Løsning til øving 23 for FY1004, våren 2008
|
|
- Vibeke Ludvigsen
- 7 år siden
- Visninger:
Transkript
1 Løsning til øving 23 for FY1004, våren 2008 Diracs δ-funksjon kan defineres ved at δ(x) = 0 for x 0, og dx δ(x) = 1. Vi vil bruke δ-funksjonen som et potensial for en partikkel i en dimensjon. Vi setter der W er en positiv konstant, i Hamiltonoperatoren V (x) = W δ(x), H = h2 d 2 2m dx 2 + V (x). I øving 19 så vi på δ-funksjonspotensialet som resultatet av en grenseovergang der et kassepotensial gjøres smalere og samtidig dypere, slik at integralet av potensialet holdes konstant lik W. Her vil vi løse direkte den tidsuavhengige Schrödinger-ligningen ( h2 2m ) d 2 dx 2 Wδ(x) ψ(x) = E ψ(x). For å finne virkningen av δ-funksjonspotensialet, integrerer vi denne ligningen fra ǫ til ǫ, der ǫ er en liten positiv konstant. Det gir ligningen ǫ h2 2m (ψ (ǫ) ψ ( ǫ)) Wψ(0) = E dx ψ(x). ǫ Vi lar ǫ være positiv og gå mot null. Den deriverte ψ (x) kan ha to ulike grenseverdier når x går mot null, alt etter om x nærmer seg null fra den positive eller negative siden. Vi skriver ψ (0+) = lim ψ (ǫ) ǫ 0+ ψ (0 ) = lim ψ ( ǫ). ǫ 0+ Grenseovergangen ǫ 0+ gir ligningen ψ (0+) ψ (0 ) = 2mW h 2 ψ(0). Den sier at ψ (x) er diskontinuerlig i x = 0, og diskontinuiteten er (2mW/ h 2 ) ψ(0). En mulighet her er at ψ(0) = 0. I så fall er ψ (x) kontinuerlig i x = 0, og δ-funksjonspotensialet har ingen virkning i det hele tatt: bølgefunksjonen er nøyaktig den samme som den ville være uten dette potensialet. Hvis derimot ψ(0) 0, så er ψ (x) virkelig diskontinuerlig i x = 0. Men ψ(x) er fremdeles kontinuerlig i x = 0, fordi ψ(ǫ) ψ( ǫ) = ǫ ǫ dx ψ (x) 0. ǫ 0 Det betyr at den logaritmiske deriverte er diskontinuerlig i x = 0, slik at ψ (x) ψ(x) = d dx lnψ(x) ψ (0+) ψ(0+) ψ (0 ) ψ(0 ) = 2mW (1) Vi ser nå på en bunden tilstand ψ(x), som har energi E < 0, og definerer κ > 0 ved at E = h2 κ 2 2m. 1
2 a) Vis at ψ(x) = Ae κx for x < 0 og ψ(x) = B e κx for x > 0, der A og B er konstanter. Hvorfor må A = B? Vis at vi må ha For alle x 0 ser den tidsuavhengige Schrödinger-ligningen ut som følger: og med E = h 2 κ 2 /(2m) gir det ligningen h2 2m ψ (x) = E ψ(x), ψ (x) = κ 2 ψ(x). Den generelle løsningen, uten hensyn til randkravene for x ±, er ψ(x) = Ae κx + B e κx, med vilkårlige konstanter A og B. For x < 0 er det bare eksponensialfunksjonen e κx som er akseptabel, det vil si: som ikke divergerer eksponensielt i grensen x. For x > 0 er bare e κx akseptabel. Altså må ψ(x) = Ae κx for x < 0, og ψ(x) = B e κx for x > 0. Da er ψ(0 ) = A og ψ(0+) = B, og for at ψ(x) skal være kontinuerlig i x = 0, må A = B. Diskontinuitetskravet i x = 0 til den logaritmiske deriverte, ligning (1), gir så at 2κ = 2mW h 2, følgelig b) Dermed har vi funnet en bunden tilstand i potensialet V (x) = Wδ(x). Hva er energien, og hva er pariteten, til denne tilstanden? Finnes det flere bundne tilstander? Energien er Bølgefunksjonen er E = h2 κ 2 ( ) 2m = h2 mw 2 2m h 2 = mw 2 2 ψ(x) = { Ae κx for x 0, Ae κx for x 0. Den er symmetrisk, ψ( x) = ψ(x). Med andre ord: den har positiv paritet. Utledningen vår her gir helt entydig denne ene bundne tilstanden, og viser at det ikke finnes andre bundne tilstander. Det ble ikke spurt om hva konstanten A skal være for at tilstanden skal være normert, men vi kan jo undersøke saken. Vi skal ha at 1 = dx ψ(x) 2 = 2 dx A 2 e 2κx = A 2 0 κ, så vi må velge A = κ e iα med en vilkårlig reell fase α. Siden vi har fritt valg, velger vi naturligvis α = 0. 2
