Forelesning 5 STK3100/4100

Størrelse: px
Begynne med side:

Download "Forelesning 5 STK3100/4100"

Transkript

1 Forelesning 5 STK3100/4100 p. 1/4 Forelesning 5 STK3100/ september 2012 Presentasjon laget av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. Poissonfordeling 2. Overspredning 3. Kvasi-likelihood

2 Forelesning 5 STK3100/4100 p. 2/4 Telle data Dødelighetsstudier: Forklare antall døde ved alder, kjønn, livsstil Helseforsikring: Forklare antall krav ved alder, kjønn, yrke Årsakssforsikring: Forklare antall krav på bilforsikring ved biltype, motor kapasitet, tidligere krav Mail: Antall spam mail

3 Forelesning 5 STK3100/4100 p. 3/4 Poissonfordelingen Y er Poissonfordelt med forventning µ (Y Po(µ)) dersom P(Y = y) = µy y! exp( µ) for y = 0, 1, 2,... Poissonfordeling tilhører en eksponensiell fordelingsklasse siden P(Y = y) = exp(y log(µ) µ log(y!)) = exp(θy a(θ))c(y)) med θ = log(µ) som kanonisk parameter og a(θ) = exp(θ) = µ. Dermed blir E[Y ] = a (θ) = exp(θ) = µ og Var[Y ] = a (θ) = exp(θ) = µ = V (µ)

4 Forelesning 5 STK3100/4100 p. 4/4 Poissonfordelingen: Poissonfordelingen kan oppstå ved at Tilnærmelse til binomisk fordeling: Y Bin(n,π) når π er liten Poissonprosess: Y = antall hendelser i intervall [0, t] Po(λt) med Rate λ for hendelser Antall hendelser i disjunkte subintervaller av [0,t] er uavhengige Kun en hendelse ved et gitt tidspunkt

5 Forelesning 5 STK3100/4100 p. 5/4 Binomisk tilnærmelse til Poissonfordelingen: Poisson Binomisk Binomisk Binomisk y EY=0.5 n=500 n=50 n=5 p=0.001 p=0.01 p= Har generelt, med Y Bin(n, π) og µ = nπ, P(Y = y) µy y! exp( µ) nπ2

6 Sjekk av Poissonfordeling Generelt kan vi ha telledata på Y = 0, 1, 2,..., som ikke passer med Poissonfordelingen. Vi kan sjekke Poissonantagelsen ved å beregne Spredningskoeffisient = CD = s2 Ȳ der s 2 er empirisk varians for observerte Y i. Hvis Y i Poisson(µ) vil CD 1. Hvis CD > 1 has overspredning i forhold til Poissonmodellen. Poissonmodellen testes formelt ved Pearson kjikvadrat X 2 = m 1 y=0 (O y E y ) 2 E y χ 2 m 2 når modellen holder der O y er antall Y i = y og E y = n ˆµy y! exp( ˆµ). Forelesning 5 STK3100/4100 p. 6/4

7 Forelesning 5 STK3100/4100 p. 7/4 Eksempler på telledata: Number of Frequency events Horesekick deaths Ammunition accidents Bomb hits Observed Expected Observed Expected Observed Expected Total CD X df p-value 0.86 <

8 Forelesning 5 STK3100/4100 p. 8/4 Poissonregresjon: GLM for Poissondata Y i Po(µ i ) er uavhengige g(µ i ) = η i for linkfunksjon g() Lineær prediktor η i = β x i Vanlige linkfunksjoner: Kanonisk link: g 0 (µ i ) = log(µ i ) Kvadratrotlink: g 0.5 (µ i ) = µ i Identitetslink: g 1 (µ i ) = µ i Powerlink g ρ (µ i ) = µ ρ i

9 Forelesning 5 STK3100/4100 p. 9/4 Parameterfortolkning Fortolkningen av µ i er raten i en Poissonprosess over et gitt tidsintervall. La x = (x 1,...,x p ) og x = (x 1,...,x p) slik at x j = x j for j = 1, 2,...,p 1 x p = x p + 1 for j = p Med log-link fortolkes β p som log-rate-ratio eller som rate-ratio. exp(β p ) = µ µ = exp(β (x x) = RR Tilsv. med identitetslink fås fortolkning rate-differanse (RD) β p = µ µ = RD

