Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006"

Transkript

1 i kryptering 9. Mars 2006

2 i kryptering i kryptering

3 i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå kommer svaret raskere...

4 Klartekst i kryptering Meldingen er selvsagt I LOVE U De to eksemplene viser to prinsipper for koding, nemlig substitusjon og permutasjon.

5 substitusjon i kryptering Substitusjon erstatter bokstavene med andre bokstaver eller tegn. Hvis E,I,L,O,U,V erstattes med vil den kodete meldingen bli

6 permutasjon i kryptering Permutasjon går ut på å bytte om på rekkefølgen på bokstavene, for eksempel å lese baklengs U EVOL I eller E VULI O

7 Koding med tall i kryptering I praksis brukes både substitusjon og permutasjon. Substitusjon: bokstaver tall. Permutasjon: bytter om tall.

8 ASCII i kryptering Datamaskiner bruker ASCII koden: a A &

9 Kodenøkkel i kryptering Vi skal holde oss til de 6 bokstavene som vi substituerer EILOUV E I L O U V Denne substitusjonstabellen kaller vi en kodenøkkel

10 Kodet melding i kryptering Meldingen I LOVE U blir med denne kodenøkkelen kodet til

11 i kryptering snøkkelen For å gjøre meldingen hemmelig koder vi en gang til med permutasjonen Denne kalles krypteringsnøkkelen

12 i kryptering Dekrypteringsnøkkelen Permutasjonen bytter 1 med 6, 2 med 4, o.s.v. Den omvendte permutasjonen bytter tilbake og kalles derfor dekrypteringsnøkkelen.

13 i kryptering sprosedyre MELDING: KODENØKKEL (ÅPEN): I LOVE U E I L O U V KODET MELDING:

14 i kryptering KODET MELDING: KRYPTERINGSNØKKEL (HEMMELIG): KRYPTERT MELDING:

15 i kryptering Dekrypteringsprosedyre KRYPTERT MELDING: DEKRYPTERINGSNØKKEL (HEMMELIG): DEKRYPTERT MELDING:

16 i kryptering Dekoding DEKRYPTERT MELDING: DEKODENØKKEL (ÅPEN): E I L O U V DEKODET MELDING: I LOVE U

17 Problem i kryptering snøkkelen kan lett bli lange og vanskelige å huske. Vi trenger metoder til å lage gode permutasjoner som er lettere å huske. Til dette kan vi bruke moduloregning eller kongruensregning, som vi skal komme tilbake til.

18 Regning modulo t i kryptering La t være et naturlig tall. Dersom vi deler et helt tall med t, har vi t mulige rester: 0, 1, 2,, t 1. Vi kan regne med tallene 0, 1, 2,, t 1 ved bare å bruke disse restene.

19 Regning modulo t i kryptering To av disse tallene kan vi legge dem sammen eller multiplisere og få et nytt tall, nemlig ved først å addere eller multiplisere på vanlig måte og så ta resten etter divisjon med t. Denne regningen med tallene 0, 1, 2,, t 1 kaller vi kongruensregning eller regning modulo t.

20 Kongruens i kryptering To tall a og b har samme rest modulo t hvis og bare hvis differansen a b er delelig med t. I så fall sier vi at de to tallene a og b er kongruente modulo t og skriver a b modt. Derfor kalles også den regningen vi har beskrevet kongruensregning.

21 i kryptering Regning modulo 2 partall + partall = partall, oddetall + oddetall = partall partall + oddetall = oddetall Addisjonstabellen og multiplikasjontabell modulo 2:

22 i kryptering Regning modulo 3 Addisjonstabellen og multiplikasjonstabell modulo 3:

23 modulo 7 i kryptering Multiplikasjon med 5 modulo 7 blir: modulo 7 fordi 15 : 7 gir 2 med rest 1.

24 i kryptering modulo 7 Muliplikasjon med 5 modulo 7 gir en permutasjon: , mens multiplikasjon med 3 gir den omvendte permutasjonen Hvorfor?

