3.A IKKE-STASJONARITET

Størrelse: px
Begynne med side:

Download "3.A IKKE-STASJONARITET"

Transkript

1 Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: 11. november 2011

2 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet - Ikke-stasjonaritet - Test for random walk - Spuriøse regresjoner BST 1612 Anvendt makroøkonomi 2

3 INNLEDNING - Mange makroøkonomiske variabler øker over tid. Konsumutgifter: BST 1612 Anvendt makroøkonomi 3

4 INNLEDNING - Offentlige utgifter: BST 1612 Anvendt makroøkonomi 4

5 INNLEDNING - Priser: BST 1612 Anvendt makroøkonomi 5

6 INNLEDNING - Børsindeksen S&P 500: BST 1612 Anvendt makroøkonomi 6

7 INNLEDNING - Økende verdi på variablene over tid reiser spørsmålet om hvorvidt seriene er trendstasjonære (fluktuerer rundt en eller annen lineær eller ikke-lineær trend), eller mer generelt hva slags vekstegenskaper de besitter. - Svaret på dette spørsmålet har stor betydning for valg metode når vi foretar dataanalyser! - Hvis vi antar egenskaper om en tidsserie som ikke er sanne, kan de statistiske resultatene bli veldig misledende. BST 1612 Anvendt makroøkonomi 7

8 TRENDSTASJONARITET - For å illustrere, la oss betrakte følgende autoregressive modell: der er hvit støy, og er koeffisienter ( ), og er en deterministisk trend. - Er denne prosessen stasjonær? Har den et konstant gjennomsnitt over tid? - La oss simulere prosessen. - To ord om simulering. - Eksempelvis setter vi, og variansen til restleddet lik : der BST 1612 Anvendt makroøkonomi 8

9 TRENDSTASJONARITET - Resultat av simuleringen (200 trekninger): - Lite tyder på at prosessen er (nivå-)stasjonær! - Imidlertid er prosessen trend-stasjonær fordi tidsserien fluktuerer rundt en deterministisk trend, noe vi straks kommer tilbake til. BST 1612 Anvendt makroøkonomi 9

10 TRENDSTASJONARITET - For å si noe mer om den langsiktige trenden kan vi transformere AR( )- modellen til en MA( )-modell. - Prosedyren er nøyaktig som før, bortsett fra at vi har et lineært (m.a.o. deterministisk) trendledd å ta hensyn til i tillegg. Ikke la deg skremme av utregningen, den er først og fremst ment som en frivillig utfordring til de aller ivrigste: BST 1612 Anvendt makroøkonomi 10

11 TRENDSTASJONARITET - I utregningen har vi brukt at innebærer at går mot null når går mot uendelig, og at derfor nærmer seg null når blir høy. Vi har også brukt formelen for en uendelig geometrisk rekke: når ( og ). - Oppsummert er den trend-stasjonære prosessen gitt ved: - Merk at dette er den samme MA( )-prosessen vi utledet tidligere, bortsett fra at vi nå har et konstantledd (som er nesten lik null) og en deterministisk, lineær trend. BST 1612 Anvendt makroøkonomi 11

12 TRENDSTASJONARITET - Gitt parametrene vi har satt i simuleringen er den lineære trendveksten gitt ved. La oss plotte en lineær trend med som stigningstall i samme figur som den simulerte prosessen, slik at begrepet trendstasjonaritet blir klart: BST 1612 Anvendt makroøkonomi 12

13 TRENDSTASJONARITET - Det sentrale poenget er at effekten av et sjokk i dag dør ut over tid i den trend-stasjonære modellen, og at prosessen returnerer tilbake til den lineære vekstbanen. - Dette ser vi også fra modellen Summeleddet viser at effekten av et sjokk avtar, der minnet som vanlig avhenger av størrelsen på autokorrelasjonsfunksjonen). (se også slides om - Dermed vil ikke en innovasjon i prosessen endre langsiktige prediksjoner! BST 1612 Anvendt makroøkonomi 13

14 IKKE-STASJONARITET - Det var trend-stasjonaritet. Et spørsmål som melder seg er hvorvidt makroøkonomiske variable er trendstasjonære eller ikke. - Ofte kan det være svært vanskelig å konkludere hvorvidt en serie er trendstasjonær bare ved å studere grafiske plot. - For å illustrere, anta nå at i stedet følger en random walk ( ) der vi også inkluderer et konstantledd (det blir snart klart hvorfor): - Simulering: Vi setter og variansen til restleddet lik : der BST 1612 Anvendt makroøkonomi 14