10 Forelesning 5 STK3100/4100 p. 10/4 Box-Cox-transformasjon Bakgrunn for at vi kan betegne log-linken med g 0 (): Vi kan redefinere linkene ved Box-Cox-transformasjon µ ρ 1 ρ 0 ρ g ρ (µ i ) = log(µ) ρ = 0 Merk at når ρ 0 vil g ρ (µ) log(µ) = g 0 (µ) Det er altså mulig å utvide den generaliserte modellen med "link-parameteren" ρ og teste om f.eks. log- eller identitetslink passer med data.

11 Forelesning 5 STK3100/4100 p. 11/4 Eksempel: Mottatt spam Y i = antall spam time nr. i fra 10. juni til 10. oktober Kovariater: Mnd, Ukedag (og Klokkeslett) > glm(anttime ukedag+mnd,family=poisson) Call: glm(formula=anttime ukedag+mnd,family=poisson,data=timedata) Coefficients: (Intercept) ukedagmon ukedagsat ukedagsun ukedagthu ukedagwed mndjul mndjun mndoct mndsep Degrees of Freedom: 2926 Total (i.e. Null); Null Deviance: 3754 Residual Deviance: 3710 AIC: Residual

12 Forelesning 5 STK3100/4100 p. 12/4 Null deviance: on 2926 degrees of freedom Residual deviance: on 2916 degrees of freedom AIC: 8049 Eksempel: Mottatt spam, forts. > summary(glm(anttime ukedag+mnd,family=poisson)) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) ukedagmon * ukedagsat ukedagsun ukedagthu ukedagtue ukedagwed mndjul ** mndjun mndoct e-08 *** mndsep * --- (Dispersion parameter for poisson family taken to be 1)

13 Forelesning 5 STK3100/4100 p. 13/4 Anova > M2<-glm(anttime ukedag+mnd,family=poisson,data=timedata) > anova(m2,test="chisq") Analysis of Deviance Table Model: poisson, link: log Response: anttime Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev NULL ukedag mnd e-07 ***

14 Forelesning 5 STK3100/4100 p. 14/4 Anova > M22<-glm(anttime mnd+ukedag,family=poisson,data=timedata) > anova(m22,test="chisq") Analysis of Deviance Table Model: poisson, link: log Response: anttime Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev NULL mnd e-07 *** ukedag

15 Forelesning 5 STK3100/4100 p. 15/4 Funksjon for rate-ratio (RR) med 95% KI RRCItab<-function(glmfit){ sumglm<-summary(glmfit)$coef RR<-exp(sumglm[,1]) RRL<-exp(sumglm[,1]-1.96*sumglm[,2]) RRU<-exp(sumglm[,1]+1.96*sumglm[,2]) cbind(rr,rrl,rru) } glmfit skal være en tilpasset GLM summary(glmfit)$coef inneholder ˆβ j i 1. kolonne og standardfeil se j for ˆβ j i annen kolonne Funksjonen beregner exp(ˆβ j ) og exp(ˆβ j ± 1.96se)

16 Forelesning 5 STK3100/4100 p. 16/4 Anvendelse: Funksjon for RR med 95% KI > poisspam<-glm(anttime ukedag+mnd,family=poisson) > round(rrcitab(poisspam),2) RR RRL RRU (Intercept) ukedagmon ukedagsat ukedagsun ukedagthu ukedagtue ukedagwed mndjul mndjun mndoct mndsep

17 Forelesning 5 STK3100/4100 p. 17/4 Spam: ANOVA-tabell M0<-glm(anttime 1,family=poisson,data=timedata) M1<-glm(anttime mnd,family=poisson,data=timedata) M2<-glm(anttime ukedag+mnd,family=poisson,data=timedata) M3<-glm(anttime time+ukedag+mnd,family=poisson,data=timedata) anova(m0,m1,m2,m3,test="chi") Analysis of Deviance Table Model 1: anttime 1 Model 2: anttime mnd Model 3: anttime ukedag + mnd Model 4: anttime time + ukedag + mnd Resid. Df Resid. Dev Df Deviance P(> Chi ) e-07 *** **

18 Spam: Døgnvariasjon Faktor time (kl.24.00=ref) log(rr) time Glattet versjon time Forelesning 5 STK3100/4100 p. 18/4 s(time)

19 Forelesning 5 STK3100/4100 p. 19/4 Eksempel: Lungekreft i danske byer ( ) Tabell 1. Observert antall lungekreft tilfeller By Alder Fredericia Horsens Kolding Vejle Totalt > Totalt Tabell 2. Antall innbyggere i de fire byene fordelt på aldersgrupper. By Alder Fredericia Horsens Kolding Vejle Totalt >

20 Forelesning 5 STK3100/4100 p. 20/4 Lungekrefteksempel,forts Vi skal benytte følgende modell: Med n ij = Antall innbyggere i by i og aldersgruppe j er Y ij = Ant. lungekrefttilf. by i aldersgr. j Po(µ ij ) der µ ij = n ij exp(η 0 + α i + β j ). Begrunnelse Rimelig at antall tilfeller avhenger av antall innbyggere Kunne antatt Y ij Bin(n ij,π ij ) der π ij små (men noen problemer med dette)

21 Forelesning 5 STK3100/4100 p. 21/4 Lungekrefteksempel: offset Poeng: Siden µ ij avhenger av befolkningstørrelse n ij må denne spesifiseres i modellen. Merk at log(µ ij ) = log(n ij exp(η 0 +α i +β j )) = 1 log(n ij )+η 0 +α i +β j dvs. log(n ij ) inngår i den lineære prediktoren som en kovariat der regresjonsparameteren er satt lik 1. I R kan vi spesifisere en konstant ved offset.

22 Forelesning 5 STK3100/4100 p. 22/4 Lungekrefteksempel: R lungekreft <- read.table("../data/lungekreft", col.names=c("by","ald","lkreft","bef")) lungekreft$by = as.factor(lungekreft$by) levels(lungekreft$by) = c("fredericia","horsens","kolding","vejle") lungekreft$ald = as.factor(lungekreft$ald) levels(lungekreft$ald) = c("40-54","55-59","60-64","65-69", "70-74",">75") glm(lkreft By+Ald+offset(log(Bef)), family=poisson,data=lungekreft) Coefficients: (Intercept) ByHorsens ByKolding ByVejle Ald55-59 Ald60-64 Ald65-69 Ald70-74 Ald> Degrees of Freedom: 23 Total (i.e. Null); Null Deviance: Residual Deviance: AIC: Residual

23 Forelesning 5 STK3100/4100 p. 23/4 Lungekrefteksempel: Mer R > mainmod = glm(lkreft By+Ald+offset(log(Bef)), family=poisson,data=lungekreft) > summary(mainmod) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** ByHorsens ByKolding * ByVejle Ald e-06 *** Ald e-11 *** Ald e-14 *** Ald e-15 *** Ald> e-08 *** --- Null deviance: on 23 degrees of freedom Residual deviance: on 15 degrees of freedom AIC:

24 Forelesning 5 STK3100/4100 p. 24/4 Lungekrefteks.: Rate-ratioer med konfidensintervall > round(rrcitab(mainmod),3) RR RRL RRU (Intercept) ByHorsens ByKolding ByVejle Ald Ald Ald Ald Ald>

25 Forelesning 5 STK3100/4100 p. 25/4 Overspredning: Eks. Antall seksualpartnere Fra Folkhelsa s seksualvanestudier i -87 og -92: n = 8553 ind. Respons: Y i = totalt antall sex-partnere Kovariater: Kjønn (1=M, 2=K), Sivilstatus (1=Ugift, 2=Gift/Sambo), HIVtest (1=Nei, 2=Ja, 3=Vet ikke), Debutalder (1 hvis < 19, 2 hvis 19 år), Aldersgr (=1 hvis < 20 år, 2 hvis 20-24, 3 hvis 25-29, 4 hvis og 5 hvis år) Siden Y i er en tellevariabel kan det virke rimelig å modellere med Poisson-regresjon

