ITPE2400/DATS2400: Datamaskinarkitektur
|
|
- Aase Kristensen
- 8 år siden
- Visninger:
Transkript
1 ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art and Design Oslo and Akershus University College of Applied Sciences 23. Januar 2015
2 Oversikt 1 Litt repetisjon 2 Mer om ripple-carry adderer 3 Eksempel med en sammenlikner 4 Om multiplikasjon, subtraksjon og divisjon 5 2-er komplement representasjon 6 Ripple-carry adderer/subtraktor 7 Byggestenene for sekvensielle kretser
3 Kombinatorske kretser 1 En dekoder
4 Kombinatorske kretser 2 En multiplekser
5 Implementering av adderer Fra eksemplet på whiteboard kan vi skrive: s = c in (x y) og fra sannhetstabell, men ikke algebraisk riktig: c out = xy + c(x y) Dette betyr at kretsen kan implementeres med 2 XOR-porter, 2 AND-porter og 1 OR-port.
6 En sammenlikner Spesifikasjon: En likhets-sammenlikner som avgjør om to binære ord er like eller ikke. Input: To ord A(0 : 3) og B(0 : 3) Output: Ett bit, E, hvor E = 1 ved likhet, E = 0 ellers. Husk: XOR gir 0 ved likhet, 1 ved ulikhet. Holder å se på ett bit. Se eksempel whiteboard.
7 Aritmetiske operasjoner Aritmetiske operasjoner: addisjon, subtraksjon, multiplikasjon, divisjon. Vi kan implementere disse i hardware nesten som regning vi gjør for hånd. Multiplikasjon: Shift og addisjon. Divisjon: Shift og subtraksjon. Lettest med hele tall uten fortegn.
8 2-er komplement 1 2-er komplementet av et binært ord på n bits oppnåes ved å invertere alle bits, deretter addere 1, eventuelt mente kastes. Vi representerer hele tall på n bit på 2-er komplement form ved at mest signifikante bit er fortegn, 0 for +, 1 for på følgende måte: Positive tall på vanlig måte Negative tall, ta 2-er komplement av tilsvarende positive tall. Merk: 0 har unik representasjon.
9 2-er komplement 2 En annen måte å definere 2-er komplementet til et n-bits binært tall N er å sette dette som Comp 2 (N) = 2 n N. Det er da lett å se at Comp 2 (Comp 2 (N)) = N hvor N er repsenter på 2-er komplement form.
10 Et par eksempler Anta at vi har 5 bits til rådighet, vi må bruke ett bit (et mest signifikante) til fortegn, og derfor bare fire bit til størrelse. Da er: og N = (4) 10 = (00100) 2 M = (7) 10 = (00111) 2 Vi vil beregne N M, og beregner Comp 2 (M) = = Vi får da at N M = N + ( M) = = Beregner vi nå 2-komplementet til resultatet ser vi at Comp 2 (11101) = = = (3) 10 Dette ser vi at stemmer siden 4 7 = 3.
11 Hvorfor det virker Vi kan skrive som A B A + ( B) Dette gir at subtraksjon er en addisjon, ved at vi tar 2-er komplementet av B og deretter addere dette til A. Vi kan få problem med overflow (har sett eksempel på dette tidligere). Dette oppstår bare med tall av like fortegn.
12 Reglene Heltall A og B er representert på 2-er komplement form med fortegn. Addisjon: A + B: På vanlig måte, hvis mente (carry) på mest signifikante bit: overflow. Subtraksjon: A B: Ta 2-er komplement av B, addér, siden A B = A + ( B). Dette gir oss en enkel overflow regel i vår fulladderer, hvis mente (carry) inn på minst signifikante bit er lik mente ut, ikke overflow, hvis ulikt, overflow.
13 Et par elementære egenskaper til XOR Vi har at og at Altså har vi x 0 = x 0 + x 0 = x 1 = x x 1 = x 1 + x 1 = x 1 = x x 0 = x og x 1 = x Dette er det som gjør at vår Ripple-carry adderer/subtraktor som kommer på de neste sidene fungerer.
14 Adderer/subtraktor 2-er komplement representasjonen gjør at vi kan bruke samme krets til både addisjon og subtraksjon med små modifikasjoner. Merk at vi bruker mente inn på minst signifikante bit, som flagg på addisjon, eller subtraksjon. Diagram gitt på neste slide.
15 Fulladderer med XOR for subtraksjon Fulladderer/subtraherer
16 Tidsdiagrammer Klokkepuls t 1 t t+1 t Synkronisering (det at forandringer skjer ved bestemte tidspunkt) er viktig i komplekse systemer. I en datamaskin brukes en klokke (klokkepuls) for dette. Måleenhet: Hz (Hertz), hvor Hz=s 1, (svigning per sekund). Moderne prossessorer opererer typisk i området gigahertz (GHz), eller altså i størrelsesorden 10 9 Hz.
17 Tabeller og diagrammer Det er flere måter å fremstille funksjonaliteten til en flip-flop (vippe). Disse er (nesten) ekvivalente, men med tilpasset bruksomåde. Logisk diagram: Koblingsdiagram med porter. Dette digrammet kan brukes for å finne de andre tabellene og karakteristisk likning. Karakteristisk tabell: Tabell som angir funksjonaliteten, gitt ved input og nåtilstand. Tabellen sier ikke noe om hvordan flip-flop-en (vippen) er koblet. Karakteristisk likning: Boolesk uttrykk som angir nestetilstand uttrykt ved nåtilstand og input. Tabellen sier ikke noe om hvordan flip-flop-en (vippen) er koblet. Eksitasjonstabell: Tabell som gir sammenheng mellom nestetilstand, nåtilstand og input. Tabellen brukes for å finne inngangslikningene til en flip-flop ved design av sekvensielle
18 Sekvensielle kretser 1 En SR-latch med NOR
19 Sekvensielle kretser 2 En SR-vippe
20 Karakteristiske tabeller for SR-vippe Karakteristisk tabell SR-vippe S R Q(t + 1) Operasjon 0 0 Q(t) Ingen endring Reset Set 1 1? Udefinert Eksitasjonstabell SR-vippe Q(t) Q(t + 1) S R Operasjon X Ingen endring Set Reset 1 1 X 0 Ingen endring Karakteristisk likning: Q(t + 1) = S(t) + R(t)Q(t)
21 Sekvensielle kretser 3 En D-vippe
22 Karakteristiske tabeller for D-vippe Karakteristisk tabell D-vippe D Q(t + 1) Operasjon 0 0 Reset 1 1 Set Eksitasjonstabell D-vippe Q(t + 1) D Operasjon 0 0 Reset 1 1 Set Karakteristisk likning: Q(t + 1) = D(t)
23 Sekvensielle kretser 4 En JK-vippe
24 Karakteristiske tabeller for JK-vippe Karakteristisk tabell JK-vippe J K Q(t + 1) Operasjon 0 0 Q(t) Ingen endring Reset Set 1 1 Q(t) Komplement Eksitasjonstabell JK-vippe Q(t) Q(t + 1) J K Operasjon X Ingen endring X Set 1 0 X 1 Reset 1 1 X 0 Ingen endring Karakteristisk likning: Q(t + 1) = J(t)Q(t) + K(t)Q(t)
25 Sekvensielle kretser 5 En T-vippe
26 Karakteristiske tabeller for T-vippe Karakteristisk tabell T-vippe T Q(t + 1) Operasjon 0 Q(t) Ingen endring 1 Q(t) Komplement Eksitasjonstabell T-vippe Q(t) Q(t + 1) T Operasjon Ingen endring Komplement Komplement Ingen endring Karakteristisk likning: Q(t + 1) = T(t) Q(t)
27 Design av sekvensielle kretser Spesifikasjon. Lag tilstandsdiagram fra spesifikasjon. Lag tilstandstabell. Tilordne binære koder til tilstandene. Utled vippe input likningene fra tilstandstabellen og eksitasjonstabeller. Utled output likningene. Forenkle. Lag logisk diagram.
28 Et eksempel 1 Tilstandsdiagram for en teller modulo 4 som teller på SET, men ikke ellers, altså en input, og telle på hver klokkesykel som input x = A 1 B 1 1 D 1 C 0 0
29 Et eksempel 2 Tilstandstabellen, med T -vipper: a t b t x t a t+1 b t+1 T a T b
30 The End Spørsmål?
Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form
Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
DetaljerDagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.
Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell
DetaljerDagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!
DetaljerEn mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:
2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis
Detaljer4 kombinatorisk logikk, løsning
4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte
DetaljerDatamaskinarkitektur våren 2009
Datamaskinarkitektur våren 2009 Forelesning 1: Introduksjon til kurset T. M. Jonassen Department of Computer Science Faculty of Engineering Oslo University College 05. Januar 2009 Outline 1 Oversikt 2
DetaljerTFE4101 Krets- og Digitalteknikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form
Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
DetaljerDagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch
Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3
DetaljerRepetisjon digital-teknikk. teknikk,, INF2270
Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
DetaljerDagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling
DetaljerINF1400. Kombinatorisk Logikk
INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre
DetaljerDagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre
Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19
Detaljer5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)
7. juni Side 8 av 17 11) Gitt det negative desimale tallet -20 (10). Hva er det samme tallet på binær 2 skomplement form? A) 110100 (2) B) 101100 (2) C) 001011 (2) Vi starter med å finne binær form av
DetaljerForelesning 4. Binær adder m.m.
Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon
Detaljer, ~', -~ lalle trykte og skrevne hjelpemidler. I Kalkulator som ikke kan kommunisere med andre.
i G h øgskolen i oslo Emne: Datamaskinarkitektur Emnekode:lOl23 Faglig veileder: Lars Kristiansen. Gruppe(r):, ~', -~ Dato:. - - ~ U..) Eksamenstid: Eksamensoppgaven består av: ntall sider (inkl. I forsiden):
DetaljerINF1400. Kombinatorisk Logikk
INF1400 Kombinatorisk Logikk Hva lærte vi forrige uke? www.socrative.com Student login Omid Mirmotahari 1 Læringsutbytte Kunnskapsmål: Kunnskap om hvordan addisjon og subtraksjon for binære tall gjøres
DetaljerIN1020. Logiske porter om forenkling til ALU
IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor
DetaljerINF2270. Sekvensiell Logikk
INF227 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Shift register Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer Reduksjon av tilstand Ubrukte tilstander
DetaljerØving 7: Løsningsforslag (frivillig)
TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 7 vårsemester 7 Øving 7: Løsningsforslag (frivillig) Oppgave Oppgave (Flanke- og nivåstyrte vipper) a) Vi ser fra figuren at pulstog
DetaljerDagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler
Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103
DetaljerNY EKSAMEN Emnekode: ITD13012
NY EKSAMEN Emnekode: ITD13012 Dato: 30.05.2018 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk (deleksamen 1) Eksamenstid: 3
DetaljerForelesning 7. Tilstandsmaskin
Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre
DetaljerINF2270. Boolsk Algebra og kombinatorisk logikk
INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk
DetaljerITPE/DATS 2400: Datamaskinarkitektur og Nettverk
ITPE/DATS 2400: Datamaskinarkitektur og Nettverk Forelesning 9: Instruksjonsettarkitektur 3 Knut H. Nygaard / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art and Design Oslo and
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
DetaljerEKSAMEN (Del 1, høsten 2014)
EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
DetaljerLøsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene
DetaljerDigitalstyring sammendrag
Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er
DetaljerIN1020. Sekvensiell Logikk
IN12 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer og tilstandstabeller Omid Mirmotahari 2 Definisjoner
DetaljerEKSAMEN Emnekode: ITD13012
EKSAMEN Emnekode: ITD13012 Dato: 29.11.2017 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater. HIØ-kalkulator som kan lånes under eksamen. Emnenavn: Datateknikk Eksamenstid: 3 timer Faglærer: Robert
DetaljerTall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall
Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL
DetaljerLøsningsforslag til 1. del av Del - EKSAMEN
Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende
DetaljerRapport. Lab 1. Absoluttverdikrets - portkretser
TFE4105 Digitalteknikk og datamaskiner Rapport Lab 1 Absoluttverdikrets - portkretser av Even Wiik Thomassen Broen van Besien Gruppe 193 Lab utført: 8. september 2004 Rapport levert: 12. november 2004
DetaljerKapittel 5 Tilstandsmaskin
Hovedpunkter Kapittel 5 Tilstandsmaskin Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert smaskin Reduksjon av antall er Tilordning av skoder Designprosedyre for smaskin basert
DetaljerINF1400. Sekvensiell logikk del 1
INF1400 Sekvensiell logikk del 1 Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAND-porter D-latch Flip-flop Master-slave D-flip-flop JK flip-flop T-flip-flop Omid Mirmotahari
DetaljerHva gikk vi gjennom forrige uke? Omid Mirmotahari 3
Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter
DetaljerAvdelingfor ingeniørutdanning
Avdelingfor ingeniørutdanning Denne eksamen består av tre deler. Det er sannsynlig at del I vil telle rundt 10 prosent. og at del Il og del III vil telle rundt 45 prosent bver. Dersom du finner oppgaveteksten
DetaljerINF1400. Karnaughdiagram
INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige
DetaljerForelesning 6. Sekvensiell logikk
Forelesning 6 Sekvensiell logikk Hovedpunkter Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAN latch Flip-Flops Master-slave flip-flop JK flip-flop T flip-flop 2 efinisjoner Kombinatorisk
DetaljerLøsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]
Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende
DetaljerINF1400. Sekvensiell logikk del 1
INF4 Sekvensiell logikk del Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAN-porter -latch Flip-flop Master-slave -flip-flop JK flip-flop T-flip-flop Omid Mirmotahari 3 efinisjoner
DetaljerINF1400. Digital teknologi. Joakim Myrvoll 2014
INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................
DetaljerTall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS
Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl
Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK
DetaljerSIE 4005, 2/10 (2. Forelesn.)
SIE 4005, 2/10 (2. Forelesn.) Første forelesning: 7.1 Datapaths and operations 7.2 Register Transfer operations 7.3 Microoperations (atitm., logic, shift) 7.4 MUX-based transfer 7.5 Bus-based transfer
DetaljerForelesning 3. Karnaughdiagram
Forelesning 3 Karnaughdiagram Hovedpunkter Karnaughdiagram Diagram med 2-4 variable Don t care tilstander Alternativ utlesning (leser ut ere) XOR implementasjon NAND implementasjon ved DeMorgan 2 Bakgrunn,
DetaljerINF1400 Kap 02 Boolsk Algebra og Logiske Porter
INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
DetaljerForelesning 2. Boolsk algebra og logiske porter
Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
DetaljerITPE/DATS 2400: Datamaskinarkitektur og Nettverk
ITPE/DATS 2400: Datamaskinarkitektur og Nettverk Forelesning Knut Nygaard / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art and Design Oslo and Akershus University College of Applied
DetaljerINF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
DetaljerForelesning 5. Diverse komponenter/større system
Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall
DetaljerFerdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter
Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:
Detaljer7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form?
Jeg har rettet alle oppgavene og legger ut et revidert løsningsforslag. Noen av besvarelsene var glitrende! 6. Hva er desimalverdien av 0 0000 0000 (2)? Tallet er gitt på toerkomplement binær form. Eneren
DetaljerDatamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur
Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat
DetaljerHiST-AFT-EDT Digitalteknikk EDT001T-A 11H
Side 1 av 8 HiST-AFT-EDT Digitalteknikk EDT001T-A 11H Eksamen 30.11.2011, fasit Oppgåve 1 (25 %) a) Konverter det binære talet 110010 2 til desimal form (grunntal r = 10). 1 2 5 +1 2 4 +0 2 3 +0 2 2 +1
DetaljerLøsningsforslag INF1400 H04
Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk
DetaljerMIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.
Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på
DetaljerINF3340/4340. Synkrone design Tilstandsmaskiner
INF3340/4340 Synkrone design Tilstandsmaskiner 18.09.2007 Agenda Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL
DetaljerTDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 I dag Kva er inni 8051, P4 og UltraSparc Digital logic level (start kapitel 3) VIKTIG MELDING Alle som har brukt NTNU-passord for AoC pålogging må skifte
DetaljerLøsningsforslag til eksamen i IN 147(A)
Løsningsforslag til eksamen i IN 147(A) Dag Langmyhr (oppgave 1, 2 og 6) Sigbjørn Næss (oppgave 3, 4 og 5) 29. mai 2000 1 Oversettelse Assemblerversjonen av split ser slik ut: 1 #include 2 3.text
DetaljerSIE 4005, 8/10 (3. Forelesn.)
SIE 4005, 8/10 (3. Forelesn.) Andre forelesning: litt repetisjon 7.7 Arithmetic / Logic unit 7.8 The Shifter 7.9 Datapath representation 7.10 The control word 7.11 Pipelined datapath Tredje forelesning:
DetaljerINF1400. Tilstandsmaskin
INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for
DetaljerOverordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9
IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen
DetaljerHøgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200
Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator
DetaljerTilstandsmaskiner (FSM) Kapittel 5
Tilstandsmaskiner (FSM) Kapittel 5 1) Sette opp tilstandsdiagram Tradisjonell konstruksjonsmetode 2) Sette opp tilstandstabell ut fra tilstandsdiagrammet Nåværende tilstand (PS) og input Neste tilstand
DetaljerG høgskolen i oslo ~~'~6"'-- - i Kalkulator som ikke kan kommunisere med andre. Dato:OS~3. Faglig veileder: Lars Kristiansen.
G høgsklen i sl lemne: Datamaskinarkitektur Emnekde:lO 134A Faglig veileder: Lars Kristiansen " Gruppe(r): Eksamensppgaven består av: Antall sider (inkl. frsiden): Dat:OS3 i Antall ppgaver: -4 Eksamenstid:
DetaljerINF1400 Kap4rest Kombinatorisk Logikk
INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3
DetaljerEmnenavn: Datateknikk. Eksamenstid: 3 timer. Faglærer: Robert Roppestad. består av 5 sider inklusiv denne forsiden, samt 1 vedleggside.
Høgskolen i østfold EKSAMEN Emnekode: ITD13012 Dato: 2.12.2016 Hjelpemidler: To (2) A4-ark (fire sider) med egne notater Hlø-kalkulator som kan lånes under eksamen Emnenavn: Datateknikk Eksamenstid: 3
DetaljerINF3340/4431. Tilstandsmaskiner
INF3340/4431 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner SM tilstandsdiagrammer Syntese av SM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430/4431 -
DetaljerEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK
Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333
DetaljerAndre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir
2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm
DetaljerINF3340. Tilstandsmaskiner
INF3340 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430-Tilstandsmaskiner
DetaljerEKSAMEN (Del 1, høsten 2015)
EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"
DetaljerKapittel 3: Litt om representasjon av tall
MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009
DetaljerEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)
Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Faglig kontakt: Ragnar Hergum (1 3.5) / Per Gunnar
DetaljerTMA 4140 Diskret Matematikk, 4. forelesning
TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA
DetaljerEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK
Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333
DetaljerOppgave 1 (Flanke- og nivåstyrte vipper)
Utlevert: mandag 29. april 2008 Veiledning: ingen veiledning ette er en frivillig øving. Øvingen tar for seg siste del av pensum, og det er derfor anbefalt å regne gjennom øvingen. et vil ikke bli gitt
DetaljerLøsningsforslag til 1. del av Del - EKSAMEN
Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 13. Desember 2013 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende
DetaljerHiST-AFT-EDT Datateknikk TELE1003-A 13H. Oppgåve 1 [15 % ; digitalteknikk] Side 1 av 10
Side 1 av 10 HiST-AFT-EDT Datateknikk TELE1003-A 13H Deleksamen tema digitalteknikk og datakommunikasjon 06.12.2013; fasit Oppgåve 1 [15 % ; digitalteknikk] a) Konverter dei to desimaltala 69 og 248 til
DetaljerDigitale (binære) kretser og systemer en kort introduksjon
Digitale (binære) kretser og systemer en kort introduksjon På kurset har vi så langt sett hvordan halvlederkomponenter som dioder, bipolare transistorer (BJ) og felteffekttransistorer (FE) kan brukes til
DetaljerEmne: Datamaskinarkitektur Emnekode:lO 134A Faglig veileder: Lars Kristiansen
I Gruppe(r): I G høgskolen i oslo Emne: Datamaskinarkitektur Emnekode:lO 34A Faglig veileder: Lars Kristiansen Dato: Eksamenstid: 09.00-2.00 Eksamensoppgaven Antall sider (inkl. består av: ; forsiden):
DetaljerKryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006
i kryptering 9. Mars 2006 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå
DetaljerMAX MIN RESET. 7 Data Inn Data Ut. Load
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:
DetaljerTallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerRepetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)
Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Hovedpunkter Pensumoversikt Gjennomgang av sentrale deler av pensum Div informasjon
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: 29.november 2012 Tid for eksamen: kl. 14.30 18.30 Oppgavesettet er på 4 side(r) Vedlegg: 0 sider
Detaljer! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før
Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr
DetaljerEn oppsummering (og litt som står igjen)
En oppsummering (og litt som står igjen) Pensumoversikt Hovedtanker i kurset Selvmodifiserende kode Overflyt Eksamen En oppsummering Oppsummering Pensum læreboken til og med kapittel 7 forelesningene de
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslag til eksamen i INF2270 Omid Mirmotahari (oppgave 1 4) Dag Langmyhr (oppgave 5 6) 14. juni 2012 Eksamen inf2270 V12 - fasit 1) (5%) Forkort følgende uttrykk med karnaugh diagram zw xy 00
DetaljerTeori og oppgaver om 2-komplement
Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).
DetaljerSIE 4005, 9/10 (4. Forelesn.)
SIE 4005, 9/10 (4. Forelesn.) Tredje forelesning: 8.1 The control unit 8.2 Algorithmic state machines 8.3 Design example: Binary multiplier 8.4 Hardwired Control Fjerde forelesning: litt repetisjon 8.4
Detaljer