15 IKKE-STASJONARITET - Resultat: - Hmmm Denne er ikke helt ulik den trend-stasjonære serien vi så på tidligere! BST 1612 Anvendt makroøkonomi 15

16 IKKE-STASJONARITET - Men, vi vet at seriene ikke er de samme (på grunn av simuleringsspesifikasjonene). - La oss studere egenskapene til random walk-prosessen nærmere. Som før kan vi sette inn rekursivt for tidligere verdier på : - La oss for enkelhets skyld anta at. Dette gir: - Dersom forsvinner simpelthen trendleddet. BST 1612 Anvendt makroøkonomi 16

17 IKKE-STASJONARITET - Med har vi en lineær trend i serien gitt som, altså identisk med den vi hadde i det trendstasjonære tilfellet. - Men, i motsetning til tidligere vil ikke konvergere systematisk tilbake til den lineære trenden! Dette ser vi av. - For eksempel vil et sjokk lik, la oss si i en gitt tidsperiode, medføre at samtlige fremtidige realiseringer av serien vil være nøyaktig enhet høyere enn hvis sjokket ikke hadde funnet sted ( ). - Dette innebærer at en random walk med drift er ikke-stasjonær i betydningen at serien ikke har en tendens til å vende tilbake til den lineære trenden etter et sjokk. BST 1612 Anvendt makroøkonomi 17

18 IKKE-STASJONARITET - La oss legge den lineære trenden inn i figuren med random walk: - Kan du fastslå at serien ikke er trendstasjonær? BST 1612 Anvendt makroøkonomi 18

19 IKKE-STASJONARITET - Ved å utvide til observasjoner blir det tydeligere: - Serien drifter over trendlinjen i flere tusen sammenhengende observasjoner! Merk at en ny simulering ville gitt andre realiseringer. BST 1612 Anvendt makroøkonomi 19

20 IKKE-STASJONARITET - Poenget er at et sjokk i en random walk vil virke med full tyngde inn på alle fremtidige realiseringer av, og at det ikke er noen tendens for serien å vende tilbake til trenden etter sjokket (ikke trendstasjonær). - Dette er i skarp motsetning til AR( )-prosessen vi studerte tidligere der. - Merk også at vi sjelden har veldig lange tidsserier for typiske makroøkonomiske data. Med korte perioder kan en random walk ligne andre prosesser. BST 1612 Anvendt makroøkonomi 20

21 IKKE-STASJONARITET - Er en, begge eller ingen av seriene under RW? BST 1612 Anvendt makroøkonomi 21

22 IKKE-STASJONARITET - Er en, begge eller ingen av seriene under RW? BST 1612 Anvendt makroøkonomi 22

23 IKKE-STASJONARITET - Hva er konsekvensen av å overse at en serie er random walk? - La oss estimere sammenhengen mellom to random walk ved hjelp av MKM: - Simulerer først to uavhengige random walk (kaller dem Y og RW). - Bruker deretter de simulerte dataene til å estimere regresjonskoeffisientene i modellen:. - I sann modell er. - Resultat: - Konklusjon: Ved å overse at seriene er RW risikerer vi at estimatene blir (veldig) misvisende! BST 1612 Anvendt makroøkonomi 23

24 TEST FOR RANDOM WALK - I økonometrisk litteratur sier vi at en serie er integrert av orden 1, dvs I( ), dersom man må ta førstedifferensen for å gjøre den stasjonær. For eksempel er serien I( ). - Til sammenligning er serien I( ). - Dersom en serie er I( ) ønsker vi å transformere den til I( ). - Men, først må vi forsøke å avklare hvorvidt serien faktisk er I( ). - Kan skille mellom to tilfeller: 1. Serien har ikke en trend. 2. Serien har en (positiv eller negativ) trend. BST 1612 Anvendt makroøkonomi 24

25 TEST FOR RANDOM WALK - Testen vi skal se på kalles en Dickey-Fuller test (DF-test). Betrakt følgende AR( ): - Dersom denne serien er en RW er. Hvordan teste dette statistisk? - Løsning: Trekk fra på begge sider slik at venstresiden uttrykker førstedifferensen : - Dersom er. Ergo estimerer vi i modellen ved hjelp av MKM og tester : versus : (fordi alternativhypotesen er at ) (hva hvis?) BST 1612 Anvendt makroøkonomi 25

26 TEST FOR RANDOM WALK - Vi kan ikke bruke vanlige -verdier fordi den asymptotiske -verdien ikke er Gaussian og har bias nedover (vil føre til at vi avviser for ofte). - Relevante kritiske verdier finnes i Fuller (1976), men Eviews rapporterer også disse automatisk (på henholdsvis 1%-, 5%- og 10%-nivå). BST 1612 Anvendt makroøkonomi 26

27 TEST FOR RANDOM WALK - DF-testene kommer i forskjellige varianter. Valg av spesifikasjon avhenger av seriens egenskaper: - Random walk: Strukturmodell Testmodell - Random walk med drift: Strukturmodell Testmodell - Random walk med drift og deterministisk trend: Strukturmodell Testmodell BST 1612 Anvendt makroøkonomi 27

28 TEST FOR RANDOM WALK - Hvis restleddene er seriekorrelert kan dette kontrolleres for ved å estimere en augmentert regresjon, typisk kalt en Augmented Dickey-Fuller test (ADFtest). For eksempel, hvis restleddene er seriekorrelert av orden : Strukturmodell Testmodell - Eviews har forskjellige algoritmer som automatisk velger størrelsen på. BST 1612 Anvendt makroøkonomi 28

29 TEST FOR RANDOM WALK - Merk følgende: I AR(1)-modellen vi startet med,, kan det tenkes at den sanne parameteren ligger nær, for eksempel at. I så fall er i testmodellen, altså nær. - DF-/ADF-testene kan ha liten forklaringskraft når serien som testes er nær en random walk. BST 1612 Anvendt makroøkonomi 29

30 TEST FOR RANDOM WALK - Data: US GDP (log) over perioden 1947q1-2011q3 (259 observasjoner) - Setter max laglengde 4 og inkluderer trend og konstantledd når vi tester variabelen på nivåform. BST 1612 Anvendt makroøkonomi 30

31 TEST FOR RANDOM WALK BST 1612 Anvendt makroøkonomi 31

32 TEST FOR RANDOM WALK - Resultater: 1. kan ikke forkastes, altså beholder vi hypotesen om random walk. 2. Inkluderer ett lag av førstedifferensen til avhengig variabel. Tyder på førsteordens seriekorrelasjon i restleddet. - Gitt resultatene er neste steg å teste for RW i førstedifferensen av log GDP. BST 1612 Anvendt makroøkonomi 32

33 TEST FOR RANDOM WALK - Setter max laglengde 4 og inkluderer konstantledd. BST 1612 Anvendt makroøkonomi 33

34 TEST FOR RANDOM WALK - Resultater: 1. forkastes. 2. Fant ikke seriekorrelasjon. 3. Tallverdien på tilsier at i likningen: BST 1612 Anvendt makroøkonomi 34

35 SPURIØSE REGRESJONER - Vi så tidligere at MKM på to RW-prosesser kan gi signifikante resultater selv om de var skapt av hverandre. If one estimates equations using non-stationary variables by linear regression and test the hypotheses about the coefficients using standard test statistics (e.g., t-tests), the tests may often suggest a statistically significant relationship between variables where none in fact exists. Granger og Newbold (1974) - Den sterke korrelasjonen er en konsekvens av en underliggende trend. Gjelder enten serien er trendstasjonær eller ren RW. - Løsning: Differensiere dataene så de er stasjonære. Estimere en kointegrerende sammenheng (vi rekker ikke gå gjennom dette). BST 1612 Anvendt makroøkonomi 35

36 SPURIØSE REGRESJONER 1.5 vger pnor BST 1612 Anvendt makroøkonomi 36

37 SPURIØSE REGRESJONER BST 1612 Anvendt makroøkonomi 37

38 SPURIØSE REGRESJONER BST 1612 Anvendt makroøkonomi 38

39 SPURIØSE REGRESJONER BST 1612 Anvendt makroøkonomi 39

40 SPURIØSE REGRESJONER BST 1612 Anvendt makroøkonomi 40

1.A INTRODUKSJON. Norwegian Business School. BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.

1.A INTRODUKSJON. Norwegian Business School. BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi. Norwegian Business School 1.A INTRODUKSJON BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 10. november 2011 MOTIVASJON - I makroøkonomi er vi opptatt av spørsmål

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Regimeskifter i markedet for kvitfisk: En statistisk analyse

Regimeskifter i markedet for kvitfisk: En statistisk analyse Regimeskifter i markedet for kvitfisk: En statistisk analyse Terje Vassdal 1) Denne artikkelen rapporterer en statistisk analyse av tidsserier for fryst filet av atlantisk torsk, hake og Alaska Pollack

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i.

Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i. Seminaroppgave 0 a Definisjon: En estimator θ n er forventningsrett hvis E θn observasjoner. Forventningsretthet for β: θ, der n er et endelig antall β Xi X Y i Xi X Xi X α 0 + βx i + n Xi X Xi X β + Xi

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk MASTER I IDRETTSVITENSKAP 013/015 MASTER I IDRETTSFYSIOTERAPI 013/015 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 10. mars 014 kl. 10.00-1.00 Hjelpemidler: kalkulator Eksamensoppgaven består

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

En empirisk analyse av terminstrukturen til norske renter

En empirisk analyse av terminstrukturen til norske renter En empirisk analyse av terminstrukturen til norske renter - forventningshypotesens gyldighet Espen Lode Tønnessen 01.12.2014 Masteroppgave Institutt for samfunnsøkonomi NTNU i ii Forord Med denne masteroppgaven

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

OM EXTRANET OG KAMPANJENS MÅLINGER (innsatsområdene UVI og SVK) 15.11.2012 - www.pasientsikkerhetskampanjen.no Side 2

OM EXTRANET OG KAMPANJENS MÅLINGER (innsatsområdene UVI og SVK) 15.11.2012 - www.pasientsikkerhetskampanjen.no Side 2 OM EXTRANET OG KAMPANJENS MÅLINGER (innsatsområdene UVI og SVK) 15.11.2012 - www.pasientsikkerhetskampanjen.no Side 2 HVORFOR MÅLE? 15.11.2012 - www.pasientsikkerhetskampanjen.no Side 3 HVORFOR MÅLE? Measurements

Detaljer

Utfordringer knyttet til statistisk analyse av komposittdata

Utfordringer knyttet til statistisk analyse av komposittdata ISSN 1893-1170 (online utgave) ISSN 1893-1057 (trykt utgave) www.norskbergforening.no/mineralproduksjon Notat Utfordringer knyttet til statistisk analyse av komposittdata Steinar Løve Ellefmo 1,* 1 Institutt

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar.

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar. Statistisk behandling av kalibreringsresultatene Del 4. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Dennne artikkelen tar

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N 1 Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N Emnekode: Emnenavn: BE-34 Statistikk og finans Dato: 6. desember 21 Varighet: 9-13 Antall sider inkl. forside 6 Tillatte hjelpemidler:

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1 Oppgave 1 For AR(2)-modellen: X t = 0.4X t 1 + 0.45X t 2 + Z t (der {Z t } er hvit søy med varians 1), finn γ(3), γ(4)

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

1 10-2: Korrelasjon. 2 10-3: Regresjon

1 10-2: Korrelasjon. 2 10-3: Regresjon 1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

Indekshastighet. Måling av vannføring ved hjelp av vannhastighet

Indekshastighet. Måling av vannføring ved hjelp av vannhastighet Indekshastighet. Måling av vannføring ved hjelp av vannhastighet Av Kristoffer Dybvik Kristoffer Dybvik er felthydrolog i Hydrometriseksjonen, Hydrologisk avdeling, NVE Sammendrag På de fleste av NVEs

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET00 Statistikk for økonomer Eksamensdag: 8. november 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Metodisk arbeid. Strukturert arbeidsmåte for å nå et bestemt mål

Metodisk arbeid. Strukturert arbeidsmåte for å nå et bestemt mål Metodisk arbeid Strukturert arbeidsmåte for å nå et bestemt mål Hva er en metode? En metode er et redskap, en fremgangsmåte for å løse utfordringer og finne ny kunnskap Metode kommer fra gresk, methodos:

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Forord. Trondheim, 1.juni 2011 Kari Pedersen

Forord. Trondheim, 1.juni 2011 Kari Pedersen Forord Jeg ønsker med dette å takke min veileder, professor Kåre Johansen, for glimrende veiledning og gode svar på alle spørsmål som har dukka opp underveis i arbeidet med oppgaven. Jeg vil også takke

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS33 Eksamensoppgåver Gjennomgang våren 24 Erling Berge Vår 24 Gjennomgang av Oppgåve 2 gitt hausten 2 Vår 24 2 Haust 2 OPPGÅVE 2I tabellvedlegget til oppgåve 2 er det estimert 6 modellar av eiga inntekt

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant

Detaljer

Hvordan analysere måledata vha statistisk prosesskontroll? 14.02.2013 - www.pasientsikkerhetskampanjen.no Side 2

Hvordan analysere måledata vha statistisk prosesskontroll? 14.02.2013 - www.pasientsikkerhetskampanjen.no Side 2 Hvordan analysere måledata vha statistisk prosesskontroll? 14.02.2013 - www.pasientsikkerhetskampanjen.no Side 2 Hvordan vet vi at en endring er en forbedring? Dødelighet ved coronar by-pass kirurgi før

