Forelesning STK september 2011

Størrelse: px
Begynne med side:

Download "Forelesning STK september 2011"

Transkript

1 Forelesning STK setember 2011 Geir Storvik (S. O. Samuelsen) Plan for forelesning: 1. Mer om evians 2. Devians og Gooness-of-fit tester 3. GLM og resiualer En Mettet (saturate) moell er en moell som har en arameter er observasjon. Sesielt er alle anre moeller nøstet i en mettee moellen. Eks: Biller Den mettee moellen har ulike sannsynligheter µ i for hver giftose og tilassee sannsynligheter blir µ i = Y i /n i. For GLM får vi en erfekt tilasning til ata Y i slik at reikerte forventninger µ i = Y i. Den mettee moellen får også maksimal onåelig likelihoo l over alle tenkelige moeller. Forelesning STK /31 Forelesning STK /31 Mål å hvor go en moell er Ønsker mål å hvor go en moell er (log-)likelihoo vanskelig a skala avhenger av moell og menge ata Alternativ: Sammenlikne me best mulig moell. Devians Vi efinerer Deviansen ve 2( l l) er altså l er log-likelihoo for en mettee moellen. Eks: Y i N(µ i,σ 2 ): Den mettee moellen har µ i = Y i l = n 2 log(2µσ2 ) 1 2σ 2 (Y i µ i ) 2 l = n 2 log(2µσ2 ) Derme finner vi at likelihoo ratio mellom mettet moell og en vilkårlig moell (å log-skala) blir 2( l l) = 1 σ 2 (Y i µ i ) 2 Forelesning STK /31 Devians er generalisering av kvaratsum! Forelesning STK /31

2 Devians = 2( l l) Merk: l = l(θ,φ) l avhenger ikke av θ,φ = (θ,φ) = 2( l l(θ,φ)) arg max θ,φ l(θ,φ) = arg min θ,φ (θ,φ) Minimering av er ekvivalent me maksimering av likelihooen. Devians og binomisk foreling f(y i,µ i ) = ( ni y i µ i =y i /n i l(µ) = [log l = [log =2 ) µ y i i (1 µ i) n i y i ( ni y i ( ni y i ) + y i log(µ i ) + (n i y i ) log(1 µ i )] ) + y i log( µ i ) + (n i y i ) log(1 µ i )] [y i log( µ i /µ i ) + (n i y i ) log((1 µ i )/(1 µ i ))] Forelesning STK /31 Forelesning STK /31 Devians og Poisson foreling f(y i,µ i ) = µy i i e µ i y! µ i =y i l(µ) = [y i log(µ i ) µ i log(y i!)] l = [y i log(y i ) y i log(y i!)] =2 [y i log(y i /µ i ) (y i µ i )] Et ar anre begreer Resiual evians = Devians i aktuell moell g(µ i ) = β 0 + β 1 x i β x i, vs. eviansen innsatt MLE ˆβ Devians uner H 0 = Devians me Moell: µ i = µ eller g(µ i ) = β 0, vs. kun konstantle i moellen Maksimal evians Har 0 Resiual evians Null evians Forelesning STK /31 Forelesning STK /31