3 c) I resten av oppgaven tar vi for oss et potensial med to δ-funksjonsbrønner, en i x = d og en i x = d, der d > 0: V (x) = W δ(x + d) W δ(x d). Hvor mange bundne tilstander finnes det, og hvilke energier har de, i de to grensetilfellene d 0+ og d? Setter vi d = 0, så får vi tilbake en enkelt δ-funksjonsbrønn, V (x) = 2W δ(x), og da vet vi fra før at det finnes en eneste bunden tilstand, som har positiv paritet og energi E = m(2w)2 2 h 2 = 2mW 2 I grensetilfellet d har vi to uavhengige δ-funksjonsbrønner, og da venter vi å finne to bundne tilstander: en bunden tilstand for hver brønn. Mer presist venter vi å finne to tilstander med energi E mw 2 2 h 2, der partikkelen er lokalisert nær den ene eller den andre av de to brønnene. I tillegg finnes det da tilstander som er superposisjoner av de to lokaliserte tilstandene. I en slik superponert tilstand er partikkelen ikke lokalisert på ett sted, den finnes så å si samtidig på to steder i stor avstand fra hverandre. Når vi løser problemet (se nedenfor), så vil vi finne to energiegentilstander som har bestemt paritet, den ene har positiv og den andre negativ paritet, og som har nesten samme energi. Grunntilstanden (med lavest energi) har positiv paritet. I en tilstand som har bestemt paritet, er det like stor sannsynlighet for å finne partikkelen nær den ene som den andre brønnen. Partikkelen er da så å si maksimalt ikke-lokalisert. d) Dette potensialet, med to δ-funksjonsbrønner, er symmetrisk om x = 0, V ( x) = W δ( x + d) W δ( x d) = W δ(x d) W δ(x + d) = V (x), fordi δ-funksjonen er symmetrisk, δ( x) = δ(x). Når potensialet er symmetrisk, kan vi som vanlig begrense oss til å lete etter energiegenfunksjoner som er enten symmetriske eller antisymmetriske. Vis at hvis ψ er en energiegenfunksjon (en løsning av den tidsuavhengige Schrödinger-ligningen) med positiv (like) paritet, og med energi E = h 2 κ 2 /(2m), der κ > 0, så er ψ(x) = { A e κx for x d, B cosh(κx) for d x d, C e κx for x d, der A, B og C er konstanter. Merk at hverken A, B eller C kan være lik null (for ellers ville ψ(x) = 0 identisk). Når x d og x d, så gjelder på samme måte som ovenfor, under punkt a), at ψ(x) = ae κx + be κx, med konstanter a og b. For x < d må vi sette b = 0, slik at ψ(x) = Ae κx med en konstant A, for å unngå eksponensiell divergens i grensen x. For x > d må vi 3
4 sette a = 0, slik at ψ(x) = C e κx med en konstant C. For d < x < d må vi sette a = b for å få ψ( x) = ψ(x), det gir da ψ(x) = B cosh(κx) med en konstant B. Kravene til at ψ(x) skal være kontinuerlig i x = ±d fikserer B = Ae κd /cosh(κd) og C = A (det siste følger enda mer direkte av at ψ skal ha like paritet, at ψ( x) = ψ(x)). Disse relasjonene får vi ikke bruk for, vi bare nevner dem i forbifarten. Det som vi derimot får bruk for her, er den logaritmiske deriverte, ψ (x) ψ(x) = κ for x < d, κtanh(κx) for d < x < d, κ for