25 invers modulo 7 i kryptering Hvis jeg starter med et tall x og multipliserer det først med 5 og deretter med 3 modulo 7 får jeg x 5 3 = x (5 3) x 1 = x modulo 7. Det vil si at hvis jeg først krypterer ved å multiplisere med 5, så kan jeg dekryptere med å multiplisere med 3 modulo 7.

26 Lett å knekke i kryptering Multiplikasjon modulo 7 er lettere å huske enn lange permutasjoner, men siden dekrypteringsnøkkelen er av samme type så er disse krypteringsnøklene er ikke særlig sikre.

27 Potenser i kryptering Litt sikrere krypteringsnøkler får en ved å ta potenser. I vårt eksempel tar vi potenser modulo 7: x x Dekrypteringsnøkkelen er ikke av samme type. En må rett og slett skrive opp den omvendte permutasjonen

28 RSA og AES i kryptering De mest brukte krypteringsoppskriftene som brukes idag er RSA og AES. RSA bruker potenser modulo store tall som er produkt av to primtall som krypteringsnøkkel. AES er laget i Belgia og bruker litt mer avansert algebra i en effektive og sikker krypteringsalgoritme.

29 Oppgave i kryptering Bruk kodenøkkelen A B C D... Å til å kode en melding, og muliplikasjon modulo 7 til kryptere den, og utfordre naboen til å knekke den hemmelige meldingen!

30 Les videre i i kryptering 1. B. Johnsen: Kryptografi - en gammel disiplin med moderne anvendelser, i Per Hag & Ben Johnsen (red.): Fra Matematikkens Spennende Verden, Tapir, 1993, Jacobus H. van Lint: Kompaktskivans matematik, Normat, 48 (2000), L. Nilsen: Modulære kvadratrøtter og moderne kryptologi, Normat, 40 (1992), K. Ranestad: Koder i klasserommet, 5. S. Singh: Koder, Aschehoug 2000

Koder. Kristian Ranestad. 8. Mars 2005

Koder. Kristian Ranestad. 8. Mars 2005 i kryptering 8. Mars 2005 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

KODER I KLASSEROMMET

KODER I KLASSEROMMET KODER I KLASSEROMMET Kristian Ranestad 28.02.2001 Dette heftet er utarbeidet til klasseromsprosjektet ved Matematisk institutt, UiO. I dette prosjektet inngår det halvdags kurs for lærere i forskjellige

Detaljer

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER Euklids algoritme Euklid s setning 1, divisjonslemmaet, fra Bok 7 Gitt to ulike tall. Det minste trekkes så fra det største så mange ganger dette

Detaljer

Kryptografi, del 2. Aslak Bakke Buan, Ole Enge

Kryptografi, del 2. Aslak Bakke Buan, Ole Enge Aslak Bakke Buan, Ole Enge Kryptografi, del 2 Offentlig-nøkkel kryptografi Anta du vil handle på internett og blir bedt om å oppgi kredittkortnummeret ditt. Du stoler kanskje på at nettstedet du vil handle

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

1. Krypteringsteknikker

1. Krypteringsteknikker Krypteringsteknikker Olav Skundberg Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget 1. Krypteringsteknikker 1.1. Fire formål med sikker kommunikasjon Aller først, pålitelig

Detaljer

1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på?

1. Cæsarchiffer er en av de enkleste krypteringsteknikkene. Hva går teknikken ut på? Prøve i kryptografi Navn: Karakter: Poeng: /30 Lykke til! Hjelpemidler: Viskelær og skrivesaker Teknologi i praksis, fre. 23. september Del 1 Flervalgsoppgaver Sett ring rundt alternativ A, B, C eller

Detaljer

Kryptogra og elliptiske kurver

Kryptogra og elliptiske kurver Kryptogra og elliptiske kurver Eivind Eriksen Høgskolen i Oslo Gjesteforelesning, 7. november 2007 Eivind Eriksen (Høgskolen i Oslo) Kryptogra og elliptiske kurver 1 / 23 Plan: 1 Generelt om kryptogra

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014 Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet

Detaljer

Oppgaver til kapittel 19 - Kryptering og steganografi

Oppgaver til kapittel 19 - Kryptering og steganografi Oppgaver til kapittel 19 - Kryptering og steganografi Oppgave 1 - Cæsars kode (plenum) I symmetrisk kryptering brukes samme nøkkel både for å kryptere og dekryptere. Avhengig av hvordan nøkkelen utformes

Detaljer

Sikkerhet i GSM mobilteleforsystem

Sikkerhet i GSM mobilteleforsystem Sikkerhet i GSM mobilteleforsystem Sikkerhet i GSM mobilteleforsystem... 1 En enkel krypteringsmetode... 1 Oversikt over GSM... 2 Autentisering av telefon og SIM-kort... 3 IMEI og sjekksum... 3 IMSI og

Detaljer

INF1040 Oppgavesett 14: Kryptering og steganografi

INF1040 Oppgavesett 14: Kryptering og steganografi INF1040 Oppgavesett 14: Kryptering og steganografi (Kapittel 19) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv - og Prøv selv - oppgavene. Fasitoppgaver 1. Krypter følgende strenger ved

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Kapittel 1 Tall og tallregning

Kapittel 1 Tall og tallregning Kapittel 1 Tall og tallregning Enkel kalkulator I en del situasjoner er tallregningen så tidkrevende at det kan være fornuftig å bruke kalkulator. I andre situasjoner kan vi bruke kalkulatoren til å kontrollere

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen...

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen... Innhold 6 Kryptografi 3 6.1 Totienten.................................... 3 6.2 Eulers teorem.................................. 8 6.3 Et eksempel på et bevis hvor Eulers teorem benyttes............ 19

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2015

Løsningsforslag til eksamenen i MAT103, våren 2015 Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :

Detaljer

Grafisk kryptografi (hemmelig koding av bilder)

Grafisk kryptografi (hemmelig koding av bilder) Grafisk kryptografi (hemmelig koding av bilder) Legg den løse platen nøyaktig den faste og se hva som skjer. Hvordan kan det brukes? Grete skal til Australia, og mens hun er der kan hun få behov for å

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk

Detaljer

Argumentasjon og regnestrategier

Argumentasjon og regnestrategier Ole Enge, Anita Valenta Argumentasjon og regnestrategier Undersøkelser (se for eksempel Boaler, 2008) viser at det er en stor forskjell på hvilke oppfatninger matematikere og folk flest har om matematikk.

Detaljer

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Lærebokforfatter, MULTI Matematikksenteret, NTNU 10-Oct-10 2 Mastermind Grunntanken bak Multi Faglig fokus og tydelige læringsmål Elevene skal

Detaljer

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre?

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

Oversikt over lineære kongruenser og lineære diofantiske ligninger

Oversikt over lineære kongruenser og lineære diofantiske ligninger Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Oppgaver til julekalenderen 2005 for ungdomstrinnet; 8. - 10.trinn

Oppgaver til julekalenderen 2005 for ungdomstrinnet; 8. - 10.trinn Oppgaver til julekalenderen 2005 for ungdomstrinnet; 8. - 10.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten. Kunne avgjøre hvilken brøk som er størst

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

1P Tall og algebra. Tall og algebra Vg1P (utdrag)

1P Tall og algebra. Tall og algebra Vg1P (utdrag) 1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste... 28 1 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter

Detaljer

Forelesningsnotater SIF 5021 Algebra og tallteori V-02. Et kort innføring med eksempler fra kodeteori

Forelesningsnotater SIF 5021 Algebra og tallteori V-02. Et kort innføring med eksempler fra kodeteori Forelesningsnotater SIF 5021 Algebra og tallteori V-02. Et kort innføring med eksempler fra kodeteori Sverre O. Smalø I forbindelse med elektronisk digital kommunikasjon vil kommunikasjonskanalen av og

Detaljer

Multiplikation och division av bråk

Multiplikation och division av bråk Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av

Detaljer

Hemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon

Hemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon Hemmelige koder Nybegynner Python Introduksjon Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder! Kodeklubb-koden Et chiffer er et system for å gjøre om vanlig tekst

Detaljer

GigaCampus Mobilitetskurs Del 2. Sesjon 4. Torsdag 20.04.2006 Jardar.Leira@uninett.no

GigaCampus Mobilitetskurs Del 2. Sesjon 4. Torsdag 20.04.2006 Jardar.Leira@uninett.no GigaCampus Mobilitetskurs Del 2 Sesjon 4 Torsdag 20.04.2006 Jardar.Leira@uninett.no IEEE 802.1X En relativt gammel standard (godkjent 14. juni 2001) Definerer en standard for portbasert nettverks aksesskontroll

Detaljer

PROSJEKT I KRYPTOLOGI IMT4051. Av: Ole Kasper Olsen Fredrik Skarderud Torkjel Søndrol Ole Martin Dahl

PROSJEKT I KRYPTOLOGI IMT4051. Av: Ole Kasper Olsen Fredrik Skarderud Torkjel Søndrol Ole Martin Dahl PROSJEKT I KRYPTOLOGI IMT4051 Av: Ole Kasper Olsen Fredrik Skarderud Torkjel Søndrol Ole Martin Dahl Forord Vi har i denne oppgaven sett på kryptografiske hashfunksjoner. Vi starter rapporten med å se

Detaljer

Kapittel 2. Tall på standardform

Kapittel 2. Tall på standardform Kapittel 2. Tall på standardform Standardform er en metode som er nyttig for raskt å kunne skrive tall som er mye større enn 1 eller mye mindre enn 1. Du må kunne potensregning for å forstå regning med

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196)

Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196) Rapport Semesteroppgave i datasikkerhet Harald Dahle (795955) og Joakim L. Gilje (796196) Sammendrag Oppgaven går ut på å implementere RSA-krypteringen. Deloppgaver for denne krypteringen er å implementere

Detaljer

Gangemesteren Nybegynner Scratch PDF

Gangemesteren Nybegynner Scratch PDF Gangemesteren Nybegynner Scratch PDF Introduksjon I dag skal vi lage et nyttig spill, nemlig et spill som hjelper oss å lære andre ting. Vi skal få hjelp til å lære gangetabellen! Steg 1: Læremesteren

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Prosesslogg Hvordan klassen kom frem til problemstillingen November 2005 Desember 2005 Hvordan brukes kryptering.

Prosesslogg Hvordan klassen kom frem til problemstillingen November 2005 Desember 2005 Hvordan brukes kryptering. Samfundets Skole Kristiansand april 2006 Prosesslogg Hvordan klassen kom frem til problemstillingen November 2005 På høsten brukte vi mye tid for å komme frem til en god problemformulering. Vi startet

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Frankering og computer-nettverk

Frankering og computer-nettverk 318 Frankering og computer-nettverk Øystein J. Rødseth Universitetet i Bergen Beskrivelse av oppgaven. I denne oppgaven vil du bruke kombinatorikk, tallteori og muligens også litt analyse. Oppgaven er

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 8 dag 1 1. Tidlig en morgen starter en snegle på bakken og klatrer oppover en 12 meter høy stolpe. Hver dag kryper den 2 meter oppover, men om natten sklir den

Detaljer

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal Veiledning og oppgaver til OpenOffice Calc Regneark 1 Grunnskolen i Nittedal Regneark 1 Når du er ferdig med heftet skal du kunne: Vite hva et regneark er. Oppstart og avslutning av OpenOffice Calc. Flytting

Detaljer

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Richard Williamson 3. desember 2014 Oppgave 1 La n være et naturlig tall. Bevis at det finnes et primtall p slik at p >

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Tallenes hemmeligheter

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 2 Tallenes hemmeligheter QED 5 10 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Tallenes hemmeligheter Kapittel Oppgave 5. Nei Oppgave 7. Addisjon og multiplikasjon Oppgave 8. b) Hvis vi ser på hele tall er {1},

Detaljer

Del 1: Overgang fra gammel hjemmeside til ny hjemmeside

Del 1: Overgang fra gammel hjemmeside til ny hjemmeside Del 1: Overgang fra gammel hjemmeside til ny hjemmeside Instituttsider og personlige hjemmesider som ligger på HFs egen webserver skal nå fases ut.dette innebærer at alle som fortsatt har hjemmesider der,

Detaljer

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi

Lokal læreplan. Lærebok: Gruntall. Læringsstrategi Lokal læreplan Lærebok: Gruntall Antall uker 34-37 Tall -lære de fire regneartene i hele tall, desimaltall og negative tall og i hoderegning og overslagsregning. -lære å bruke lommeregner og regneark -kjenne

Detaljer

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6 Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Tallinjen FRA A TIL Å

Tallinjen FRA A TIL Å Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen

Detaljer

Kengurukonkurransen 2008 > Et sprang inn i matematikken <

Kengurukonkurransen 2008 > Et sprang inn i matematikken < Kengurukonkurransen 2008 > Et sprang inn i matematikken < Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2008 Velkommen til Kengurukonkurransen! I år arrangeres den for fjerde gang i Norge.

Detaljer

Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software)

Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software) 1 Elementær Kryptografi (Appendix A, Cryptography Basics, Building Secure Software) Mich ael Morten sen m ich aelm @ii.u ib.n o 10/ 10/ 05 INF329 Utviklin g av sikre ap p likasjon er 2 Elementær kryptografi

Detaljer

Årsplan i Matematikk 7. trinn

Årsplan i Matematikk 7. trinn Årsplan i Matematikk 7. trinn 2016-2017 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Tall og tallforståelse Uke 34-35/36 Brøk Uke 36-39 Kunne beskrive plassverdisystemet

Detaljer

Teori om sikkerhetsteknologier

Teori om sikkerhetsteknologier Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Tomas Holt 22.8.2007 Lærestoffet er utviklet for faget LN479D/LV473D Nettverksikkerhet Innhold 1 1 1.1 Introduksjon til faget............................

Detaljer

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235

Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Kapittel 1 Tall og tallregning Mer øving Oppgave 1 Hva er verdien av hvert av sifrene i tallene? a 123,45 b 305,29 c 20,406 d 0,235 Oppgave 2 Skriv tallene med sifre a To hundrere, en tier, fem enere og

Detaljer

Matematisk julekalender for 8. - 10. trinn, 2008

Matematisk julekalender for 8. - 10. trinn, 2008 Matematisk julekalender for. - 0. trinn, 200 Årets julekalender for.-0. trinn består av 0 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle svar tilsvarer en bokstav, og bokstavene finner

Detaljer

OFFENTLIG-NØKKELKRYPTOGRAFI

OFFENTLIG-NØKKELKRYPTOGRAFI OFFENTLIG-NØKKELKRYPTOGRAFI S. O. SMALØ Abstract. I dette notatet, som skal inngå som pensum i etterog viderutdanningskurs i datasikkerhet, vil vi gi en kort innføring i oentlig-nøkkel-kryptogra med illustrasjoner

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er

Detaljer

1.8 Binære tall EKSEMPEL

1.8 Binære tall EKSEMPEL 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

To nyttige begreper. Ekvivalensrelasjoner

To nyttige begreper. Ekvivalensrelasjoner To nyttige begreper Det er to begreper fra mengdelæren som til stadighet vil bli brukt i dette kurset, og som vi av erfaring vet kan være tungt fordøyelig for endel studender. For å få en skikkelig forståelse

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Slik tar du i bruk nettbanken

Slik tar du i bruk nettbanken NETTBANK Slik tar du i bruk nettbanken For nybegynnere 1 Enklere hverdag med nettbank Innledning I nettbanken kan du selv utføre en rekke banktjenester når som helst i døgnet. Fordeler med nettbank Full

Detaljer

INNHOLD SAMMENDRAG TALL OG TALLREGNING

INNHOLD SAMMENDRAG TALL OG TALLREGNING SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no Nummer 8-10 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no Hvorfor styrker man algebra i skolen? Det klages over at begynnerstudenter ved ulike høgskoler/universiteter har

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier er lure måter å tenke på som gjør at det blir enklere å regne. Bruk av hoderegning påvirker elevenes

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer