Forelesning 13. STK november Med glattingsteknikker. leter vi ikke etter en parametrisk for for E
|
|
- Brynjar Eggen
- 7 år siden
- Visninger:
Transkript
1 " & " + Med glattingsteknikker Forelesning 13 STK november 2007 S O Samuelsen 1 Glatting 2 Generaliserte additive modeller GAM)) 3 Mispesifiserte modeller 4 Generaliserte estimeringsligninger GEE) 5 Varianskomponentmodeller leter vi ikke etter en parametrisk for for E På bagrunn av data dataavhengig estimat % Eksempler på glattingteknikker: Glidende gjennomsnitt % mean Kjerneestimatorer Lokale regresjoner er MKE for slike at prøver vi å lage et fleksibelt for E " % % % " Robuste vektede) lokale regresjoner: "Loess" "Splines" kan varieres % % Forelesning 13 p1/31 Forelesning 13 p3/3 Glatting: Ofte vil lineære modeller Eksempel: Simulerer data fra modell E passe dårlig til data Generelt kan vi ha sammenheng + *) N 0 / E for en eller anne funksjon på ulike måter Inklu 2 gradsledd i modellen E Polynomisk regresjon: E Inklusjon av andre funksjoner av Kategorisering av : E Denne situasjonen kan angripes feks " # y Glattingsteknikker Forelesning 13 p2/31 Forelesning 13 p4/3
2 y y y y Simuleringseksempel Bergner glidende gjennomsnitt lokale regresjoner loess "kubiske" splines I dette tilfellet er det vanskelig å si hvilken estimator som fungerer best Glidende gjennomsnitt Lokal regresjon Glatting i R: Kan bruke funksjonen / biblioteket gam biblioteket må lastes ned fra CRAN) > <100:100)/50 > y<+sin*pi)+rnorm201)*05 > librarygam) > gamy sdf=10)) Call: gamformula = y s df = 10)) Loess Splines Degrees of Freedom: 200 total; Residual Residual Deviance: > gamy lospan=017)) Call: gamformula = y lo span = 017)) Forelesning 13 p5/31 Degrees of Freedom: 200 total; Residual Residual Deviance: Forelesning 13 p7/3 Kubiske splines Estimer ved å minimere varierer graden av glatthet Vi straffer altså for stor dobbeltivert "vingling" dvs stor grad av Forbløffende nok har dette en løsning som kubiske splines med "knots" i ene dvs er 3 gradspolynom på dvs mellom ordnede verdier) % % er kontinuerlig 2 ganger iverbar så i ene Forelesning 13 p6/31 Syntaks: gamtilpasningen gjøres ved struktur anal til glm s) angir splinesglatting lo) angir loessglatting robust vektet lokal minste kvadrater) Graden av glatting angis for splines ved å angi et visst antall frihetsgra som svarer til en viss verdi av glattingsparameteren ) For Loess angis graden av glatting ved span som så kan oversettes til frihetsgra Min erfaring er at defaultgrad av glatting fungerer bra for monotone eller entoppede sammenhenger men at det med flertoppede funksjoner trengs nærmere unsøkelse av glattingsgrad Forelesning 13 p8/3
3 + Additive modeller: Flere kovariater Flere funksjoner Modell: + gamrutinen tillater slike modeller ved "backfitting"algoriten: 1 Sentrer ene: 2 Gjør splinestilpasning av 3 Bergen % 4 Gjør splinestilpasning av 5 Fortsett prosedyren for mot mot 6 Gjenta trinnene 2 til 5 inntil konvergens % % N GAM = Generaliserte additive modeller Modell: fra eksponensiell klasse med forventning linkfunksjon GAM er altså en utvidelse av GLMrammen med vilkårlige glatte funksjoner istedetfor lineære effekter GAM tilpasses med Iterativt revektede minste kvadraters algoritmen IRLS) utvidet med backfitting i hver iterasjon Og dette konvergerer ganske trofast Forelesning 13 p9/31 Forelesning 13 p11/3 Eksempel: Lungekapasitet FEV1) etter kjønn al høyde BMI = vekt i kg høyde i m plotgamafev1 kjonn+sal)+shoyde)+sbmi))se=t) partial for kjonn sal) Eks GAM: Biller > glmcbinddodeantdode) Dosefamily=binomial) Degrees