3 LRT og Devians Ariori MLE ˆβ = (ˆβ 1,..., ˆβ ) gir Devians ˆ = 2[ l ˆl] = 2[ l l(ˆβ)] Uner nullhyotesen er β q+1 = = β = 0. Da fås MLE β = (β 1,...,β q, 0,..., 0) som gir evians = 2[ l l ] = 2[ l l(β )]. Likelihoo ratio testen gis nå ve at uner H 0 G = 2[l(ˆβ) l(β )] = ˆ χ 2 q. Vi gjør altså LRT ve å beregne evianser for moellene som sammenlignes! Test for H 0 : β = β 0 : Wal-test Me ˆβ MLE for β og se stanarfeil for ˆβ : Z = ˆβ β 0 se N(0, 1) (tilnærmet) Likelihoo-Ratio-test: Ariori MLE ˆβ = (ˆβ 1,..., ˆβ ) Uner nullhyotesen fås MLE β = (β 1,...,β 1,β 0 ) Likelihoo ratio testen gis a ve at tilnærmet G = 2[l(ˆβ) l(β )] = ˆ χ 2 1 (kjikvaratforelt me 1 frihetsgra). Forelesning STK /31 Forelesning STK /31 Eksemel: Biller Ariori moell: logit(µ i ) = β 0 + β 1 x i Nullhyotese: β 1 = 0 Nullevians: = Resiual evians: ˆ = LRT: G = ˆ = , vs. soleklar forkastning sml. χ 2 1 Ariori moell: logit(µ i ) = β 0 + β 1 x i + β 2 x 2 i Nullhyotese: β 2 = 0 Devians uner H 0 : = Resiual evians: ˆ = LRT: G = ˆ = 8.03, -veri P(χ 2 1 > 8.03) = , vs. signifikant avvik LR-test for H 0 : β = β 0 0 i R For å utføre enne LR-testen i R benyttes et som kalles offset. Uner nullhyotesen er lineær reiktor η i = β 0 + β 1 x i1 + + β 1 x i, 1 + β 0 x i er β 0 x i er kjente størrelser. Disse må sesifiseres i rogrammet! I R gjøres ette ve å legge inn offset(beta0*x) i moellformelen, f.eks. > glm(y x1+x2+x3+offset(beta40*x4),family=oisson) Da vil arametrene β 0,β 1,β 2 og β 3 estimeres uner en forutsetning at β 4 = β 40. Forelesning STK /31 Forelesning STK /31

4 Eks. Biller: H 0 : β 1 = 40 uner logit-lineær moell β 0 + β 1 x i. Wal-test: Vi hae ˆβ 1 = me se 1 = Vi får Z 1 = = og (tosiig) -veri blir 2P(Z 1 > 1.966) = LR-test: Finn ˆ = = evians ariori Finner = = evians når β 1 = 40. Differansen G = ˆ = 3.49 Devians og gooness-of-fit tester Uner gitte forutsetninger gjeler tilnærmet ˆ χ 2 n 1 uner moell η i = β 0 + β 1 x i1 + + β x i Sesielt gjeler ette når Y i Bin(n i,µ i ) er n i µ i > 5 og n i (1 µ i ) > 5 Y i Po(µ i ) og µ i > 5 Dette kan brukes til å teste om moellen svikter. Dersom P(χ 2 n 1 > ˆ ) er liten er et grunn til å tvile å moellen. som skal være trukket fra en tilnærmet χ 2 1 uner nullhyotesen, gir -veri P(χ 2 1 > 3.49) = Forelesning STK /31 Forelesning STK /31 LR-Biller: H 0 : β 1 = 40 i R > glmfit0biller<-glm(cbin(doe,ant-doe) Dose,family=binomial) > glmfit2biller<-glm(cbin(doe,ant-doe) offset(40*dose), family=binomial) > anova(glmfit2biller,glmfit0biller,test="chisq") Analysis of Deviance Table Moel 1: cbin(doe, Ant - Doe) offset(40 * Dose) Moel 2: cbin(doe, Ant - Doe) Dose Resi. Df Resi. Dev Df Deviance P(> Chi ) > glmfit2biller Coefficients: (Intercet) Degrees of Freeom: 7 Total (i.e. Null); 7 Resiual Null Deviance: Resiual Deviance: AIC: Resiual evians i lineær-normal moell Me ˆµ i = ˆβ 0 + ˆβ 1 x i ˆβ x i blir resiual-eviansen ˆ = 1 σ 2 (Y i ˆµ i ) 2 = (n 1)ˆσ2 σ 2 er ˆσ 2 = n (Y i ˆµ i ) 2 /(n 1) er forventningsrett for σ 2. Men når Y i N(β 0 + β 1 x i β x i,σ 2 ) er essuten uten tilnærmelse. ˆ χ 2 n 1 Resultatet egner seg ikke til gooness-of-fit testing for lineærnormale moeller sien vi må estimere σ 2. I moeller uten (eller me kjent) sreningsle blir et annerlees. Forelesning STK /31 Forelesning STK /31

5 Eks: Biller Me (logit)-lineær moell β 0 + β 1 x i ble ˆ = Hvis ette er en go moell bure a ˆ = ikke være en ekstrem veri i forhol til χ 2 6. Vi finner P(χ 2 6 > 11.23) = 0.082, altså en inikasjon å at et er mulig å forbere moellen. Vi finner a også at kvaratleet i en utviee moellen er signifikant. Kvaratlesmoellen får resiualevians og me P(χ 2 5 > 3.195) = 0.67 er et ikke lenger antyning til moell-avvik. Pearson Kjikvarat X 2 Utrykket 1 σ 2 (Y i ˆµ i ) 2 kan også generaliseres ve Pearson Kjikvarat: X 2 = (Y i ˆµ i ) 2 Var(Y i ) Som resiualevians ˆ vil X 2 være tilnærmet χ 2 n 1 uner forutsetning av at Y i -ene er tilnærmet normalforelte. Binomisk Poisson X 2 = n (Y i n iˆµ i ) 2 X 2 = n n iˆµ i (1 ˆµ i ) (Y i ˆµ i ) 2 ˆµ i Forelesning STK /31 Forelesning STK /31 Kravene n i µ i > 5 og n i (1 µ i ) > 5 kan sjekkes: Beregner n iˆµ i > 5 og n i (1 ˆµ i ) > 5 > glmfit0biller<-glm(cbin(doe,ant-doe) Dose,family=binomial) > roun(ant*glmfit0biller$fit,2) > roun(ant*(1-glmfit0biller$fit),2) > glmfit1biller<-glm(cbin(doe,ant-doe) Dose+I(Doseˆ2),family=binomial) > roun(ant*glmfit1biller$fit,2) > roun(ant*(1-glmfit1biller$fit),2) Noen reikerte verier er litt små i forhol til kravet, gooness-of-fit testene å forrige sie er antagelig noe konservative. Pearson X 2 for billeataene Pearson X 2 er ikke imlementert i R, men lett å beregne: > yhat<-ant*glmfit0biller$fit > varhat<-ant*glmfit0biller$fit*(1-glmfit0biller$fit) > X2<-sum((Doe-yhat)ˆ2/varhat) > X2 [1] > 1-chisq(X2,6) [1] > yhat<-ant*glmfit1biller$fit > varhat<-ant*glmfit1biller$fit*(1-glmfit1biller$fit) > X2<-sum((Doe-yhat)ˆ2/varhat) > X2 [1] > 1-chisq(X2,5) [1] Altså X 2 nokså lik ˆ her. Forelesning STK /31 Forelesning STK /31

6 Resiualer LM: ˆε = y i ŷ i, tilnærmet normal GLM: Ikke normale, varianser avhengige av forventning. Trenger alternative resiualer Flere muligheter Deviansresiualer Vi kan også efinere resiualer basert å biragene til eviansen ˆ = 2 [ l i ˆl i ] er l i og ˆl i er log-likelihoo-birag i mettet moell og ve MLE ˆβ. Sesifikt efineres Devians-resiualer ve r i = sign(y i ˆµ i ) 2( l i ˆl i ) = + 2( l i ˆl i ) hvis Y i > ˆµ i 2( l i ˆl i ) hvis Y i < ˆµ i slik at vi onår ˆ = n r2 i. Forelesning STK /31 Forelesning STK /31 Pearson-resiualer efineres ve r Pi = Y i ˆµ i Var(Y i ) 0.5 og er altså en irekte generalisering av vanlige resiualer e i = (Y i ˆµ i )/ˆσ hvor et tas hensyn til at varians tyisk avhenger av forventningen i GLM. Deviansresiualer for binomiske ata r i = sign(y i n iˆµ i ) 2[Y i log( µ i ˆµ i ) + (n i Y i ) log( 1 µ i 1 ˆµ i )] ser ikke umielbart ut som resiualer, men gir verier som ofte ikke avviker mye fra Pearson-resiualer Merk at Pearson X 2 = n r2 Pi. > roun(resiuals(glmfit0biller,tye="earson"),2) > sum(resiuals(glmfit0biller,tye="earson")ˆ2) [1] Forelesning STK /31 > roun(resiuals(glmfit0biller,tye="eviance"),2) > sum(resiuals(glmfit0biller,tye="eviance")ˆ2) [1] De er essuten efault i R: roun(resiuals(glmfit0biller),2) Forelesning STK /31

7 Sammenligning av resiualene me (logit-)lineær moell: resiualer Deviansresiualer Pearson-resiualer Dose Anscomberesiualer For valgte funksjoner h() kan man generelt efinere resiualer ve r ia = h(y i) h(ˆµ i ) Var[h(Y i )] 0.5 Det viser seg at h() gitt ve h (µ) = V (µ) 1/3 gir trejeorensmoment E[h(Y i ) E(h(Y i ))] 3 0 tilnærmet symmetrisk foreling bere tilnærming til normalforeling Isåfall blir også Var[h(Y i )] φ i h (µ i ) 2 V (µ i )(= φ i V (µ i ) 1/3 ) og Anscombe-resiualene r ia = h(y i) h(ˆµ i ) φi h (ˆµ i ) V (ˆµ i ) Forelesning STK /31 Forelesning STK /31 Sammenligning av resiualene Anscomberesiualer, forts. me moell: logit(µ i ) = β 0 + β 1 x i + β 2 x 2 i V (µ) =µ Poisson resiualer Dose h (µ) =µ 1/3, h(µ) = 3 2 µ2/3 r ia = 3 Y 2/3 i ˆµ 2/3 i 2 ˆµ 1/6 i V (µ) =µ 3 h (µ) =µ 1, h(µ) = log µ r ia = log Y i log ˆµ i ˆµi Inv. Gaussisk Ser ingen kurvatur i lottet nå! V (µ) =µ(1 µ) Binomisk Forelesning STK /31 Forelesning STK /31

8 Anscomberesiualer, forts. Poeng me Anscomberesiualer: Nærmere normalforelte resiualer Sammenligning Anscombe, evians og Pearson resiualer: Viser seg å være tilnærmet like eviansresiualer resiualer a a a a a a a a a Devians Pearson Anscombe Forelesning STK /31 Dose Forelesning STK /31 Eks. Anscomberesiualer for billene M1<-glm(cbin(Doe,Ant-Doe) Dose,family=binomial,ata=biller) attach(biller) y0<-doe/ant n<-length(ant) varfu<-function(i) i*(1-i) her<-function(i) varfu(i)ˆ(-1/3) anscomberes<-numeric(0) for (i in 1:n) { i0<-m1$fit[i] anscomberes[i]<-integrate(her,i0,y0[i])$value anscomberes[i]<-anscomberes[i]*sqrt(ant[i])/(her(i0)*sqrt(varfu(i0))) } > roun(anscomberes,2) [1] Forelesning STK /31

Forelesning 5 STK3100

Forelesning 5 STK3100 Devians Forelesning 5 STK3100 22. setember 2008 S. O. Samuelsen Plan for forelesning: 1. Mer om evians 2. Devians og Gooness-of-fit tester 3. GLM og resiualer 4. Observert og forventet informasjon 5. Otimeringsrutiner

Detaljer

Forelesning 6 STK3100

Forelesning 6 STK3100 Forelesning STK3 september 7 S O Samuelsen Plan for forelesning: Mer om evians GLM resiualer 3 Test for H : Offset Observert forventet informasjon Optimeringsrutiner Iterative revektee minste kvarater

Detaljer

Generaliserte Lineære Modeller

Generaliserte Lineære Modeller Eksponensiell klasse Generaliserte Lineære Modeller Y i f(y i ;θ i ) = c(y i ;φ) exp((θ i y i a(θ i ))/φ) µ i = E[Y i ] = a (θ i ) σ 2 i = Var[Y i ] = φa (θ i ) = φv (µ i ) STK3100-4. september 2011 Geir

Detaljer

Generaliserte Lineære Modeller

Generaliserte Lineære Modeller Lineær regresjon er en GLM Generaliserte Lineære Modeller Responser (Y i -er) fra normalfordelinger Lineær komponent η i = β 0 + β 1 x i1 + + β p x ip E[Y i ] = µ i = η i, dvs. linkfunksjonen g(µ i ) =

Detaljer

Forelesning 7 STK3100/4100

Forelesning 7 STK3100/4100 Forelesning 7 STK3100/4100 p. 1/2 Forelesning 7 STK3100/4100 8. november 2012 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Forelesning

Detaljer

Forelesning 7 STK3100/4100

Forelesning 7 STK3100/4100 Gamma regresjon Forelesning 7 STK3100/4100 26. september 2008 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Modell: Har y Gamma(µ,ν),

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM)

Introduksjon til Generaliserte Lineære Modeller (GLM) Introduksjon til Generaliserte Lineære Modeller (GLM) p. 1/25 Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-23. august 2010 Sven Ove Samuelsen/Anders Rygh Swensen Plan for første forelesning:

Detaljer

Forelesning 6 STK3100

Forelesning 6 STK3100 Scorefunksjon og estimeringsligninger for GLM Forelesning 6 STK3100 29. september 2008 S. O. Samuelsen Plan for forelesning: 1. Observert og forventet informasjon 2. Optimeringsrutiner 3. Iterative revektede

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller

Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller p. 1/34 Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller STK3100/4100-23. august 2011 Geir Storvik (Oppdatert

Detaljer

Forelesning 5 STK3100/4100

Forelesning 5 STK3100/4100 Forelesning 5 STK3100/4100 p. 1/4 Forelesning 5 STK3100/4100 27. september 2012 Presentasjon laget av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. Poissonfordeling 2. Overspredning

Detaljer

Eksponensielle klasser

Eksponensielle klasser Eksponensielle klasser, de Jong & Heller, Kap. 3 Eksponensielle klasser STK3100-1. september 2008 Sven Ove Samuelsen En stokastisk variabel Y sies å ha fordeling i den eksponensielle fordelingsklasse dersom

Detaljer

Forelesning 11 STK3100/4100

Forelesning 11 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 3. oktober 20 Geir Storvik. Generaliserte lineære blandede modeller Eksempler R-kode - generell formulering av modell Tillater innbygging av avhengigheter mellom

Detaljer

Forelesning 6 STK3100/4100

Forelesning 6 STK3100/4100 Forelesning 6 STK3100/4100 p. 1/4 Forelesning 6 STK3100/4100 4. oktober 2012 Presentasjon av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning

Detaljer

Forelesning 6 STK3100/4100

Forelesning 6 STK3100/4100 Binomiske eller binære responser Forelesning 6 STK3100/4100 26. september 2008 Geir Storvik (S. O. Samuelsen) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning logistisk

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM)

Introduksjon til Generaliserte Lineære Modeller (GLM) Literatur / program Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-20. august 2007 Sven Ove Samuelsen Plan for første forelesning: 1. Introduksjon, Literatur, Program 2. ksempler 3. Uformell

Detaljer

Forelesning 9 STK3100/4100

Forelesning 9 STK3100/4100 Forelesning 9 STK3100/4100 Plan for forelesning: 17. oktober 2011 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 1 Modell med alle antagelser

Detaljer

Løsningsforslag eksamen 27. februar 2004

Løsningsforslag eksamen 27. februar 2004 MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)

Detaljer

Forelesning 7 STK3100

Forelesning 7 STK3100 Parameterfortolkning logistisk regresjon Forelesning 7 STK3100 6. oktober 2008 S. O. Samuelsen Plan for forelesning: 1. Parameterfortolkning logistisk regresjon 2. Parameterfortolkning andre linkfunksjoner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:

Detaljer

Forelesning 9 STK3100/4100

Forelesning 9 STK3100/4100 p. 1/3 Forelesning 9 STK3100/4100 Plan for forelesning: 18. oktober 2012 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 2/3 Modell med

Detaljer

Forelesning 8 STK3100/4100

Forelesning 8 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

Forelesning 8 STK3100

Forelesning 8 STK3100 $ $ $ # Fortolkning av Dermed blir -ene Vi får variasjonen i '& '& $ Dermed har fortolkning som andel av variasjonen forklart av regresjonen Alternativt: pga identiteten Forelesning 8 STK3100 p3/3 Multippel

Detaljer

Forelesning 3 STK3100

Forelesning 3 STK3100 Eks. Fødselsvekt mot svangerskapslengde og kjønn Forelesning 3 STK3100 8. september 2008 S. O. Samuelsen Plan for forelesning: 1. Generelt om lineære modeller 2. Variansanalyse - Kategoriske kovariater

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER

EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Kontakt under eksamen: Ingelin Steinsland (92 66 30 96) EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Tirsdag

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER

Detaljer

Oppgave 1. Kilde SS df M S F Legering Feil Total

Oppgave 1. Kilde SS df M S F Legering Feil Total MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig

Detaljer

Forelesning 7 STK3100

Forelesning 7 STK3100 ( % - -! " stimering: MK = ML Forelesning 7 STK3100 1 oktober 2007 S O Samuelsen Plan for forelesning: 1 Generelt om lineære modeller 2 Variansanalyse - Kategoriske kovariater 3 Koding av kategoriske kovariater

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Forelesning 11 STK3100/4100

Forelesning 11 STK3100/4100 Forelesning 11 STK3100/4100 Plan for forelesning: 1. november 2012 Geir Storvik 1. Generaliserte lineære blandede modeller Eksempler R-kode GLMM - generell formulering av modell Likelihood og estimering

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Løsningsskisse Oppgave a) n 8, i x i 675, x 37.5, i y i 488, i x i 375, i x iy i

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014

Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014 Ekstreme bølger Geir Storvik Matematisk institutt, Universitetet i Oslo 5. mars 2014 Bølger Timesvise max-bølger ved bøye utenfor østkyst av USA (17/12/1991-23/2-1992) Størrelse på bølger varierer sterkt

Detaljer

Notater i ST2304 H. T. L. 1 Fordelingsfunksjonene i R α-kvantilen... 3

Notater i ST2304 H. T. L. 1 Fordelingsfunksjonene i R α-kvantilen... 3 Notater i ST2304 H. T. L Innhold 1 Fordelingsfunksjonene i R 2 1.1 α-kvantilen....................................... 3 2 Fisher test for ubalanserte modeller 4 2.1 Test mellom alternative modeller...........................

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Forelesning 10 STK3100

Forelesning 10 STK3100 Momenter i multinomisk fordeling Forelesning 0 STK300 3. november 2008 S. O. Samuelsen Plan for forelesning:. Multinomisk fordeling 2. Multinomisk regresjon - ikke-ordnede kategorier 3. Multinomisk regresjon

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

Eksponensielle klasser og GLM

Eksponensielle klasser og GLM !! 3 ksponensielle klasser, Dobson, Kap 3 ksponensielle klasser GLM n stokastisk variabel sies å ha fordeling i den eksponensielle fordelingsklasse som tettheten pktsannsh til kan skrives på formen STK3-3

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

Forelesning 9 STK3100

Forelesning 9 STK3100 Poissonfordelingen: Forelesning 9 STK3100 20. oktober 2007 S. O. Samuelsen Plan for forelesning: 1. Poissonregresjon 2. Overspredning 3. Quasi-likelihood 4. Andre GLM-er Poissonfordelingen kan oppstå ved

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER

EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER

Detaljer

LØSNINGSFORSLAG ) = Dvs

LØSNINGSFORSLAG ) = Dvs LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Introduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R

Introduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R Blanda modellar i R Jorunn Slagstad Universitetet i Bergen 20. desember 2006 1 Introduksjon 2 Lineære blanda modellar 3 Generaliserte lineære blanda modellar 4 Analyser av modellar 5 Eit randproblem 6

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

Løsningsforslag: STK2120-v15.

Løsningsforslag: STK2120-v15. Løsningsforslag: STK2120-v15 Oppgave 1 a) Den statistiske modellen er: X ij = µ i + ϵ ij, j = 1,, J, i = 1,, I Her indekserer i = 1,, I gruppene og j = 1,, J observasjone innen hver gruppe Feilleddene

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

Kapittel 6 - modell seleksjon og regularisering

Kapittel 6 - modell seleksjon og regularisering Kapittel 6 - modell seleksjon og regularisering Geir Storvik 21. februar 2017 1/22 Lineær regresjon med mange forklaringsvariable Lineær modell: Y = β 0 + β 1 x 1 + + β p x p + ε Data: {(x 1, y 1 ),...,

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

7. november 2011 Geir Storvik

7. november 2011 Geir Storvik Forelesning 13 STK3100/4100 Plan for forelesning: 7. november 2011 Geir Storvik Generaliserte lineære blandede modeller 1. Sammenlikning ulike estimeringsmetoder 2. Tolkning parametre 3. Inferens Konfidensintervaller

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Dekkes av kap , 9.10, 9.12 og forelesingsnotatene.

Dekkes av kap , 9.10, 9.12 og forelesingsnotatene. Estimering 2 -Konfidensintervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesingsnotatene. En (punkt-)estimator ˆΘ gir oss et anslag på en ukjent parameterverdi, men gir oss ikke noen direkte informasjon

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST110 Statistiske metoder og dataanalyse Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 20.30. Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 R-kode for alle oppgaver er gitt bakerst. Oppgave 1 (a) Boksplottet antyder at verdiene er høyere for kvinner enn for menn.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting Hypotesetesting H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Rettsvesen hypotese Tiltalte er uskyldig inntil det motsatte er bevist. Hypoteser H 0 : Tiltalte er uskyldig H 1 :

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave Scriptet run confds.m simulerer n data x,..., x n fra en normalfordeling med

Detaljer

Fasit og løsningsforslag STK 1110

Fasit og løsningsforslag STK 1110 Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.

Detaljer

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave.

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test) Kategoriske data, del I: Kategoriske data - del (Rosner, 10.3-10.7) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng

Detaljer

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER

EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? Bokmål Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag

Detaljer

Prøveeksamen STK2100 (fasit) - vår 2018

Prøveeksamen STK2100 (fasit) - vår 2018 Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Mandag 24. september 2018. Klokkeslett: 09-13. Sted: Administrasjonsbygget K1.04 Tillatte hjelpemidler: «Tabeller og

Detaljer

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

TMA4240 Statistikk H2010 (22)

TMA4240 Statistikk H2010 (22) TMA4240 Statistikk H2010 (22) 10.11-10.12: Testing av andelser 10.13: Testing av varians i ett N utvalg Mette Langaas Foreleses onsdag 3.november, 2010 2 Laban strakk seg ikke lenger, men smaker den bedre?

Detaljer

Kp. 12 Multippel regresjon

Kp. 12 Multippel regresjon Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 5 blokk I Løsningsskisse Oppgave 1 X N(18,2.5 2 ) P(X < 15) = P ( X 18 < 15 18 ) = P(Z < 1.2)

Detaljer