x < d. e) For hver av de to δ-funksjonsbrønnene må det gjelde en ligning tilsvarende til ligning (1). For eksempel gjelder i x = d at ψ (d+) ψ(d+) ψ (d ) ψ(d ) = 2mW (2) Vis at det gir en ligning for κ som kan skrives slik: h 2 (1 + e 2κd ). Hvor mange løsninger finnes det for κ? Tegn gjerne en figur for å begrunne svaret. Hva blir κ i de to grensetilfellene d 0+ og d? Diskontinuitetskravet i x = d til den logaritmiske deriverte, ligning (2), gir at Vi har at κ κtanh(κd) = 2mW κ + κtanh(κd) = κ + κ eκd e κd e κd + e κd = Ligningen som skal løses for κ blir da som også kan skrives slik, for eksempel: h 2 (1 + e 2κd ), 2κeκd e κd + e κd = 2κ 1 + e 2κd. γu = 1 + e u, (3) når vi definerer u = 2κd og γ = h2 2mWd. En grafisk framstilling av venstre og høyre side av ligning (3) som funksjoner av u viser at når γ er en positiv konstant, så finnes det alltid nøyaktig en løsning for u. Se figur 1. I grensen d 0+ vil γ, og da ser vi av figuren at γu 2 for den verdien av u som oppfyller ligningen. Det betyr at κ = u 2d = γu 2γd 2 2γd = 2mW h 2, som gir energien E = h2 κ 2 2m = 2mW 2 4
5 I grensen d vil γ 0, og da ser vi av figuren at γu 1. Det betyr at κ = u 2d = γu 2γd 1 2γd = mw h 2, som gir energien E = h2 κ 2 2m = mw 2 2 Disse grenseverdiene for energien er de samme som vi resonnerte oss fram til under punkt c). f) Vis at hvis φ er en energiegenfunksjon med negativ (odde) paritet, og med energi E = h 2 κ 2 /(2m), der κ > 0, så er { A e κx for x d, φ(x) = B sinh(κx) for d x d, C e κx for x d, der A, B og C er konstanter. Beviset her er en nesten ordrett gjentagelse av beviset under punkt d). Den vesentlige forskjellen er at når bølgefunksjonen skal ha negativ paritet, må vi erstatte cosinus hyperbolicus med sinus hyperbolicus. Den logaritmiske deriverte blir da φ (x) φ(x) = κ for x < d, κcoth(κx) for d < x < d, κ for x < d. g) For bølgefunksjonen φ fra punkt f) må det gjelde en ligning tilsvarende til ligning (2). Bruk den til å utlede følgende ligning for κ: h 2 (1 e 2κd ). Hvor mange løsninger finnes det for κ? Og hva blir κ i de to grensetilfellene d 0+ og d? Diskontinuitetskravet i x = d til den logaritmiske deriverte, ligning (2), gir her at Vi har at κ κcoth(κd) = 2mW κ + κcoth(κd) = κ + κ eκd + e κd e κd e κd = Ligningen som skal løses for κ blir da h 2 (1 e 2κd ), 2κeκd e κd e κd = 2κ 1 e 2κd. som også kan skrives slik, med u = 2κd og γ = h 2 /(2mWd), som før: γu = 1 e u. (4) En løsning av denne ligningen er alltid u = 0, men det gir ingen bunden tilstand. Det gir nemlig at κ = u/(2d) = 0, og φ(x) = 0 for alle x fordi φ(x) = B sinh(kx) = 0 for d < x < d. Bare løsninger med u > 0 gir bundne tilstander. En grafisk framstilling av venstre og høyre side av ligning (4) viser at for γ 1 finnes det ingen løsning med u > 0, og altså ingen bunden tilstand med odde paritet. For γ < 1 finnes det nøyaktig en løsning med u > 0, og altså nøyaktig en bunden tilstand med odde paritet. Se figur 1. 5
6 u Figur 1: Grafisk løsning av ligningene (3) og (4). Figuren viser den rette linjen γu med γ = 0.6, sammen med funksjonene 1 + e u og 1 e u. Den konstante verdien 1 er også markert. Her er en mer utførlig kommentar til figuren. Løsningen av ligning (3) er skjæringspunktet mellom linjen γu og kurven 1+e u. For enhver positiv verdi av γ finnes det nøyaktig en løsning. For den løsningen er alltid 1 < γu < 2, slik at γu 2 når γ og γu 1 når γ 0. Løsningen av ligning (4) er skjæringspunktet mellom linjen γu og kurven 1 e u. Skjæringspunktet u = 0 ser vi bort fra, det gir ingen bunden tilstand. Den deriverte av 1 e u i u = 0 er lik 1, derfor må γ < 1 for at det skal finnes en løsning. For enhver γ < 1 finnes det nøyaktig en løsning. For den løsningen er 0 < γu < 1, slik at γu 0 når γ 1 og γu 1 når γ 0. Siden γu = h2 2mWd 2κd = h2 κ mw, kan vi skrive energien som E = h2 κ 2 2 2m = mw 2 h 2 (γu) 2. Da ser vi at γu = 1 gir samme energi som for den bundne tilstanden i potensialet V (x) = Wδ(x), mens γu > 1 gir en lavere energi og γu < 1 gir en høyere energi. For å oppsummere: Den bundne tilstanden med positiv paritet i dobbeltbrønnen har alltid lavere energi enn den bundne tilstanden i enkeltbrønnen, og energien er lavere jo nærmere hverandre de to brønnene er. Det gir faktisk en tiltrekningskraft mellom de to brønnene på grunn av partikkelen i den bundne tilstanden. Den bundne tilstanden med negativ paritet i dobbeltbrønnen eksisterer bare når avstanden mellom brønnene er større enn 2d 1, der d 1 den verdien av d som gir γ = h 2 /(2mWd) = 1, altså d 1 = h2 2mW. Når denne tilstanden eksisterer, har den alltid høyere energi enn den bundne tilstanden i enkeltbrønnen, og energien er lavere jo større avstanden mellom de to brønnene er. 6
TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer
TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk
B.1 Generelle egenskaper til energiegenfunksjoner
TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i
FY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial
FY006/TFY45 - Løysing øving 5 Løysing oppgåve LØYSING ØVING 5 Krumning og stykkevis konstante potensial a) I eit område der V er konstant (lik V ), og E V er positiv, er området klassisk tillate og vi
Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
Løsningsforslag Eksamen 13. august 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY415 13. august 011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 13. august 011 FY1006/TFY415 Innføring i kvantefysikk a. Fra den tidsuavhengige Schrödingerligningen har vi for
TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1
TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet
Løsningsforslag Matematisk fysikk, 28. mai 2001
Løsningsforslag Matematisk fysikk, 8. mai Oppgave a) Det er trykkfeil i oppgaven. Riktig uttrykk er Vi har sin n θ = π cosx sin θ) = π π = n= n= n= = J x). π n n!). ) n x sin θ) n n= ) n x n ) n x n )
Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og
Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
Løysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
EKSAMEN I SIF4018 MATEMATISK FYSIKK mandag 28. mai 2001 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Institutt for fysikk og Institutt for matematiske fag Faglig kontakt under eksamen: Professor Per Hemmer, tel. 73 59 36 48 Professor Helge Holden,
FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.
FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy
Løsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk
Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial
Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/
A.5 Stasjonære og ikke-stasjonære tilstander
TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se
FYS2140 Kvantefysikk. Løsningsforslag for Oblig 7
FYS2140 Kvantefysikk Løsningsforslag for Oblig 7 Oppgave 2.23 Regn ut følgende intgral a) +1 3 (x 3 3x 2 + 2x 1)δ(x + 2) dx (1) Svar: For å løse dette integralet bruker vi Dirac deltafunksjonen (se seksjon
FYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4
FYS240 Kvantefysikk, Oblig 8 Sindre Rannem Bilden, Gruppe 4 9. april 205 Obliger i FYS240 merkes med navn og gruppenummer! Denne obligen dreier seg om partikkel i en endelig brønn. Dere får bruk for Python
Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
FY1006/TFY Løsning øving 9 1 LØSNING ØVING 9
FY1006/TFY415 - Løsning øving 9 1 Løsning oppgave Numerisk løsning av den tidsuavhengige Schrödingerligningen LØSNING ØVING 9 a. Alle leddene i (1) har selvsagt samme dimensjon. Ved å dividere ligningen
Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
FYS2140 Kvantefysikk, Løsningsforslag Oblig 7
FYS4 Kvantefysikk, Løsningsforslag Oblig 7 4. mars 8 Her finner dere løsningsforslag for Oblig 7 som bestod av Oppgave.,.45 og.46 fra Griffiths, og et løsningsforslag for Oppgave., som var tilleggsoppgave.
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl
NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Onsdag 8. august 2007 kl. 09.00-13.00
Løsning til øving 8 for FY1004, høsten 2007
øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien
FY1006/TFY Øving 7 1 ØVING 7
FY1006/TFY4215 - Øving 7 1 Frist for innlevering: 5. mars kl 17 ØVING 7 Den første oppgaven dreier seg om den tredimensjonale oscillatoren, som behandles i starten av Tillegg 5, og som vi skal gå gjennom
Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;
Eksamen FY1006/TFY mai løsningsforslag 1
Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store
TFY Løsning øving 6 1 LØSNING ØVING 6. Grunntilstanden i hydrogenlignende atom
TFY45 - Løsning øving 6 Løsning oppgave 8 LØSNING ØVING 6 Grunntilstanden i hydrogenlignende atom a. Vi merker oss først at vinkelderivasjonene i Laplace-operatoren gir null bidrag til ψ, siden ψ(r) ikke
Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018
Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.
TFY Øving 7 1 ØVING 7. 3-dimensjonal isotrop harmonisk oscillator
TFY4215 - Øving 7 1 Oppgave 20 ØVING 7 -dimensjonal isotrop harmonisk oscillator Vi har tidligere studert egenfunksjonen (orbitalen) for grunntilstanden i hydrogenlignende atomer, og skal senere sette
FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast
Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med
Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015
Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.
Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
BOKMÅL Side 1 av 6. En partikkel med masse m beveger seg i det endimensjonale brønnpotensialet V 1 = h 2 /(2ma 2 0) for x < 0,
BOKMÅL Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv
TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er
Løsningsforslag Eksamen 4. august 2008 TFY4250 Atom- og molekylfysikk
Eksamen TFY450 4. auguast 008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 4. august 008 TFY450 Atom- og molekylfysikk a. I områdene x < a og x > a har vi (med E V 0 ) at ψ m h [V (x) E ]ψ 0.
FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra
FY1006/TFY Øving 9 1 ØVING 9
FY1006/TFY4215 - Øving 9 1 Frist for innlevering: 2. mars, kl 16 ØVING 9 Opgave 22 Om radialfunksjoner Figuren viser de effektive potensialene Veff(r) l for l = 0, 1, 2, for et hydrogenlignende atom, samt
Løsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk
Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen
FY1006/TFY Øving 3 1 ØVING 3. Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen.
FY006/TFY45 - Øving 3 ØVING 3 Gjør unna så mye du kan av dette før veiledningstimene, slik at disse kan brukes på utfordringene i denne øvingen. Oppgave 8 Ikke-stasjonær bokstilstand En partikkel med masse
FY2045/TFY4250 Kvantemekanikk I, løsning øving 8 1 LØSNING ØVING 8
FY045/TFY450 Kvantemekanikk I, løsning øving 8 1 Løsning oppgave 8 1 LØSNING ØVING 8 Koherente tilstander for harmonisk oscillator a. Utviklingen (3) er en superposisjon av stasjonære tilstander for oscillatoren,
FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4
FYS2140 Kvantefysikk, Oblig 11 Sindre Rannem Bilden og Gruppe 4 30. april 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen er satt sammen av den første delen av eksamen våren 2010
Løsningsforslag Eksamen 1. desember 2009 TFY4250/FY2045
Eksamen TFY45/FY45 1. desember 9 - løsningsforslag 1 Oppgave 1 a. For n = 3j er Løsningsforslag Eksamen 1. desember 9 TFY45/FY45 ψ () 3j (L/3) = A sin(jπ) = og ψ () 3j (L/3) = A sin(jπ) =. Vi kan da konstatere
Løsningsforslag Eksamen 1. desember 2008 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk
Eksamen TFY45/FY45. desember 8 - løsningsforslag Løsningsforslag Eksamen. desember 8 TFY45 Atom- og molekylfysikk/fy45 Kvantefysikk Oppgave a. For x og E = E B < har den tidsuavhengige Schrödingerligningen
FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand
FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h
TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem
TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som
Løsningsforslag Eksamen 6. juni 2007 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. juni 007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. juni 007 TFY415 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i én dimensjon er enten symmetriske eller
Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011
Løsning, eksamen TFY45 Kvantemekanikk II Torsdag 8. desember a) Et kort og fullgodt svar er at en stasjonær tilstand ψ er en løsning av den tidsuavhengige Schrödingerligningen H ψ E ψ, () der H er Hamilton-operatoren
Eksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
Løsningsforslag Eksamen 11. august 2010 FY1006/TFY4215 Innføring i kvantefysikk
Eksamen FY1006/TFY4215 11 august 2010 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 11 august 2010 FY1006/TFY4215 Innføring i kvantefysikk a Siden potensialet V (x) er symmetrisk med hensyn på
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk øysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk
ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien
En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.
Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:
Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk
BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59
EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
UNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er
Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 4 FYS-13 Lars Kristian Henriksen UiO. februar 15 Oppgave 1 Vi betrakter bølgefunksjonen Ψ(x, t) Ae λ x e iωt hvor A, λ og ω er positive reelle konstanter. a) Finn normaliseringen
Eksamen FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Løsninger
Eksamen FY1004 Innføring i kvantemekanikk Tirsdag. mai 007 Løsninger 1a Et hydrogenlikt atom har ett elektron med masse m og ladning e som er bundet til en atomkjerne med ladning Ze. Siden kjernen har
Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015
Løsningsforslag FYS2140 Hjemmeeksamen Vår 2015 12. mars 2015 Det er i alt mulig på en god dag å få 20 poeng på denne hjemmeeksamen. Noen av oppgavene skal løses numerisk. Kompendiet om programmering, samt
FY1006/TFY4215 -øving 10 1 ØVING 10. Om radialfunksjoner for hydrogenlignende system. 2 ma. 1 r + h2 l(l + 1)
FY1006/TFY4215 -øving 10 1 ØVING 10 Oppgave 25 Om radialfunksjoner for hydrogenlignende system De generelle formlene for energiene og de effektive potensialene for et hydrogenlignende system kan skrives
EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne
EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling
3. Noen endimensjonale potensialer
TFY4215 Tillegg 3 1 TILLEGG 3 3. Noen endimensjonale potensialer Dette tillegget er et supplement til avsnittene 3.1, 3.3 og 3.5 i Hemmers bok. Stoff merket med *** er ikke pensum i begynnerkursene (FY1006
FYS2140 Kvantefysikk, Oblig 7. Sindre Rannem Bilden, Gruppe 4
FYS214 Kvantefysikk, Oblig 7 Sindre Rannem Bilden, Gruppe 4 11. mars 215 Obliger i FYS214 merkes med navn og gruppenummer! Denne obligen dreier seg om (bølgepakker av fri partikkel tilstander og om såkalte
EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap og teknologi 13. august 2002 Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Ola Hunderi Tlf.: 93411 EKSAMEN I FAG SIF465 ATOM- OG MOLEKYLFYSIKK Fakultet for naturvitenskap
Kontinuasjonseksamen TFY4215/FY1006 Innføring i kvantemekanikk august 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Kontinuasjonseksamen TFY45/FY006 Innføring i kvantemekanikk august 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:
Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk
Eksamen FY1006/TFY4215, 29. mai 2010 - løsningsforslag 1 Løsningsforslag Eksamen 29. mai 2010 FY1006 Innføring i kvantefysikk/tfy4215 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. I punktene x = 0 og x
Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
3. Noen endimensjonale potensialer
TFY4215/FY1006 Tillegg 3 1 TILLEGG 3 3. Noen endimensjonale potensialer Dette tillegget er et supplement til avsnittene 3.1, 3.3 og 3.5 i Hemmers bok. Stoff merket med *** er ikke pensum i begynnerkursene
Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden
FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier
FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden
Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015
Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.
UNIVERSITETET I BERGEN
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller
EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl
NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN
Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantemekanikk august 2014 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131
Løsning, eksamen TFY4205 Kvantemekanikk II Mandag 13. august 2012
Løsning, eksamen TFY4205 Kvantemekanikk II Mandag 13 august 2012 1a) Kravene at både ψ og ψ er kontinuerlige der potensialet er diskontinuerlig, følger av Schrödingerligningen 2 2m ψ x) + V x)ψx) = Eψx)
EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.
EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk
TFY4215 Innføring i kvantefysikk - Øving 2 1 ØVING 2. Krumningsegenskaper for endimensjonale energiegenfunksjoner
TFY415 Innføring i kvantefysikk - Øving 1 Oppgave 5 ØVING Krumningsegenskaper for endimensjonale energiegenfunksjoner En partikkel med masse m beveger seg i et endimensjonalt potensial V (x). Partikkelen
Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
TFY løsning øving 9 1 LØSNING ØVING 9
TFY4215 - løsning øving 9 1 LØSNING ØVING 9 Løsning oppgave 25 Om radialfunksjoner for hydrogenlignende system a. (a1): De effektive potensialene Veff(r) l for l = 0, 1, 2, 3 er gitt av kurvene 1,2,3,4,
3. Noen endimensjonale potensialer
TFY4215/FY1006 Tillegg 3 1 TILLEGG 3 3. Noen endimensjonale potensialer Dette tillegget er et supplement til avsnittene 3.1, 3.3 og 3.5 i Hemmers bok. Stoff merket med *** er ikke pensum i begynnerkursene
Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY45/TFY45 8. august - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august FY45/TFY45 Kvantemekanikk I a. For E < V blir området x > klassisk forbudt, og den tidsuavhengige Schrödingerligningen
Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
2. Postulatene og et enkelt eksempel
FY619 Moderne fysikk 1 Dette notatet kan leses parallelt med deler av kapitlene 2 og 3 i Hemmer; fortrinnsvis delkapitlene 3.1, 3.2 og 2.1. NOTAT 2 2. Postulatene og et enkelt eksempel I kapittel 2 i Hemmer
EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7
FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga
EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl
Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at
Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)
Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og