of Freedom: 7 Total ie Null); 6 Residual Null Deviance: 2842 Residual Deviance: 1123 AIC: 4143 > gamcbinddodeantdode) sdose)family=binomial) Degrees of Freedom: 7 total; Residual Residual Deviance: kjonn al > glmcbinddodeantdode) Dosefamily=binomiallink=cll)) shoyde) hoyde sbmi) bmi Forelesning 13 p10/31 Degrees of Freedom: 7 Total ie Null); 6 Residual Null Deviance: 2842 Residual Deviance: 3446 AIC: 3364 > gamcbinddodeantdode) sdose)family=binomiallink=cll)) Degrees of Freedom: 7 total; Residual Residual Deviance: Forelesning 13 p12/3
4 Gamplott: Biller Feilspesifiserte modeller Eksempel: Anta er binære med forventning sdose) litlink sdose) clllink E dvs lineær i kovariatene Hva skjer hvis vi estimerer vanlig minste kvadrater? med Estimatene er konsistente konvergerer mot sann verdi når ) Estimatene er asymptotisk normale Dose Dose Feilspesifisert konstant varians le til gale variansestimater Forelesning 13 p13/31 Forelesning 13 p15/3 Eks GAM: Biller sammendrag Med litmodell forbedret 2 gradsledd modellen GAM finner automatisk avviket fra modellen med 1 gradsmodell Med clllink var 2 gradsledd unødvendig Heller ingen forbedring med GAM Feilspesifiserte modeller forts Mer generelt anta at er uavhengige med forventning korrekt spesifisert linkfunksjon men feilspesifisert variansstruktur Var Vi estimerer da ved å løse scorefunksjonen GAM behandles mer inngående i STK4030: Mone dataanalyse H08) Siden forventningsstrukturen er korrekt spesifisert er E E Dessuten siden ene er uavhengige er tilnærmet Forelesning 13 p14/31 N VAR ved sentralgrenseteoremet for ikkeidentiske fordelte variable såsant ikke et lite antall av dominerer ) Forelesning 13 p16/3
5 Feilspesifiserte modeller forts II Spesielt får vi at kovariansmatrisen til gis ved Feilspesifiserte modeller Avhengige data Anta så at VAR Var som avviker fra forventet informasjon respons individ i familie at forventningsstruktur variansstruktur Var er korrekt spesifisert at familier er uavhengige men at det er avhengighet innen familier siden Var imidlertid % Ved vanlig 1 ordens Taylor har vi Restledd altså tilnærmet som en lineærtransformasjon av tilnærmet normalfordelt Forelesning 13 p17/31 En MLanalyse som behandler dataene som uavhengige vil gi når Konsistente asymptotiske normalfordelte estimater Gale variansestimater er små % Forelesning 13 p19/3 Sandwich estimator Men "med" blir så tilnærmet normalfordelt med forventning kovariansmatrise % Spesielt med forventning kovariansmatrise for VAR Estimert kovariansmatrise for VAR % blir med % % % Kovariansmatriser på denne formen kalles ofte Sandwichestimatoren for kovariansmatrisen Sandwichestimatoren betegnes ofte som robust varians fordi den er gyldig når variansstrukturen er feilspesifisert multivariat normalfordelt blir kovariansmatrisen for minste kvadraters estimater Hvis er designmatrisen for familie den totale designmatrisen ene er kjente er det altså lett å estimere kovariansmatrisen Forelesning 13 p18/31 Forelesning 13 p20/3
6 Men det er så mulig å finne en effisient estimator ved å maksimere en matrise)vektet minstekvadraters estimator: Minimer Generalisering til andre eksponensielle familier Merk at for uavhengige univariate responser scoreligningene kan vi skrive eller løs estimeringsligningene % % siden Var Dette uttrykket kan generaliseres til klyngedata familiedata) ved husk at er vektorer) som gir estimator % med kovariansmatrise Forelesning 13 p21/31 matrisen av iverte av er kovariansmatrisen til mhp Forelesning 13 p23/3 Kovariansmatriser Typisk er ikke kovariansmatrisene kjent men avhenger av ukjente parametre Et vanlig valg for kovariansmatrisen er den såkalt ubyttbare echangable) formen GEE = Generaliserte estimeringsligninger Her kan vi vie uttrykke diagonalmatrisen av variansene til mellom ene for gitt klynge er korrelasjonene dvs cor for alle Alternativt kan vi ha vilkårlig unstructured) kovariansmatrise med cor Et ytterligere alternativt er "autoregressiv" kovariansmatrise med cor Forelesning 13 p22/31 Estimering skjer typisk ved at Estimer ved vanlig GLM dvs un urealistisk uavhengighetsantagelse Estimer så kovariansmatriser fra % Løs estimeringsligningene innsatt Iterer til konvergens estimater Denne teknikken kalles ofte Generaliserte estimering ligninger equations) forkortes GEE for % Forelesning 13 p24/3
7 Variansestimering GEE Gitt kovariansmatriser Men i praksis må modellavvik skal GEE gi effisiente estimater ene estimeres Det kan dessuten være Derfor anbefales det gjerne å benytte robust sandwichestimator for kovariansmatrisen til % Eks forts > geefit GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA gee Sfunction version 413 modified 98/01/ ) Model: Link: Lit Variance to Mean Relation: Binomial Correlation Structure: Echangeable Number of observations : 480 Maimum cluster size : 12 Working Correlation[1:41:4] [1] [2] [3] [4] [1] [2] [3] [4] Forelesning 13 p25/31 Forelesning 13 p27/3 Eksempel Faraway): Balanseevne individ klarer å balansere i forsøk Kovariater: Kjønn høyde vekt overflate lys vision) Må laste ned biblioteket gee fra Cran > geefit<geestable Se+Height+Weight+Surface+Visionid=Subject family=binomialcorstr="echangeable"scalefi=true) Beginning Cgee geeformulaq /01/27 running glm to get initial regression estimate Intercept) Semale Height Weight Surfacenorm Visiondome Visionopen Eks forts forts > roundsummarygeefit)coef2) Estimate Naive SE Naive z Robust SE Robust z Intercept) Semale Height Weight Surfacenorm Visiondome Visionopen De naive variansene er her ofte ellers) mindre enn de robuste Forelesning 13 p26/31 Forelesning 13 p28/3
8 Varianskomponenter random effects): En annen tilnærming til klyngedata er varianskomponentmodeller For lineærnormale klyngedata kan vi anta + familievariasjonen gis ved N individvariasjonen ved N som er uavhengige Vi finner da at indivi i samme familie har Cov + Cov at korrelasjonen mellom indivi i familie blir altså som ved en utbyttbar korrelasjonsstruktur Vi ser at modellen kan skrives om til Forelesning 13 p29/31 Varianskomponenter slutt Denne type modeller kalles ofte GLMM eller GLMMi pga blanding mellom fied effects varianskomponenter Mer om denslags feks i STK4070 som antagelig ikke går før V09) Men det er gis et kurs i tidsrekkeanalyse STK4060) V08 som omhandler andre aspekter ved avhengige data Og med er forelesningene i STK3100/STK4100 slutt for dette semesteret Forelesning 13 p31/3 Varianskomponenter forts Vi ser at modellen kan skrives om til varianskomponenten N Dette åpner for en generalisering til + + så er kovariater varianskomponenter er en vektor av uavhengige Dette formen kan utvides til GLMmodeller med lineær prediktor Likelihood gitt er standard GLM Likelihood marginalt ved å integrere ut fordelingen til Kan være numerisk komplekst Bayesianske teknikker som MCMC = Markov Chain Forelesning Monte 13 p30/31
Introduksjon til Generaliserte Lineære Modeller (GLM)
Literatur / program Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-20. august 2007 Sven Ove Samuelsen Plan for første forelesning: 1. Introduksjon, Literatur, Program 2. ksempler 3. Uformell
DetaljerPrøveeksamen i STK3100/4100 høsten 2011.
Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan
DetaljerForelesning 7 STK3100
( % - -! " stimering: MK = ML Forelesning 7 STK3100 1 oktober 2007 S O Samuelsen Plan for forelesning: 1 Generelt om lineære modeller 2 Variansanalyse - Kategoriske kovariater 3 Koding av kategoriske kovariater
DetaljerForelesning 8 STK3100
$ $ $ # Fortolkning av Dermed blir -ene Vi får variasjonen i '& '& $ Dermed har fortolkning som andel av variasjonen forklart av regresjonen Alternativt: pga identiteten Forelesning 8 STK3100 p3/3 Multippel
DetaljerEksponensielle klasser og GLM
!! 3 ksponensielle klasser, Dobson, Kap 3 ksponensielle klasser GLM n stokastisk variabel sies å ha fordeling i den eksponensielle fordelingsklasse som tettheten pktsannsh til kan skrives på formen STK3-3
DetaljerForelesning 6 STK3100
Forelesning STK3 september 7 S O Samuelsen Plan for forelesning: Mer om evians GLM resiualer 3 Test for H : Offset Observert forventet informasjon Optimeringsrutiner Iterative revektee minste kvarater
DetaljerForelesning 6 STK3100
Scorefunksjon og estimeringsligninger for GLM Forelesning 6 STK3100 29. september 2008 S. O. Samuelsen Plan for forelesning: 1. Observert og forventet informasjon 2. Optimeringsrutiner 3. Iterative revektede
DetaljerForelesning 4 STK3100
! * 2 2 2 Bevis : Anta Forelesning 4 STK3 september 27 S O Samuelsen Plan for annen forelesning: Likelihood-egenskaper 2 Konsistens for ML 3 Tilnærmet fordeling for ML 4 Likelihoodbaserte tester 5 Multivariat
DetaljerIntroduksjon til Generaliserte Lineære Modeller (GLM)
Introduksjon til Generaliserte Lineære Modeller (GLM) p. 1/25 Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-23. august 2010 Sven Ove Samuelsen/Anders Rygh Swensen Plan for første forelesning:
DetaljerForelesning 11 STK3100/4100
Forelesning STK300/400 Plan for forelesning: 3. oktober 20 Geir Storvik. Generaliserte lineære blandede modeller Eksempler R-kode - generell formulering av modell Tillater innbygging av avhengigheter mellom
DetaljerIntroduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller
Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller p. 1/34 Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller STK3100/4100-23. august 2011 Geir Storvik (Oppdatert
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet
DetaljerForelesning 10 STK3100
Momenter i multinomisk fordeling Forelesning 0 STK300 3. november 2008 S. O. Samuelsen Plan for forelesning:. Multinomisk fordeling 2. Multinomisk regresjon - ikke-ordnede kategorier 3. Multinomisk regresjon
DetaljerForelesning 11 STK3100/4100
Forelesning 11 STK3100/4100 Plan for forelesning: 1. november 2012 Geir Storvik 1. Generaliserte lineære blandede modeller Eksempler R-kode GLMM - generell formulering av modell Likelihood og estimering
DetaljerForelesning 8 STK3100/4100
Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -
DetaljerGeneraliserte Lineære Modeller
Eksponensiell klasse Generaliserte Lineære Modeller Y i f(y i ;θ i ) = c(y i ;φ) exp((θ i y i a(θ i ))/φ) µ i = E[Y i ] = a (θ i ) σ 2 i = Var[Y i ] = φa (θ i ) = φv (µ i ) STK3100-4. september 2011 Geir
Detaljer(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].
FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)
DetaljerEKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerGeneraliserte Lineære Modeller
Lineær regresjon er en GLM Generaliserte Lineære Modeller Responser (Y i -er) fra normalfordelinger Lineær komponent η i = β 0 + β 1 x i1 + + β p x ip E[Y i ] = µ i = η i, dvs. linkfunksjonen g(µ i ) =
DetaljerForelesning 3 STK3100
Eks. Fødselsvekt mot svangerskapslengde og kjønn Forelesning 3 STK3100 8. september 2008 S. O. Samuelsen Plan for forelesning: 1. Generelt om lineære modeller 2. Variansanalyse - Kategoriske kovariater
Detaljer(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].
FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)
DetaljerMultippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.
Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså
DetaljerEksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget
FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget
DetaljerPrøveeksamen STK2100 (fasit) - vår 2018
Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
DetaljerTilleggsoppgaver for STK1110 Høst 2015
Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 22. mai 2014 Eksamenstid (fra til): 09.00-13.00
DetaljerKort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerForelesning 9 STK3100
Poissonfordelingen: Forelesning 9 STK3100 20. oktober 2007 S. O. Samuelsen Plan for forelesning: 1. Poissonregresjon 2. Overspredning 3. Quasi-likelihood 4. Andre GLM-er Poissonfordelingen kan oppstå ved
DetaljerForelesning 9 STK3100/4100
Forelesning 9 STK3100/4100 Plan for forelesning: 17. oktober 2011 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 1 Modell med alle antagelser
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30
DetaljerForelesning 5 STK3100/4100
Forelesning 5 STK3100/4100 p. 1/4 Forelesning 5 STK3100/4100 27. september 2012 Presentasjon laget av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. Poissonfordeling 2. Overspredning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerInferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
DetaljerUtvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg
Detaljer7. november 2011 Geir Storvik
Forelesning 13 STK3100/4100 Plan for forelesning: 7. november 2011 Geir Storvik Generaliserte lineære blandede modeller 1. Sammenlikning ulike estimeringsmetoder 2. Tolkning parametre 3. Inferens Konfidensintervaller
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
DetaljerIntroduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R
Blanda modellar i R Jorunn Slagstad Universitetet i Bergen 20. desember 2006 1 Introduksjon 2 Lineære blanda modellar 3 Generaliserte lineære blanda modellar 4 Analyser av modellar 5 Eit randproblem 6
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerEKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? Bokmål Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag
DetaljerForelesning 9 STK3100/4100
p. 1/3 Forelesning 9 STK3100/4100 Plan for forelesning: 18. oktober 2012 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 2/3 Modell med
DetaljerPrøveeksamen STK vår 2017
Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Tlf: Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
Detaljer10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
DetaljerSTK juni 2016
Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6
DetaljerDatamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens
DetaljerEksponensielle klasser
Eksponensielle klasser, de Jong & Heller, Kap. 3 Eksponensielle klasser STK3100-1. september 2008 Sven Ove Samuelsen En stokastisk variabel Y sies å ha fordeling i den eksponensielle fordelingsklasse dersom
DetaljerForelesning 6 STK3100/4100
Forelesning 6 STK3100/4100 p. 1/4 Forelesning 6 STK3100/4100 4. oktober 2012 Presentasjon av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning
DetaljerForelesning 6 STK3100/4100
Binomiske eller binære responser Forelesning 6 STK3100/4100 26. september 2008 Geir Storvik (S. O. Samuelsen) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning logistisk
DetaljerEKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Kontakt under eksamen: Ingelin Steinsland (92 66 30 96) EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Tirsdag
DetaljerEKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30
DetaljerOPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerAnvendt medisinsk statistikk, vår Repeterte målinger, del II
Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald
DetaljerFordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
DetaljerSTK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
Detaljer3.A IKKE-STASJONARITET
Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet
DetaljerSTK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
DetaljerEKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLAR
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLAR Torsdag
DetaljerRef.: Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05
SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Fall 2004 Erling Berge 2004 1 Forelesing V Kritikk av regresjon
DetaljerEkstraoppgaver STK3100 h10
Ekstraoppgaver STK3100 h10 Oppgave 1 En-veis variansanalyse modellen kan formuleres som Y ij = µ + α i + ɛ ij (1) der α i = 0 og ɛ ij er i.i.d N(0, σ 2 ). Her representerer er Y ij j te observasjon fra
DetaljerForelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind
Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering
DetaljerMultippel lineær regresjon
Multippel lineær regreson Pål Romundstad Regreson Regression is the fitting of a function to a set of observations Det er minst to variabler involvert som kan deles i to hovedtyper: X-variablene (de uavhengige
DetaljerGenerelle lineære modeller i praksis
Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige
DetaljerSimulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen
Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren
DetaljerEKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Mandag 24. september 2018. Klokkeslett: 09-13. Sted: Administrasjonsbygget K1.04 Tillatte hjelpemidler: «Tabeller og
DetaljerSOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU
SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Kritikk av regresjon I Forelesing
DetaljerTillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
DetaljerKapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
DetaljerRidge regresjon og lasso notat til STK2120
Ridge regresjon og lasso notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på noen alternativer til minste kvadraters metode ved lineær regresjon. Metodene er særlig aktuelle
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerKlassisk ANOVA/ lineær modell
Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin
DetaljerBootstrapping og simulering Tilleggslitteratur for STK1100
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor
DetaljerEksamensoppgave i ST3001
Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle
DetaljerI enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x
Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK2120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 6. juni 2011. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerEKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST110 Statistiske metoder og dataanalyse Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 20.30. Oppgavesettet er på
DetaljerKp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt
Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties
DetaljerKp. 12 Multippel regresjon
Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction
DetaljerForelesning 7 STK3100/4100
Forelesning 7 STK3100/4100 p. 1/2 Forelesning 7 STK3100/4100 8. november 2012 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Forelesning
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant
DetaljerLøsningsforslag øving 9, ST1301
Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene
DetaljerFerdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2
Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerBioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bioberegninger, ST1301 Onsdag 1. juni 2005 Løsningsforslag Oppgave 1 a) Verdien av uttrykkene blir som følger: >
DetaljerMer om Markov modeller
Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall
DetaljerForelesning STK september 2011
Forelesning STK3100 12. setember 2011 Geir Storvik (S. O. Samuelsen) Plan for forelesning: 1. Mer om evians 2. Devians og Gooness-of-fit tester 3. GLM og resiualer En Mettet (saturate) moell er en moell
DetaljerMOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ
MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne
Detaljerj=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.
FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 4. juni 2016 Eksamenstid (fra til): 09.00
DetaljerForelesning 7 STK3100/4100
Gamma regresjon Forelesning 7 STK3100/4100 26. september 2008 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Modell: Har y Gamma(µ,ν),
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
Detaljervekt. vol bruk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerPunktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:
Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,
Detaljer