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Logistisk regresjon 1

Logistisk regresjon 1 Logistisk regresjon Hovedideen: Binær logistisk regresjon håndterer avhengige, dikotome variable Et hovedmål er å predikere sannsynligheter for å ha verdien på avhengig variabel for bestemte (sosiale)

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer

L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider

L12-Dataanalyse. Introduksjon. Nelson Aalen plott. Page 76 of Introduksjon til dataanalyse. Levetider og sensurerte tider Page 76 of 80 L12-Dataanalyse Introduksjon Introduksjon til dataanalyse Presentasjonen her fokuserer på dataanalyseteknikker med formål å estimere parametere (MTTF,, osv) i modeller vi benytter for vedlikeholdsoptimering

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak Sammendrag: Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak TØI-rapport 984/2008 Forfatter(e): Rune Elvik Oslo 2008, 140 sider Denne rapporten presenterer en undersøkelse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Utførelse av programmer, metoder og synlighet av variabler i JSP

Utførelse av programmer, metoder og synlighet av variabler i JSP Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Hirtshals prøvetank rapport

Hirtshals prøvetank rapport Hirtshals prøvetank rapport 1. Innledning Vi gjennomført en rekke tester på en nedskalert versjon av en dobbel belg "Egersund 72m Hex-mesh" pelagisk trål. Testene ble utført mellom 11. og 13. august 21

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Mandag 6.

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK2120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 6. juni 2011. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

En empirisk analyse av norske husholdningers konsumgodeetterspørsel i perioden 1970-2012

En empirisk analyse av norske husholdningers konsumgodeetterspørsel i perioden 1970-2012 En empirisk analyse av norske husholdningers konsumgodeetterspørsel i perioden 1970-2012 Kristoffer Fosse Hanssen Mai 2014 Institutt for samfunnsøkonomi Norges teknisk-naturvitenskapelige universitet Veileder:

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Kp. 12 Multippel regresjon

Kp. 12 Multippel regresjon Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction

Detaljer

STUDIEÅRET 2016/2017. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 27. april 2017 kl

STUDIEÅRET 2016/2017. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 27. april 2017 kl STUDIEÅRET 2016/2017 Individuell skriftlig eksamen i STA 200- Statistikk Torsdag 27. april 2017 kl. 10.00-12.00 Hjelpemidler: Kalkulator og formelsamling som blir delt ut på eksamen Eksamensoppgaven består

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Quicksort Lars Vidar Magnusson 29.1.2014 Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Om Quicksort Quicksort er en svært populær sorteringsalgoritme. Algoritmen har i verstefall en kjøretid

Detaljer

MARGINER OG PRISENDRINGER I DET NORSKE DRIVSTOFFMARKEDET

MARGINER OG PRISENDRINGER I DET NORSKE DRIVSTOFFMARKEDET NORGES HANDELSHØYSKOLE Bergen, våren 2009 MARGINER OG PRISENDRINGER I DET NORSKE DRIVSTOFFMARKEDET Estimering innenfor ett rammeverk av margin- og feiljusteringsmodeller Marius Kristiansen Veileder: Frode

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Modellering og prediksjon av kundeavgang

Modellering og prediksjon av kundeavgang www.nr.no Modellering og prediksjon av kundeavgang Clara-Cecilie Günther, Ingunn Fride Tvete, Geir Inge Sandnes, Ørnulf Borgan, Kjersti Aas Statistics for Innovation (SFI) 2 Årsmøte Norsk ASTIN-gruppe,

Detaljer

Oppgavesett for investeringsanalyse

Oppgavesett for investeringsanalyse Oppgavesett for investeringsanalyse Mål for øvingen: Studentene skal: Forstå formålet med investeringer Forstå bakgrunn for bruk av NNV til å evaluere prosjekter i bedrifter Forstå hva tidsverdi av penger

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfunnsfag Institutt for økonomi og administrasjon Statistiske metoder Bokmål Dato: Torsdag 19. desember Tid: 4 timer / kl. 9-13 Antall sider (inkl. forside): 8 Antall oppgaver: 3 Oppsettet

Detaljer

Beregning av arbeidsforbruk i jordbruket for Produktivitetskommisjonen

Beregning av arbeidsforbruk i jordbruket for Produktivitetskommisjonen Norsk institutt for landbruksøkonomisk forskning (NILF) Klaus Mittenzwei 12.02.2015 Beregning av arbeidsforbruk i jordbruket for Produktivitetskommisjonen Arbeidsforbruk i jordbruket er beregnet på grunnlag

Detaljer

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Forelesningsnotat nr 3, januar 2009, Steinar Holden Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Notatet er ment som supplement til forelesninger med sikte på å gi en enkel innføring

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer