk Faglig kontakt under eksamen: Jon ndreas Støvneng Tlf.: 45 45 55 33 ksamensdato: 6. august
DetaljerSpenningskilder - batterier
UKE 4 Spenningskilder, batteri, effektoverføring. Kap. 2, s. 60-65 AC. Kap 9, s.247-279 Fysikalsk elektronikk, Kap 1, s.28-31 Ledere, isolatorer og halvledere, doping 1 Spenningskilder - batterier Ideell
DetaljerLØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1
TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 Løsning oppgave 5 LØSNING ØVING 2 Krumningsegenskaper for endimensjonale energiegenfunksjoner a. For oscillator-grunntilstanden i oppgave 3b har vi
DetaljerA.5 Stasjonære og ikke-stasjonære tilstander
TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se
DetaljerUNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.
DetaljerLøsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;
DetaljerEksamen FY1006/TFY mai løsningsforslag 1
Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store
DetaljerLøsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00
DetaljerFY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar
FY1006/TFY4215 Innføring i kvantefysikk - Øving 2 1 Frist for innlevering: tirsdag 3. februar Oppgave 1 ØVING 2 Krumningseigenskapar for eindimensjonale energieigenfunksjonar Ein partikkel med masse m
DetaljerKontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
Detaljer