ITPE2400/DATS2400: Datamaskinarkitektur

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ITPE2400/DATS2400: Datamaskinarkitektur"

Transkript

1 ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art and Design Oslo and Akershus University College of Applied Sciences 23. Januar 2015

2 Oversikt 1 Litt repetisjon 2 Mer om ripple-carry adderer 3 Eksempel med en sammenlikner 4 Om multiplikasjon, subtraksjon og divisjon 5 2-er komplement representasjon 6 Ripple-carry adderer/subtraktor 7 Byggestenene for sekvensielle kretser

3 Kombinatorske kretser 1 En dekoder

4 Kombinatorske kretser 2 En multiplekser

5 Implementering av adderer Fra eksemplet på whiteboard kan vi skrive: s = c in (x y) og fra sannhetstabell, men ikke algebraisk riktig: c out = xy + c(x y) Dette betyr at kretsen kan implementeres med 2 XOR-porter, 2 AND-porter og 1 OR-port.

6 En sammenlikner Spesifikasjon: En likhets-sammenlikner som avgjør om to binære ord er like eller ikke. Input: To ord A(0 : 3) og B(0 : 3) Output: Ett bit, E, hvor E = 1 ved likhet, E = 0 ellers. Husk: XOR gir 0 ved likhet, 1 ved ulikhet. Holder å se på ett bit. Se eksempel whiteboard.

7 Aritmetiske operasjoner Aritmetiske operasjoner: addisjon, subtraksjon, multiplikasjon, divisjon. Vi kan implementere disse i hardware nesten som regning vi gjør for hånd. Multiplikasjon: Shift og addisjon. Divisjon: Shift og subtraksjon. Lettest med hele tall uten fortegn.

8 2-er komplement 1 2-er komplementet av et binært ord på n bits oppnåes ved å invertere alle bits, deretter addere 1, eventuelt mente kastes. Vi representerer hele tall på n bit på 2-er komplement form ved at mest signifikante bit er fortegn, 0 for +, 1 for på følgende måte: Positive tall på vanlig måte Negative tall, ta 2-er komplement av tilsvarende positive tall. Merk: 0 har unik representasjon.

9 2-er komplement 2 En annen måte å definere 2-er komplementet til et n-bits binært tall N er å sette dette som Comp 2 (N) = 2 n N. Det er da lett å se at Comp 2 (Comp 2 (N)) = N hvor N er repsenter på 2-er komplement form.

10 Et par eksempler Anta at vi har 5 bits til rådighet, vi må bruke ett bit (et mest signifikante) til fortegn, og derfor bare fire bit til størrelse. Da er: og N = (4) 10 = (00100) 2 M = (7) 10 = (00111) 2 Vi vil beregne N M, og beregner Comp 2 (M) = = Vi får da at N M = N + ( M) = = Beregner vi nå 2-komplementet til resultatet ser vi at Comp 2 (11101) = = = (3) 10 Dette ser vi at stemmer siden 4 7 = 3.

11 Hvorfor det virker Vi kan skrive som A B A + ( B) Dette gir at subtraksjon er en addisjon, ved at vi tar 2-er komplementet av B og deretter addere dette til A. Vi kan få problem med overflow (har sett eksempel på dette tidligere). Dette oppstår bare med tall av like fortegn.

12 Reglene Heltall A og B er representert på 2-er komplement form med fortegn. Addisjon: A + B: På vanlig måte, hvis mente (carry) på mest signifikante bit: overflow. Subtraksjon: A B: Ta 2-er komplement av B, addér, siden A B = A + ( B). Dette gir oss en enkel overflow regel i vår fulladderer, hvis mente (carry) inn på minst signifikante bit er lik mente ut, ikke overflow, hvis ulikt, overflow.

13 Et par elementære egenskaper til XOR Vi har at og at Altså har vi x 0 = x 0 + x 0 = x 1 = x x 1 = x 1 + x 1 = x 1 = x x 0 = x og x 1 = x Dette er det som gjør at vår Ripple-carry adderer/subtraktor som kommer på de neste sidene fungerer.

14 Adderer/subtraktor 2-er komplement representasjonen gjør at vi kan bruke samme krets til både addisjon og subtraksjon med små modifikasjoner. Merk at vi bruker mente inn på minst signifikante bit, som flagg på addisjon, eller subtraksjon. Diagram gitt på neste slide.

15 Fulladderer med XOR for subtraksjon Fulladderer/subtraherer

16 Tidsdiagrammer Klokkepuls t 1 t t+1 t Synkronisering (det at forandringer skjer ved bestemte tidspunkt) er viktig i komplekse systemer. I en datamaskin brukes en klokke (klokkepuls) for dette. Måleenhet: Hz (Hertz), hvor Hz=s 1, (svigning per sekund). Moderne prossessorer opererer typisk i området gigahertz (GHz), eller altså i størrelsesorden 10 9 Hz.

17 Tabeller og diagrammer Det er flere måter å fremstille funksjonaliteten til en flip-flop (vippe). Disse er (nesten) ekvivalente, men med tilpasset bruksomåde. Logisk diagram: Koblingsdiagram med porter. Dette digrammet kan brukes for å finne de andre tabellene og karakteristisk likning. Karakteristisk tabell: Tabell som angir funksjonaliteten, gitt ved input og nåtilstand. Tabellen sier ikke noe om hvordan flip-flop-en (vippen) er koblet. Karakteristisk likning: Boolesk uttrykk som angir nestetilstand uttrykt ved nåtilstand og input. Tabellen sier ikke noe om hvordan flip-flop-en (vippen) er koblet. Eksitasjonstabell: Tabell som gir sammenheng mellom nestetilstand, nåtilstand og input. Tabellen brukes for å finne inngangslikningene til en flip-flop ved design av sekvensielle

18 Sekvensielle kretser 1 En SR-latch med NOR

19 Sekvensielle kretser 2 En SR-vippe

20 Karakteristiske tabeller for SR-vippe Karakteristisk tabell SR-vippe S R Q(t + 1) Operasjon 0 0 Q(t) Ingen endring Reset Set 1 1? Udefinert Eksitasjonstabell SR-vippe Q(t) Q(t + 1) S R Operasjon X Ingen endring Set Reset 1 1 X 0 Ingen endring Karakteristisk likning: Q(t + 1) = S(t) + R(t)Q(t)

21 Sekvensielle kretser 3 En D-vippe

22 Karakteristiske tabeller for D-vippe Karakteristisk tabell D-vippe D Q(t + 1) Operasjon 0 0 Reset 1 1 Set Eksitasjonstabell D-vippe Q(t + 1) D Operasjon 0 0 Reset 1 1 Set Karakteristisk likning: Q(t + 1) = D(t)

23 Sekvensielle kretser 4 En JK-vippe

24 Karakteristiske tabeller for JK-vippe Karakteristisk tabell JK-vippe J K Q(t + 1) Operasjon 0 0 Q(t) Ingen endring Reset Set 1 1 Q(t) Komplement Eksitasjonstabell JK-vippe Q(t) Q(t + 1) J K Operasjon X Ingen endring X Set 1 0 X 1 Reset 1 1 X 0 Ingen endring Karakteristisk likning: Q(t + 1) = J(t)Q(t) + K(t)Q(t)

25 Sekvensielle kretser 5 En T-vippe

26 Karakteristiske tabeller for T-vippe Karakteristisk tabell T-vippe T Q(t + 1) Operasjon 0 Q(t) Ingen endring 1 Q(t) Komplement Eksitasjonstabell T-vippe Q(t) Q(t + 1) T Operasjon Ingen endring Komplement Komplement Ingen endring Karakteristisk likning: Q(t + 1) = T(t) Q(t)

27 Design av sekvensielle kretser Spesifikasjon. Lag tilstandsdiagram fra spesifikasjon. Lag tilstandstabell. Tilordne binære koder til tilstandene. Utled vippe input likningene fra tilstandstabellen og eksitasjonstabeller. Utled output likningene. Forenkle. Lag logisk diagram.

28 Et eksempel 1 Tilstandsdiagram for en teller modulo 4 som teller på SET, men ikke ellers, altså en input, og telle på hver klokkesykel som input x = A 1 B 1 1 D 1 C 0 0

29 Et eksempel 2 Tilstandstabellen, med T -vipper: a t b t x t a t+1 b t+1 T a T b

30 The End Spørsmål?

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram. Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til: 2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis

Detaljer

4 kombinatorisk logikk, løsning

4 kombinatorisk logikk, løsning 4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

TFE4101 Krets- og Digitalteknikk Høst 2016

TFE4101 Krets- og Digitalteknikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på

Detaljer

Datamaskinarkitektur våren 2009

Datamaskinarkitektur våren 2009 Datamaskinarkitektur våren 2009 Forelesning 1: Introduksjon til kurset T. M. Jonassen Department of Computer Science Faculty of Engineering Oslo University College 05. Januar 2009 Outline 1 Oversikt 2

Detaljer

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3

Detaljer

Repetisjon digital-teknikk. teknikk,, INF2270

Repetisjon digital-teknikk. teknikk,, INF2270 Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,

Detaljer

INF1400. Kombinatorisk Logikk

INF1400. Kombinatorisk Logikk INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling

Detaljer

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling

Detaljer

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8) 7. juni Side 8 av 17 11) Gitt det negative desimale tallet -20 (10). Hva er det samme tallet på binær 2 skomplement form? A) 110100 (2) B) 101100 (2) C) 001011 (2) Vi starter med å finne binær form av

Detaljer

Forelesning 4. Binær adder m.m.

Forelesning 4. Binær adder m.m. Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon

Detaljer

, ~', -~ lalle trykte og skrevne hjelpemidler. I Kalkulator som ikke kan kommunisere med andre.

, ~', -~ lalle trykte og skrevne hjelpemidler. I Kalkulator som ikke kan kommunisere med andre. i G h øgskolen i oslo Emne: Datamaskinarkitektur Emnekode:lOl23 Faglig veileder: Lars Kristiansen. Gruppe(r):, ~', -~ Dato:. - - ~ U..) Eksamenstid: Eksamensoppgaven består av: ntall sider (inkl. I forsiden):

Detaljer

IN1020. Logiske porter om forenkling til ALU

IN1020. Logiske porter om forenkling til ALU IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor

Detaljer

INF2270. Sekvensiell Logikk

INF2270. Sekvensiell Logikk INF227 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Shift register Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer Reduksjon av tilstand Ubrukte tilstander

Detaljer

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103

Detaljer

Forelesning 7. Tilstandsmaskin

Forelesning 7. Tilstandsmaskin Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317

Detaljer

INF2270. Boolsk Algebra og kombinatorisk logikk

INF2270. Boolsk Algebra og kombinatorisk logikk INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk

Detaljer

ITPE/DATS 2400: Datamaskinarkitektur og Nettverk

ITPE/DATS 2400: Datamaskinarkitektur og Nettverk ITPE/DATS 2400: Datamaskinarkitektur og Nettverk Forelesning 9: Instruksjonsettarkitektur 3 Knut H. Nygaard / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art and Design Oslo and

Detaljer

EKSAMEN (Del 1, høsten 2014)

EKSAMEN (Del 1, høsten 2014) EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Digitalstyring sammendrag

Digitalstyring sammendrag Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC

Detaljer

Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)

Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er

Detaljer

IN1020. Sekvensiell Logikk

IN1020. Sekvensiell Logikk IN12 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer og tilstandstabeller Omid Mirmotahari 2 Definisjoner

Detaljer

INF1400. Sekvensiell logikk del 1

INF1400. Sekvensiell logikk del 1 INF1400 Sekvensiell logikk del 1 Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAND-porter D-latch Flip-flop Master-slave D-flip-flop JK flip-flop T-flip-flop Omid Mirmotahari

Detaljer

Kapittel 5 Tilstandsmaskin

Kapittel 5 Tilstandsmaskin Hovedpunkter Kapittel 5 Tilstandsmaskin Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert smaskin Reduksjon av antall er Tilordning av skoder Designprosedyre for smaskin basert

Detaljer

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter

Detaljer

Avdelingfor ingeniørutdanning

Avdelingfor ingeniørutdanning Avdelingfor ingeniørutdanning Denne eksamen består av tre deler. Det er sannsynlig at del I vil telle rundt 10 prosent. og at del Il og del III vil telle rundt 45 prosent bver. Dersom du finner oppgaveteksten

Detaljer

INF1400. Karnaughdiagram

INF1400. Karnaughdiagram INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige

Detaljer

Forelesning 6. Sekvensiell logikk

Forelesning 6. Sekvensiell logikk Forelesning 6 Sekvensiell logikk Hovedpunkter Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAN latch Flip-Flops Master-slave flip-flop JK flip-flop T flip-flop 2 efinisjoner Kombinatorisk

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Rapport. Lab 1. Absoluttverdikrets - portkretser

Rapport. Lab 1. Absoluttverdikrets - portkretser TFE4105 Digitalteknikk og datamaskiner Rapport Lab 1 Absoluttverdikrets - portkretser av Even Wiik Thomassen Broen van Besien Gruppe 193 Lab utført: 8. september 2004 Rapport levert: 12. november 2004

Detaljer

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4] Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende

Detaljer

INF1400. Sekvensiell logikk del 1

INF1400. Sekvensiell logikk del 1 INF4 Sekvensiell logikk del Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAN-porter -latch Flip-flop Master-slave -flip-flop JK flip-flop T-flip-flop Omid Mirmotahari 3 efinisjoner

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

SIE 4005, 2/10 (2. Forelesn.)

SIE 4005, 2/10 (2. Forelesn.) SIE 4005, 2/10 (2. Forelesn.) Første forelesning: 7.1 Datapaths and operations 7.2 Register Transfer operations 7.3 Microoperations (atitm., logic, shift) 7.4 MUX-based transfer 7.5 Bus-based transfer

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Forelesning 2. Boolsk algebra og logiske porter

Forelesning 2. Boolsk algebra og logiske porter Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

ITPE/DATS 2400: Datamaskinarkitektur og Nettverk

ITPE/DATS 2400: Datamaskinarkitektur og Nettverk ITPE/DATS 2400: Datamaskinarkitektur og Nettverk Forelesning Knut Nygaard / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art and Design Oslo and Akershus University College of Applied

Detaljer

INF1400. Digital teknologi. Joakim Myrvoll 2014

INF1400. Digital teknologi. Joakim Myrvoll 2014 INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................

Detaljer

Forelesning 5. Diverse komponenter/større system

Forelesning 5. Diverse komponenter/større system Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall

Detaljer

INF1400. Tilstandsmaskin

INF1400. Tilstandsmaskin INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for

Detaljer

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:

Detaljer

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form?

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form? Jeg har rettet alle oppgavene og legger ut et revidert løsningsforslag. Noen av besvarelsene var glitrende! 6. Hva er desimalverdien av 0 0000 0000 (2)? Tallet er gitt på toerkomplement binær form. Eneren

Detaljer

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat

Detaljer

Løsningsforslag INF1400 H04

Løsningsforslag INF1400 H04 Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på

Detaljer

INF3340/4340. Synkrone design Tilstandsmaskiner

INF3340/4340. Synkrone design Tilstandsmaskiner INF3340/4340 Synkrone design Tilstandsmaskiner 18.09.2007 Agenda Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL

Detaljer

TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte

TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte 1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 I dag Kva er inni 8051, P4 og UltraSparc Digital logic level (start kapitel 3) VIKTIG MELDING Alle som har brukt NTNU-passord for AoC pålogging må skifte

Detaljer

Løsningsforslag til eksamen i IN 147(A)

Løsningsforslag til eksamen i IN 147(A) Løsningsforslag til eksamen i IN 147(A) Dag Langmyhr (oppgave 1, 2 og 6) Sigbjørn Næss (oppgave 3, 4 og 5) 29. mai 2000 1 Oversettelse Assemblerversjonen av split ser slik ut: 1 #include 2 3.text

Detaljer

SIE 4005, 8/10 (3. Forelesn.)

SIE 4005, 8/10 (3. Forelesn.) SIE 4005, 8/10 (3. Forelesn.) Andre forelesning: litt repetisjon 7.7 Arithmetic / Logic unit 7.8 The Shifter 7.9 Datapath representation 7.10 The control word 7.11 Pipelined datapath Tredje forelesning:

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og

Detaljer

INF1400. Tilstandsmaskin

INF1400. Tilstandsmaskin INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for

Detaljer

Tilstandsmaskiner (FSM) Kapittel 5

Tilstandsmaskiner (FSM) Kapittel 5 Tilstandsmaskiner (FSM) Kapittel 5 1) Sette opp tilstandsdiagram Tradisjonell konstruksjonsmetode 2) Sette opp tilstandstabell ut fra tilstandsdiagrammet Nåværende tilstand (PS) og input Neste tilstand

Detaljer

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9 IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

INF3340/4431. Tilstandsmaskiner

INF3340/4431. Tilstandsmaskiner INF3340/4431 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner SM tilstandsdiagrammer Syntese av SM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430/4431 -

Detaljer

INF1400 Kap4rest Kombinatorisk Logikk

INF1400 Kap4rest Kombinatorisk Logikk INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3

Detaljer

INF3340. Tilstandsmaskiner

INF3340. Tilstandsmaskiner INF3340 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430-Tilstandsmaskiner

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir 2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Faglig kontakt: Ragnar Hergum (1 3.5) / Per Gunnar

Detaljer

G høgskolen i oslo ~~'~6"'-- - i Kalkulator som ikke kan kommunisere med andre. Dato:OS~3. Faglig veileder: Lars Kristiansen.

G høgskolen i oslo ~~'~6'-- - i Kalkulator som ikke kan kommunisere med andre. Dato:OS~3. Faglig veileder: Lars Kristiansen. G høgsklen i sl lemne: Datamaskinarkitektur Emnekde:lO 134A Faglig veileder: Lars Kristiansen " Gruppe(r): Eksamensppgaven består av: Antall sider (inkl. frsiden): Dat:OS3 i Antall ppgaver: -4 Eksamenstid:

Detaljer

TMA 4140 Diskret Matematikk, 4. forelesning

TMA 4140 Diskret Matematikk, 4. forelesning TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

Digitale (binære) kretser og systemer en kort introduksjon

Digitale (binære) kretser og systemer en kort introduksjon Digitale (binære) kretser og systemer en kort introduksjon På kurset har vi så langt sett hvordan halvlederkomponenter som dioder, bipolare transistorer (BJ) og felteffekttransistorer (FE) kan brukes til

Detaljer

Emne: Datamaskinarkitektur Emnekode:lO 134A Faglig veileder: Lars Kristiansen

Emne: Datamaskinarkitektur Emnekode:lO 134A Faglig veileder: Lars Kristiansen I Gruppe(r): I G høgskolen i oslo Emne: Datamaskinarkitektur Emnekode:lO 34A Faglig veileder: Lars Kristiansen Dato: Eksamenstid: 09.00-2.00 Eksamensoppgaven Antall sider (inkl. består av: ; forsiden):

Detaljer

MAX MIN RESET. 7 Data Inn Data Ut. Load

MAX MIN RESET. 7 Data Inn Data Ut. Load UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 13. Desember 2013 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Hovedpunkter Pensumoversikt Gjennomgang av sentrale deler av pensum Div informasjon

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Oppgave 2 Maskinkode (vekt 12%)

Oppgave 2 Maskinkode (vekt 12%) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 47 Program- og maskinvare Eksamensdag: 29. mai 2 Tid for eksamen: 9. 5. Oppgavesettet er på 8 sider. Vedlegg: Ingen Tillatte

Detaljer

Løsningsforslag til eksamen i INF2270

Løsningsforslag til eksamen i INF2270 Løsningsforslag til eksamen i INF2270 Omid Mirmotahari (oppgave 1 4) Dag Langmyhr (oppgave 5 6) 14. juni 2012 Eksamen inf2270 V12 - fasit 1) (5%) Forkort følgende uttrykk med karnaugh diagram zw xy 00

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 9 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon:

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon: EKSAMENSOPPGAVE Eksamen i: INF-1100 Innføring i programmering og datamaskiners virkemåte Dato: Tirsdag 8. desember 2015 Tid: Kl 09:00 13:00 Sted: Teorifagbygget, Hus 1 Tillatte hjelpemidler: Ingen Oppgavesettet

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 4

VEILEDNING TIL LABORATORIEØVELSE NR 4 VEILEDNING TIL LABORATORIEØVELSE NR 4 «SAMMENSATTE DIGITAL KRETSER» FY-IN 204 Revidert utgave 98-03-13 Veiledning FY-IN 204 : Oppgave 4 1 4 Sammensatte digitalkretser. Litteratur: Millman, Kap. 7. Oppgave:

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider

Detaljer

Rapport Lab 2. Absoluttverdikrets

Rapport Lab 2. Absoluttverdikrets Fag: TFE4105 Digitalteknikk og datamaskiner Rapport Lab 2 Absoluttverdikrets av Mats Lieungh Andreas Nordal Labgruppe 623 Lab utført: 2/10 2008 Rapport levert: 11/11 2008 Fakultet for informasjonsteknologi,

Detaljer

Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAND D latch. Master-slave D flip-flop JK flip-flop T flip-flop

Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAND D latch. Master-slave D flip-flop JK flip-flop T flip-flop Hovedunkter Kaittel 5 ekvensiell logikk Låsekretser (latch er) R latch bygget med NOR R latch bygget med NAN latch Fli-Flos Master-slave fli-flo JK fli-flo flo T fli-flo 2 Kombinatorisk logikk efinisjoner

Detaljer

! Brukes for å beskrive funksjoner i digitale kretser. ! Tre grunnleggende funksjoner: AND, OR og NOT

! Brukes for å beskrive funksjoner i digitale kretser. ! Tre grunnleggende funksjoner: AND, OR og NOT Dgens temer Boolsk lger! Brukes for å eskrive funksjoner i igitle kretser! Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture! Kort repetisjon fr forrige gng! Komintorisk logikk! Tre grunnleggene

Detaljer