26 Forelesning 5 STK3100/4100 p. 26/4 Deviance Residuals: Min 1Q Median 3Q Max Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** Kjonn < 2e-16 *** Sivstat < 2e-16 *** factor(hivtest) < 2e-16 *** factor(hivtest) e-11 *** I(Debald < 19)TRUE < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** (Dispersion parameter for poisson family taken to be 1) Null deviance: on 8553 degrees of freedom Residual deviance: on 8544 degrees of freedom Antall seksualpartnere, Poissonregresjon > main<-glm(antpart Kjonn+Sivstat+factor(HIVtest)+I(Debald<19) +factor(aldgr),family=poisson(link=log),data=part) > summary(main)

27 Forelesning 5 STK3100/4100 p. 27/4 Ant. sexpartnere, Sammendrag av Poissonregresjon Mange meget signifikante kovariater Men også noen veldig store residualer Dessuten Pearson X 2 = som er stort sammenlignet residualt antall frihetsgrader = 8544 Overspredning i forhold til Poissonmodell på X 2 /8544 = 6.08 > X2<-sum(residuals(main,type="pearson")ˆ2) > X2/8544 [1] Pga. betydelig overspredningen skal man være forsiktig med legge for mye i signifikansene!

28 Forelesning 5 STK3100/4100 p. 28/4 Overspredning generelt To forslag til forbedring av modellen Anta at Y i θ i Po(θ i exp(β x i )) der θ i er en latent stokastisk variabel Anta at E[Y i ] = µ i = exp(β x i )), men at Var[Y i ] = φµ i der φ er et spredningsledd

29 Forelesning 5 STK3100/4100 p. 29/4 Dobbeltforventning Generelt for stokastiske variabel X og Y gjelder lov om dobbeltforventning E[Y ] = E{E[Y X]} Tilsvarende regel for varianser er Var[Y ] = E{Var[Y X]} + Var{E[Y X]}

30 Overspredning med latent variabel Med Y i θ i Po(θ i exp(β x i )) der θ i er en latent stokastisk variabel finner vi µ i = E[Y i ] = E[E[Y i θ i ]] = E[θ i exp(β x i )] = exp(β x i ) hvis vi setter E[θ i ] = 1 (som vi kan gjøre når β x i inneholder et konstantledd). Dessuten får vi, pga. betinget Poissonfordeling, Var[Y i ] = E[Var[Y i θ i ]] + Var[E[Y i θ i ]] = E[θ i exp(β x i )] + Var[θ i exp(β x i )] = exp(β x i ) + exp(2β x i )Var[θ i ] dvs. overspredning! = µ i + µ 2 i Var[θ i ] > µ i Forelesning 5 STK3100/4100 p. 30/4

31 Forelesning 5 STK3100/4100 p. 31/4 Overspredning med latent gammafordelt variabel Hvis θ i er gammafordelt blir, fra de Jong & Heller, s. 32, Y i marginalt negativt binomisk fordelt. Spesielt hvis θ i har tetthet f(θ;ν) = νν θ ν 1 Γ(ν) E[θ i ] = 1 og Var[θ i ] = 1 og ν exp( νθ) blir P(Y i = y) = Γ(ν + y) y!γ(ν) ( µ i µ i + ν )y ( ν µ i + ν )ν med forventning E[Y i ] = µ i = exp(β x i ) og Var[Y i ] = µ i + µ 2 i Var[θ i ] = µ i + µ2 i ν

32 Forelesning 5 STK3100/4100 p. 32/4 GLM med negativ binomisk respons Siden negative binomiske fordelinger er med i eksponensiell klasser er det rett fram å definere en GLM basert på dem. Dette er faktisk implementert i R under "biblioteket" MASS. Default-linken for negativ binomisk familie er log, så parameterestimatene ˆβ vil svare til Poisson-regresjonen. Vi kan både spesifisere og estimere parameteren ν, men virker som om korrekt spesifikasjon ikke er kritisk.

33 (Intercept) < 2e-16 *** Kjonn < 2e-16 *** Sivstat < 2e-16 *** factor(hivtest) < 2e-16 *** factor(hivtest) ** I(Debald < 19)TRUE < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** (Dispersion parameter for Negative Binomial(1) family taken to be ) Null deviance: on 8553 degrees of freedom Residual deviance: on 8544 degrees of freedom Forelesning 5 STK3100/4100 p. 33/4 Ant. sexpartnere, GLM neg. bin. fam., spesifisert ν = 1 > library(mass) > summary(glm(antpart Kjonn+Sivstat+factor(HIVtest)+I(Debald<19) +factor(aldgr),family=negative.binomial(1),data=part)) Deviance Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t )

34 > summary(glm.nb(antpart Kjonn+Sivstat+factor(HIVtest)+I(Debald<19) (Dispersion par. for Negative Binomial(1.7137) family taken to be 1 Ant. sexpartnere, GLM med neg. bin. fam., estimerer ν +factor(aldgr),data=part)) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** Kjonn < 2e-16 *** Sivstat < 2e-16 *** factor(hivtest) < 2e-16 *** factor(hivtest) *** I(Debald < 19)TRUE < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** --- Null deviance: on 8553 degrees of freedom Residual deviance: 8503 on 8544 degrees of freedom AIC: Theta: Std. Err.: x log-likelihood: Forelesning 5 STK3100/4100 p. 34/4

35 Forelesning 5 STK3100/4100 p. 35/4 Sammendrag: Eks. med neg.bin-familie Parameterestimatene ˆβ tilnærmet like som for Poissonregresjon Standardfeil betydelig større i forhold til Poissonregresjon Derav blir t-verdier mindre og p-verdier større Residualene er nå vesentlig mindre Testobservatorene tilnærmet like om parameteren ν spesifiseres eller estimeres

36 Forelesning 5 STK3100/4100 p. 36/4 Utvidelse av Poissonmodell til Var[Y i ] = φµ i Problem: Ingen (kjent) eksponensiell klasse med Var[Y i ] = φµ i = φe[y i ] Likevel mulig å tilpasse en modell som kun spesifiserer momenter g(µ i ) = g(e[y i ]) = β x i og Var[Y i ] = φµ i med bakgrunn i Quasilikelihood

37 Forelesning 5 STK3100/4100 p. 37/4 Bakgrunn for Quasi-likelihood De fleste egenskaper ved minste kvadraters estimatorer krever ikke normalfordelte responser, kun Korrekt forventningstruktur E[Y i ] = β x i Konstant varians Var[Y i ] = σ 2 Uavhengighet Uten normalfordeling har vi ikke eksakt t-fordelinger og F-fordelinger for test-observatorer, men disse er konservative i forhold til asymptotiske tilnærminger som ikke tar hensyn til usikkerheten i ˆσ 2.

38 Bakgrunn for Quasi-likelihood Estimeringsligninger for GLM: Scorefunksjonen settes lik 0 s(β) = n i=1 x i Y i µ i g (µ i )φv (µ i ) = 0, dvs. estimering krever kun spesifikasjon av linkfunskjon g(µ i ) og variansstruktur Var[Y i ] = φv (µ i ). Med samme antagelser has at kovariansmatrisen til s(β): Var[s(β)] = J (β) = n i=1 dvs. ved Fisher-informasjonen. x i x i g (µ i ) 2 φv (µ i ) = E [ ] s(β), β NB. Denne identiteten trenger altså ikke antagelse av eksponensiell klasse, kun spesifikasjon av forventning og variansstruktur. Forelesning 5 STK3100/4100 p. 38/4

39 Forelesning 5 STK3100/4100 p. 39/4 Modell for Quasi-likelihood Korrekt forventningstruktur g(e[y i ]) = β x i Variansstruktur Var[Y i ] = φv (µ i ) Uavhengighet mellom Y i -ene Da vil ved vanlig 1. ordens Taylor-utvikling (og noen regularitetsantagelser) ˆβ β + J (β) 1 s(β) for ˆβ løsning av s(ˆβ) = 0. Men ved sentralgrenseteoremet blir og dermed s(β) N(0, J (β)) ˆβ N(β, J (β) 1 ) som ved vanlig MLE.

40 Forelesning 5 STK3100/4100 p. 40/4 Estimering av spredningsledd x i x i g (µ i ) 2 V (µ i ) I Fisher-informasjonen J (β) = 1 n φ i=1 ukjente spredningsparameteren φ. Men vi har at inngår den E[ (Y i µ i ) 2 V (µ i ) Derfor kan φ estimeres konsistent ved ] = φ ˆφ = 1 n p 1 n i=1 (Y i ˆµ i ) 2 V (ˆµ i ) = X 2 n p 1 der X 2 er Pearson-kjikvadrat. Merk at ˆφ = ˆσ 2 når V (µ i ) = 1.

41 Forelesning 5 STK3100/4100 p. 41/4 Quasilikelihood Strengt tatt har vi bare sett på estimeringsligninger s(β) = n i=1 x i Y i µ i g (µ i )φv (µ i ) = 0, Men man kan konstruere en funksjon Q(µ) = n i=1 Q i(µ i ) som maksimeres ved å løse disse, der Med V (µ) = µ får vi Q i (µ i ) = µi y i Y i µ φv (µ) dµ Q i (µ i ) = 1 φ µi y i Y i µ µ dµ = 1 φ [Y i log(µ i /Y i ) (µ i Y i )] som er proporsjonal med deviansbidrag for Poissonfordeling

42 (Intercept) < 2e-16 *** Kjonn < 2e-16 *** Sivstat < 2e-16 *** factor(hivtest) < 2e-16 *** factor(hivtest) ** I(Debald < 19)TRUE < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** --- (Dispersion parameter for quasi family taken to be ) Null deviance: on 8553 degrees of freedom Residual deviance: on 8544 degrees of freedom Forelesning 5 STK3100/4100 p. 42/4 Antall sexpartnere, GLM med quasi-likelihood > summary(glm(antpart Kjonn+Sivstat+factor(HIVtest)+I(Debald<19) +factor(aldgr),family=quasi(link=log,var="mu"),data=part)) Deviance Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t )

43 mu Forelesning 5 STK3100/4100 p. 43/4 Hvilken variansfunksjon passer best Beregner estimert forventning ˆµ i for alle individer Beregn for j = 1, 2,...,15 empirisk varians ˆv j for Y i slik at j ˆµ i < j + 1 Plotter (j, ˆv j ) sammen med ˆφµ og µ + µ 2 /ˆν Empirisk varians for antall partnere varians Quasilikelihood Negativt binomisk

44 Forelesning 5 STK3100/4100 p. 44/4 Sammendrag: Eks. med quasi-likelihood Parameterestimatene er eksakt de samme som for Poissonregresjon Standardfeil er skalert med ˆφ = = 2.46 i forhold til Poissonregresjon Derav blir t-verdier mindre og p-verdier større Oppgitte residualer er de samme som for Poisson-regresjon, tydeligvis ikke skalert med ˆφ Essensielt samme resultater som for Negativ binomisk familie

45 Forelesning 5 STK3100/4100 p. 45/4 GLM med gamma-familie Anta Y i er gamma-fordelt med tetthet ( ) ν f(y) = 1 ν Γ(ν) µ i y ν 1 exp( ν µ i y) der c(y,ν) = y (ν 1) ν ν /Γ(ν). = exp( ( 1/µ i)y log(µ i ) 1/ν )c(y, ν)) Dermed blir kanonisk parameter θ = 1/µ, spredningsledd φ = 1/ν og funksjonen a(θ) = log( 1/θ). Dette gir variansfunksjon V (µ) = a (θ) = 1 θ 2 = µ2

46 Null deviance: on 8553 degrees of freedom Residual deviance: on 8544 degrees of freedom Forelesning 5 STK3100/4100 p. 46/4 Ant. sexpartnere, GLM med Gammafamilie og log-link > summary(glm(antpart Kjonn+Sivstat+factor(HIVtest)+I(Debald<19) +factor(aldgr),family=gamma(link=log),data=part)) Deviance Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** Kjonn < 2e-16 *** Sivstat < 2e-16 *** factor(hivtest) < 2e-16 *** factor(hivtest) ** I(Debald < 19)TRUE < 2e-16 *** factor(aldgr) e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** --- (Dispersion parameter for Gamma family taken to be )

47 Forelesning 5 STK3100/4100 p. 47/4 Invers gaussisk familile En ytterliger eksponensiell klasse er de invers gaussiske fordelingene med tetthet } (2πσ 2 y 3 ) 1/2 exp { (y µ)2 hvis y > 0, 2µ 2 σ 2 y f Y (y) = 0 hvis y 0, for µ,σ 2 > 0. Det kan vises at hvis Y f Y (y) så er E[Y ] = µ og Var[Y ] = σ 2 µ 3, dvs. spredningsleddet er φ = σ 2 og V (µ) = µ 3

48 Null deviance: on 8553 degrees of freedom Residual deviance: on 8544 degrees of freedom Forelesning 5 STK3100/4100 p. 48/4 Sexpartnere, GLM med Invers gaussisk fam. og log-link > summary(glm(antpart Kjonn+Sivstat+factor(HIVtest)+I(Debald<19) +factor(aldgr),family=inverse.gaussian(link=log),data=part)) Deviance Residuals: Min 1Q Median 3Q Max Estimate Std. Error t value Pr(> t ) (Dispersion parameter for inverse.gaussian family taken to be (Intercept) < 2e-16 *** Kjonn < 2e-16 *** Sivstat < 2e-16 *** factor(hivtest) e-14 *** factor(hivtest) ** I(Debald < 19)TRUE < 2e-16 *** factor(aldgr) e-11 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** factor(aldgr) < 2e-16 *** ---

49 Forelesning 5 STK3100/4100 p. 49/4 Sammendrag Poisson-fordeling var ikke akseptabelt for partnerdataen fordi den ikke inneholder spredningsledd som tar hensyn til overspredningen Negativ binomisk fordeling, Quasi-likelihood med spredningsledd og variansfunksjon V (µ) = µ, Gammafordeling og Invers Gaussisk fordeling ga lignende resultater på dette datasettet Generelt kan feilaktig representasjon av variansen gi feilaktig inferens

Forelesning 9 STK3100

Forelesning 9 STK3100 Poissonfordelingen: Forelesning 9 STK3100 20. oktober 2007 S. O. Samuelsen Plan for forelesning: 1. Poissonregresjon 2. Overspredning 3. Quasi-likelihood 4. Andre GLM-er Poissonfordelingen kan oppstå ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk og studiedesign Eksamensdag: 6. desember 2013 Tid for eksamen: 14:30-17:30 (3 timer) Oppgavesettet er

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator Side 1 av 11 sider EKSAMENSOPPGAVE I STA-1002 Eksamen i : STA-1002 Statistikk og sannsynlighet 2 Eksamensdato : 26. september 2011. Tid : 09-13. Sted : Administrasjonsbygget. Tillatte hjelpemidler : -

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150 Biostatistikk og studiedesign Eksamensdag: 5. desember 2014 Tid for eksamen: 14:30-18:30 (4 timer) Oppgavesettet er

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

Modellering og estimering av romlig avhengighet i forsikring

Modellering og estimering av romlig avhengighet i forsikring Modellering og estimering av romlig avhengighet i forsikring Nikolai Sellereite Masteroppgave i statistikk Finansteori og forsikringsmatematikk Universitetet i Bergen Matematisk institutt 1juni 2015 Sammendrag

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

Medisinsk statistikk Del I høsten 2008:

Medisinsk statistikk Del I høsten 2008: Medisinsk statistikk Del I høsten 2008: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Noen tips Boka Summary etter hvert kapittel forteller hvor dere har vært og hva som er sentralt Øvingene Overdriv

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Vår 2004 1 Gjennomgang av Oppgåve 3 gitt hausten 2001 Vår 2004 2 Haust 2001 Oppgåve 3 I tabellvedlegget til oppgåve 3 er det estimert 7 ulike

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

BIO2150 Biostatistikk og studiedesign. Ordliste

BIO2150 Biostatistikk og studiedesign. Ordliste BIO2150 Biostatistikk og studiedesign Ordliste Forord Denne ordlisten inneholder forklaringer på statistiske og andre matematiske ord og uttrykk som brukes i forelesningene i BIO2150 ved Biologisk institutt,

Detaljer

SKOLEEKSAMEN I. SOS1120 Kvantitativ metode. 13. desember 2012 4 timer

SKOLEEKSAMEN I. SOS1120 Kvantitativ metode. 13. desember 2012 4 timer SKOLEEKSAMEN I SOS1120 Kvantitativ metode 13. desember 2012 4 timer Det er lov å bruke ikke-programmerbar kalkulator som hjelpemiddel Sensur for eksamen faller 11.januar kl. 14.00. Sensuren publiseres

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Regresjonsmodeller. HEL 8020 Analyse av registerdata i forskning. Tom Wilsgaard

Regresjonsmodeller. HEL 8020 Analyse av registerdata i forskning. Tom Wilsgaard Regresjonsmodeller HEL 8020 Analyse av registerdata i forskning Tom Wilsgaard Intro Mye forskning innen medisin og helsefag dreier seg om å studere assosiasjonen mellom en eller flere eksponeringsvariabler

Detaljer

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk",

Detaljer

Fra krysstabell til regresjon

Fra krysstabell til regresjon Fra krysstabell til regresjon La oss si at vi er interessert i å undersøke i hvilken grad arbeidstid er avhengig av utdanning. Vi har ca. 3200 observasjoner (dvs. arbeidstakere som er spurt). For hver

Detaljer

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år?

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år? Oppgave 1 Levetiden T til en bestemt type bilmotor er normalfordelt med forventning µ = 15 år og standardavvik σ = 3 år. a) Vis at sannsynligheten for at en tilfeldig utvalgt bilmotor har en levetid på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2

Detaljer

Beiteskader av hjort i vernet skog og vurdering av problem med introduserte arter: Mjelvabotnen naturreservat

Beiteskader av hjort i vernet skog og vurdering av problem med introduserte arter: Mjelvabotnen naturreservat Norsk Natur Informasjon-NNI Beiteskader av hjort i vernet skog og vurdering av problem med introduserte arter: Mjelvabotnen naturreservat i Rauma kommune NNI-Rapport nr 179 Ålesund, september 2007 NNI-

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk Eksamensdag: 5. desember 2011 Tid for eksamen: 09:00-12:00 (3 timer) Oppgavesettet er på 6 sider Vedlegg:

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne hjelpemiddel:

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191.

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191. Samspill i regresjon Variables Entered/Removed b Variables Variables Entered Removed Method Kjønn,, Enter hjemmebo ende a a. All requested variables entered. Summary Std. Error Adjusted R of the R R Square

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK

EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 DATO: 12.12.12 Studiepoeng: 7,5 Sidetall bokmål 4 Tillatte hjelpemidler:

Detaljer

Multippel lineær regresjon

Multippel lineær regresjon Regresjon Multippel lineær regresjon Inger Johanne Bakken Enhet for anvendt klinisk forskning, NTNU Og Avdeling for forebyggende helsearbeid, SINTEF Tilpasse en funksjon til ett sett observasjoner Minst

Detaljer

Statistikk er begripelig

Statistikk er begripelig Statistikk er begripelig men man må begynne med ABC ANOVA ANOVA er brukt til å sammenligne gjennomsnittsverdier Slik er det, selv om det er Analysis of Variance man sier BIVARIAT Bivariat analyse er godt

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk MASTER I IDRETTSVITENSKAP 013/015 MASTER I IDRETTSFYSIOTERAPI 013/015 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 10. mars 014 kl. 10.00-1.00 Hjelpemidler: kalkulator Eksamensoppgaven består

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE

Detaljer

Modellering av fotballkamper og blodgiving ved hjelp av Poisson og binomisk fordeling

Modellering av fotballkamper og blodgiving ved hjelp av Poisson og binomisk fordeling www.nr.no Modellering av fotballkamper og blodgiving ved hjelp av Poisson og binomisk fordeling Magne Aldrin, Norsk Regnesentral og Universitetet i Oslo UiO april 2011 Norsk Regnesentral Forskningsinstitutt

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

SKOLEEKSAMEN 29. september 2006 (4 timer)

SKOLEEKSAMEN 29. september 2006 (4 timer) EKSAMEN I SOS400 KVANTITATIV METODE SKOLEEKSAMEN 9. september 006 (4 timer) Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 0. oktober

Detaljer

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9 3 Tilfeldig utvalg [8.1] DEF 8.1: En populasjon er mengden av observasjoner som vi ønsker å studere, dvs. alle observasjoner det er mulig å gjøre. (Dersom elementene i populasjonen har fordeling f(x),

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer