IN1020. Sekvensiell Logikk

Størrelse: px
Begynne med side:

Download "IN1020. Sekvensiell Logikk"

Transkript

1 IN12 Sekvensiell Logikk

2 Hovedpunkter Definisjoner Portforsinkelse Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer og tilstandstabeller Omid Mirmotahari 2

3 Definisjoner Kombinatorisk logikk Utgangsverdiene er entydig gitt av nåværende kombinasjon av inngangsverdier. Sekvensiell logikk Inneholder hukommelse (låsekretser). Utgangsverdiene er gitt av nåværende kombination av inngangsverdier, samt sekvensen (tidligere inngangs-/utgangsverdier) Omid Mirmotahari 3

4 Sekvensiell Logikk Omid Mirmotahari 4

5 I synkrone sekvensielle kretser skjer endringen(e) i output samtidig med endringen i et klokkesignal. I asynkrone sekvensielle kretser skjer endringen(e) i output uten noe klokkesignal. Nesten alle kretser er synkrone. Et klokkesignal er et digitalt signal som veksler mellom og 1 med fast takt. 1 Klokkeperiode Stigende flanke Fallende flanke Omid Mirmotahari 5

6 Synkron logikk I større digitale system har man behov for å synkronisere dataflyten. Til dette bruker vi et globalt klokkesignal Uten global synkroniskering ville det vært total kaos Omid Mirmotahari 6

7 Den omvendte av klokkeperioden kalles (klokke)frekvensen, altså frekvens = 1 klokkeperioden Ønsker så høy klokkefrekvens som mulig, fordi hver enkelt operasjon da bruker så kort tid som mulig. Maksimal klokkefrekvens bestemmes av flere faktorer, blant annet: Lengde på signalveiene Last Forsinkelse gjennom porter (delay) Teknologi. NB: Hastighet er ikke direkte proporsjonal med klokkefrekvens. Omid Mirmotahari 7

8 Portforsinkelse / tidsforsinkelse a b F 1 a 1 1 b F Omid Mirmotahari 8

9 Logisk dybde Logisk dybde: Antall porter et signal passerer fra inngang til utgang. Ved å redusere logisk dybde reduseres forsinkelsen gjennom kretsen. Eksempel: a b E c F Omid Mirmotahari 9

10 Praktiske eksempler Logikk som behandler signaler fra fysiske sensorer: IR-lys Varmefølende persondetektor IR sensor /1 Reset S R Låse krets /1 24V relé Alarm sirene Når IR-lyset varierer mottat logikken et ras av kortvarige 1 er pulser (msek). Logikken skal sette sirenen permanent på første mottatte puls. Omid Mirmotahari 1

11 Praktiske eksempler Logikk som behandler signaler fra fysiske sensorer: Laserbasert tyveridetektor Laser Lysbrudd Lys sensor /1 Reset S R Låse krets /1 24V relé Alarm sirene Når laserlyset blir brutt mottar logikken en eller flere 1 er pulser. Logikken skal sette sirenen permanent på første mottatte puls. Omid Mirmotahari 11

12 SR-latch funksjonell beskrivelse 1) Kretsen skal sette til 1 hvis den får 1 på inngang S. Når inngang S går tilbake til skal forbli på 1 S R 2) Kretsen skal resette til når den får 1 på inngang R. Når inngang R går tilbake til skal forbli på 1) Tilstanden 1 på både S og R brukes normalt ikke SR S R låst 1 Omid Mirmotahari 12

13 SR-latch funksjonell beskrivelse S (set) R (reset) Spenning S R SR S R låst 1 Tid Omid Mirmotahari 13

14 SR-latch Portimplementasjon NOR S Øvre NOR S Nedre NOR R R *Signalet er ikke invertert av for tilstand S=1, R=1 Omid Mirmotahari 14

15 SR-latch Analyse Tilstand S=, R=: En NOR port med fast inn på en av inngangene er ekvivalent med NOT S= R= = SR S R Øvre NOR S Nedre NOR R Ser bort i fra tilstand S=1 og R=1 Omid Mirmotahari 15

16 SR-latch Analyse Tilstand S=1, R=: En NOR port med fast 1 inn på en av inngangene gir alltid ut S=1 R= = SR S R Øvre NOR S Nedre NOR R =1 Omid Mirmotahari 16

17 D-Latch Dataflyten gjennom en D-latch kontrolleres av et klokkesignal 1) Slipper gjennom et digital signal så lenge klokkeinngangen er 1 (transparent) 2) I det øyeblikket klokkeinngangen går fra 1 til låser utgangen seg på sin nåværende verdi. Forandringer på inngangen vil ikke påvirke utgangsverdien så lenge klokkesignalet er D Clk Omid Mirmotahari 17

18 D-Latch Clk = 1 : kretsen slipper gjennom signalet Clk = : kretsen holder (låser) utgangssignalet D Clk D Clk Logisk verdi på D i det øyeblikk Clk går i fra 1 til bestemmer verdien som holdes på Omid Mirmotahari 18

19 Flip-flop Flip-Flop er kommer i to varianter: Positiv flanketrigget Negativ flanketrigget På en positiv flanketrigget Flip-Flop kan utgangen kun skifte verdi i det øyeblikk klokkesignalet går fra til 1. Hakk, indikerer flanketrigget D Clk På en negativ flanketrigget Flip-Flop kan utgangen kun skifte verdi i det øyeblikk klokkesignalet går fra 1 til. D Clk Omid Mirmotahari 19

20 D-Flip-Flop En D latch er transparent for Clk=1 D Clk D Clk En positiv flanketrigget D flip-flop sampler verdien på D i det øyeblikk Clk går fra til 1 (positiv flanke). Denne verdien holdes fast på utgangen helt til neste positive flanke D Clk D Clk Omid Mirmotahari 2

21 Karakteristisk tabell/ligning For flip-flop er kan man generelt beskrive neste utgangsverdi (t+1) som funksjon av nåværende inngangsverdi(er), og nåværende utgangsverdi (t) Karakteristisk tabell for D flip-flop D Clk D Clk D 1 (t+1) 1 Karakteristisk ligning for D flip-flop (t+1) = D Omid Mirmotahari 21

22 D-Flip-Flop En positiv flanketrigget D flip-flop kan lages av to D-latcher (Master-Slave) Master Slave D D1 Clk1 1 D2 Clk2 2 = D Clk D Clk Clk Under Clk= er første D latch (master) transparent Under Clk=1 er siste D latch (slave) transparent Omid Mirmotahari 22

23 D-Flip-Flop kompakt versjon Omid Mirmotahari 23

24 D-Flip-Flop, eksempel En rippeladder vil i et kort tidsrom gi gal sum ut. Styring av signalflyt med D flip-flops kamuflerer dette Clk A Clk B Clk 3 A Clk 3 2 B Clk A Clk 2 1 B Clk 1 A Clk B D FF D FF D FF D FF D FF D FF D FF D FF Clk D FF C 4 Fulladder C 3 C 2 Fulladder Fulladder Halvadde r Clk Clk Clk Clk D FF D FF D FF D FF C 1 C 4 S 3 S 2 S 1 S På positiv Clk flanke kommer nye data inn til adderen. I samme øyeblikk leses forrige (stabiliserte) sum ut. Omid Mirmotahari 24

25 JK Flip-Flop Kretsoppbygging Grafisk symbol Omid Mirmotahari 25

26 JK Flip-Flop En JK flip-flop har følgende egenskaper J=, K=: Utgang låst J=, K=1: Resetter utgang til J=1, K=: Setter utgang til 1 J=1, K=1: Inverterer utgang " Utgangen kan kun forandre verdi på stigende klokkeflanke En JK flip-flop er den mest generelle flip-floppen vi har J K (t+1) (t) 1 (t) Omid Mirmotahari 26 (t+1) = J (t) + K (t)

27 T Flip-Flop Kretsoppbygging Grafisk symbol Omid Mirmotahari 27

28 T Flip-Flop En T flip-flop har følgende egenskaper T=, T=1, Utgang låst Inverterer utgang " Utgangen kan kun forandre verdi på stigende klokkeflanke Det er lett å lage tellere av T flip-flop er T (t+1) (t) 1 (t) (t+1) = TÅ(t) Omid Mirmotahari 28

29 Tilstandsmaskin En tilstandsmaskin er et sekvensielt system som gjennomløper et sett med tilstander styrt av verdiene på inngangssignalene Tilstanden systemet befinner seg i, pluss evt. inngangsverdier bestemmer utgangsverdiene Tilstandsmaskins-konseptet gir en enkel og oversiktlig måte å designe avanserte system på Omid Mirmotahari 29

30 Tilstandsmaskin Generell tilstandsmaskin basert på D flip-flops N-stk flip-flops gir 2 N forskjellige tilstander Utgangssignalene er en funksjon av nåværende tilstand pluss evt. inngangsverdier Omid Mirmotahari 3

31 Tilstandsdiagram Tilstandsdiagram = grafisk illustrasjon av egenskapene til en tilstandsmaskin Eksempel: Inngangsverdi x som medfører ny tilstand, samt utgangsverdi y for opprinnelig tilstand med inngangsverdi x x / y Tilstand A B / 1/ /1 1 1/ /1 /1 1/ 1 1/ 11 Omid Mirmotahari 31

32 Tilstandstabell Tilstandstabell = sannhetstabell for tilstandsmaskin Eksempel: En inngang, en utgang og 2 stk. D flip-flops Nåværende tilstand Inngang Neste tilstand A B x y A B Utgang for nåværende tilstand Omid Mirmotahari 32

33 x D A A Tilstandsmaskin der utgang y er en funksjon av tilstanden gitt av verdiene til A og B, samt inngangen x clk D B A B B y Omid Mirmotahari 33

INF1400. Sekvensiell logikk del 1

INF1400. Sekvensiell logikk del 1 INF4 Sekvensiell logikk del Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAN-porter -latch Flip-flop Master-slave -flip-flop JK flip-flop T-flip-flop Omid Mirmotahari 3 efinisjoner

Detaljer

INF1400. Sekvensiell logikk del 1

INF1400. Sekvensiell logikk del 1 INF1400 Sekvensiell logikk del 1 Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAND-porter D-latch Flip-flop Master-slave D-flip-flop JK flip-flop T-flip-flop Omid Mirmotahari

Detaljer

Forelesning 6. Sekvensiell logikk

Forelesning 6. Sekvensiell logikk Forelesning 6 Sekvensiell logikk Hovedpunkter Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAN latch Flip-Flops Master-slave flip-flop JK flip-flop T flip-flop 2 efinisjoner Kombinatorisk

Detaljer

INF2270. Sekvensiell Logikk

INF2270. Sekvensiell Logikk INF227 Sekvensiell Logikk Hovedpunkter Definisjoner Portforsinkelse Shift register Praktiske Eksempler Latch SR D Flip-Flop D JK T Tilstandsmaskiner Tilstandsdiagrammer Reduksjon av tilstand Ubrukte tilstander

Detaljer

Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAND D latch. Master-slave D flip-flop JK flip-flop T flip-flop

Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAND D latch. Master-slave D flip-flop JK flip-flop T flip-flop Hovedunkter Kaittel 5 ekvensiell logikk Låsekretser (latch er) R latch bygget med NOR R latch bygget med NAN latch Fli-Flos Master-slave fli-flo JK fli-flo flo T fli-flo 2 Kombinatorisk logikk efinisjoner

Detaljer

Repetisjon digital-teknikk. teknikk,, INF2270

Repetisjon digital-teknikk. teknikk,, INF2270 Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,

Detaljer

Forelesning 7. Tilstandsmaskin

Forelesning 7. Tilstandsmaskin Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre

Detaljer

INF1400. Tilstandsmaskin

INF1400. Tilstandsmaskin INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for

Detaljer

Kapittel 5 Tilstandsmaskin

Kapittel 5 Tilstandsmaskin Hovedpunkter Kapittel 5 Tilstandsmaskin Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert smaskin Reduksjon av antall er Tilordning av skoder Designprosedyre for smaskin basert

Detaljer

INF1400. Tilstandsmaskin

INF1400. Tilstandsmaskin INF4 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D-flip-flop tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre for

Detaljer

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram. Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell

Detaljer

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Hovedpunkter Pensumoversikt Gjennomgang av sentrale deler av pensum Div informasjon

Detaljer

Løsningsforslag INF1400 H04

Løsningsforslag INF1400 H04 Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk

Detaljer

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch

Dagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19

Detaljer

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til: 2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell

Detaljer

Oppsummering digital-teknikk, teknikk, INF2270

Oppsummering digital-teknikk, teknikk, INF2270 Oppsummering digital-teknikk, teknikk, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,

Detaljer

LØSNINGSFORSLAG 2006

LØSNINGSFORSLAG 2006 LØSNINGSFORSLAG 2006 Side 1 Oppgave 1), vekt 12.5% 1a) Bruk Karnaughdiagram for å forenkle følgende funksjon: Y = a b c d + a b c d + a b cd + a bc d + a bc d + ab c d + ab cd ab cd 00 01 11 10 00 1 1

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

TFE4101 Krets- og Digitalteknikk Høst 2016

TFE4101 Krets- og Digitalteknikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på

Detaljer

VLSI (Very-Large-Scale-Integrated- Circuits) it Mer enn porter på samme. LSI (Large-Scale-Integrated-Circuits)

VLSI (Very-Large-Scale-Integrated- Circuits) it Mer enn porter på samme. LSI (Large-Scale-Integrated-Circuits) Teknologier Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) VLSI (Very-Large-Scale-Integrated- Circuits) it Mer enn porter på samme

Detaljer

INF3340/4340. Synkrone design Tilstandsmaskiner

INF3340/4340. Synkrone design Tilstandsmaskiner INF3340/4340 Synkrone design Tilstandsmaskiner 18.09.2007 Agenda Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL

Detaljer

INF3340/4431. Tilstandsmaskiner

INF3340/4431. Tilstandsmaskiner INF3340/4431 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner SM tilstandsdiagrammer Syntese av SM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430/4431 -

Detaljer

INF3340. Tilstandsmaskiner

INF3340. Tilstandsmaskiner INF3340 Tilstandsmaskiner Innhold Tilstandsmaskiner Mealy og Moore maskiner ASM tilstandsdiagrammer Syntese av ASM diagrammer Tilstandskoding Implementasjon ved bruk av VHDL Eksempler INF3430-Tilstandsmaskiner

Detaljer

INF1400. Kombinatorisk Logikk

INF1400. Kombinatorisk Logikk INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre

Detaljer

Notater: INF2270. Veronika Heimsbakk 10. juni 2014

Notater: INF2270. Veronika Heimsbakk 10. juni 2014 Notater: INF2270 Veronika Heimsbakk veronahe@student.matnat.uio.no 10. juni 2014 Innhold 1 Binære tall og tallsystemer 3 1.1 Tallsystemer............................ 3 1.2 Konvertering...........................

Detaljer

Forelesning 4. Binær adder m.m.

Forelesning 4. Binær adder m.m. Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på

Detaljer

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103

Detaljer

Del 10: Sekvensielle kretser YNGVAR BERG

Del 10: Sekvensielle kretser YNGVAR BERG el 10: Sekvensielle kretser YNGVAR BERG I. Innhold Grunnleggende problematikk ved sekvensiering blir gjennomgått. Sekvenseringsmetoder med vipper, tofase transparente latcher og latcher som styres av klokkepulser

Detaljer

IN1020. Logiske porter om forenkling til ALU

IN1020. Logiske porter om forenkling til ALU IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: 5/12-2006 Tid for eksamen: 15:30 18:30 Oppgavesettet er på: 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Synkron logikk. Sekvensiell logikk; to typer:

Synkron logikk. Sekvensiell logikk; to typer: Sekvensiell logikk De fleste digitale systemer har også minneelementer (f.eks flipflopper) i tillegg til kombinatorisk logikk, og kalles da sekvensiell logikk Output i en sekvensiell krets er avhengig

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

INF1400. Digital teknologi. Joakim Myrvoll 2014

INF1400. Digital teknologi. Joakim Myrvoll 2014 INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................

Detaljer

Forelesning 9. Registre, tellere og minne

Forelesning 9. Registre, tellere og minne Forelesning 9 Registre, tellere og minne Registre Tri-state output Shift registre Tellere Binær rippelteller Synkronteller Hovedpunkter registre og tellere 2 Register N bits register - parallellkobling

Detaljer

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form?

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form? Jeg har rettet alle oppgavene og legger ut et revidert løsningsforslag. Noen av besvarelsene var glitrende! 6. Hva er desimalverdien av 0 0000 0000 (2)? Tallet er gitt på toerkomplement binær form. Eneren

Detaljer

Digitalstyring sammendrag

Digitalstyring sammendrag Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC

Detaljer

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8) 7. juni Side 8 av 17 11) Gitt det negative desimale tallet -20 (10). Hva er det samme tallet på binær 2 skomplement form? A) 110100 (2) B) 101100 (2) C) 001011 (2) Vi starter med å finne binær form av

Detaljer

VHDL En kjapp introduksjon VHDL. Oversikt. VHDL versus C(++)/Java

VHDL En kjapp introduksjon VHDL. Oversikt. VHDL versus C(++)/Java Oversikt VHDL En kjapp introduksjon Definisjoner Designparadigmer Generell VHDL-struktur Dataflow -beskrivelse Structural -beskrivelse Behaviour -beskrivelse Objekter /datatyper Operatorer Tips for syntese

Detaljer

INF1400. Karnaughdiagram

INF1400. Karnaughdiagram INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige

Detaljer

Løsningsforslag til eksamen i INF2270

Løsningsforslag til eksamen i INF2270 Løsningsforslag til eksamen i INF227 Oppgave 9 Omid Mirmotahari Oppgave 6 Dag Langmyhr. juni 24 Eksamen INF227 Sensorveiledning Oppgave 2 Kretsforenkling Hva er funksjonsuttrykket for Output gitt av A

Detaljer

INF 3430/4430. Viktige momenter i syntese og for valg av teknologi

INF 3430/4430. Viktige momenter i syntese og for valg av teknologi INF 3430/4430 Viktige momenter i syntese og for valg av teknologi 17.10.2007 Agenda RTL syntese Constraints Pipelining Syntese for FPGA Behavorial syntese INF3430/4430 Side 2 RTL/ Behavorial syntese RTL

Detaljer

GRUNNLEGGENDE problematikk ved sekvensiering blir

GRUNNLEGGENDE problematikk ved sekvensiering blir el 10: Sekvensielle kretser YNGVAR BERG 1 I. Innhold GRUNNLEGGENE problematikk ved sekvensiering blir gjennomgått. Sekvenseringsmetoder med vipper, tofase transparente latcher og latcher som styres av

Detaljer

INF2270. Boolsk Algebra og kombinatorisk logikk

INF2270. Boolsk Algebra og kombinatorisk logikk INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk

Detaljer

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 10 Våren 2007

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 10 Våren 2007 INF3400/4400 igital Mikroelektronikk Løsningsforslag EL 10 Våren 2007 YNGVAR BERG el 10: Sekvensielle kretser Soner for ikke overlapp A. Oppgave 7.1 I. Oppgaver TC/2 Term t ccq 35ps 35ps t pcq 50ps 50ps

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 10

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 10 INF3400/4400 igital Mikroelektronikk Løsningsforslag EL 10 YNGVAR BERG el 10: Sekvensielle kretser Soner for ikke overlapp A. Oppgave 7.1 I. Oppgaver Term t ccq 35ps 35ps t pcq 50ps 50ps t pdq 40ps t setup

Detaljer

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter

Detaljer

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 10

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 10 INF3400 igital Mikroelektronikk Løsningsforslag EL 10 YNGVAR BERG el 10: Sekvensielle kretser Soner for ikke overlapp I. Oppgaver A. Oppgave 7.1 TC/2 Term t ccq 35ps 35ps t pcq 50ps 50ps t pdq 40ps t setup

Detaljer

INF1400 Kap4rest Kombinatorisk Logikk

INF1400 Kap4rest Kombinatorisk Logikk INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og

Detaljer

MAX MIN RESET. 7 Data Inn Data Ut. Load

MAX MIN RESET. 7 Data Inn Data Ut. Load UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 11 Latcher og vipper

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 11 Latcher og vipper INF3400 igital Mikroelektronikk Løsningsforslag EL 11 er og vipper NGVAR BERG I. Oppgaver A. Forklar hvordan en statisk latch virker A.1 Løsningsforslag Teori Fig. 3. ynamisk latch med transmisjonsport

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 Eksamensdag : 2 september 1998 (utsatt grunnet streik V-98) Tid for eksamen : l.0900-1500 Oppgavesettet er på

Detaljer

Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer

Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer 4. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Klokkegenerator En klokkegenerator

Detaljer

KONVENSJONELLE latcher og vipper i CMOS blir gjennomgått.

KONVENSJONELLE latcher og vipper i CMOS blir gjennomgått. el 11: Latcher og vipper 1 NGVAR BERG I. Innhold KONVENSJONELLE latcher og vipper i CMOS blir gjnomgått. Latcher som styres av to klokkefaser og klokkepulser blir diskutert. Lacher og vipper med, og able

Detaljer

4 kombinatorisk logikk, løsning

4 kombinatorisk logikk, løsning 4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =

Detaljer

- - I Aile trykte og skrevne. samt kalkulator

- - I Aile trykte og skrevne. samt kalkulator 6 hegskolen i oslo!~ne: Faglig veileder: i_d~maskinarkite~tur i Gruppe(r) Eksam e nsti d : 5 I EkSamensoppgaven besclr av: I Tillatte hjelpemidler Antan-slder (Ink[ i forsiden): 5 - - I Aile trykte og

Detaljer

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317

Detaljer

Tilstandsmaskiner (FSM) Kapittel 5

Tilstandsmaskiner (FSM) Kapittel 5 Tilstandsmaskiner (FSM) Kapittel 5 1) Sette opp tilstandsdiagram Tradisjonell konstruksjonsmetode 2) Sette opp tilstandstabell ut fra tilstandsdiagrammet Nåværende tilstand (PS) og input Neste tilstand

Detaljer

1 Vekt 15% 1-a. 1-b. 1-c. 1-d

1 Vekt 15% 1-a. 1-b. 1-c. 1-d UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN240Digitalsystemkonstruksjon Eksamensdag: 13. desember 1994 Tidforeksamen: 9.0015.00 Oppgavesettet erpå5sider. Vedlegg: Ingen

Detaljer

Institiutt for informatikk og e-læring, NTNU Kontrollenheten Geir Ove Rosvold 4. januar 2016 Opphavsrett: Forfatter og Stiftelsen TISIP

Institiutt for informatikk og e-læring, NTNU Kontrollenheten Geir Ove Rosvold 4. januar 2016 Opphavsrett: Forfatter og Stiftelsen TISIP Geir Ove Rosvold 4. januar 2016 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen ser vi på kontrollenheten. s funksjon diskuteres, og vi ser på de to måtene en kontrollenhet kan bygges

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 / FY108 Eksamensdag : 16 juni 2003 Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : Logaritmepapir

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4] Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Faglig kontakt: Ragnar Hergum (1 3.5) / Per Gunnar

Detaljer

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat

Detaljer

Fys 3270/4270 høsten Laboppgave 2: Grunnleggende VHDL programmering. Styring av testkortets IO enheter.

Fys 3270/4270 høsten Laboppgave 2: Grunnleggende VHDL programmering. Styring av testkortets IO enheter. Fys 3270/4270 høsten 2004 Laboppgave 2: Grunnleggende VHDL programmering. Styring av testkortets IO enheter. Innledning. Målet med denne laboppgaven er at dere skal lære å lage enkle hardware beskrivelser

Detaljer

INF2270. Datamaskin Arkitektur

INF2270. Datamaskin Arkitektur INF2270 Datamaskin Arkitektur Hovedpunkter Von Neumann Arkitektur ALU Minne SRAM DRAM RAM Terminologi RAM Signaler Register Register overføringsspråk Von Neumann Arkitektur John von Neumann publiserte

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

GRUNNLEGGENDE problematikk ved sekvensiering blir

GRUNNLEGGENDE problematikk ved sekvensiering blir el 10: Sekvensielle kretser YNGVAR BERG I. Innhold GRUNNLEGGENE problematikk ved sekvensiering blir gjennomgått. Sekvenseringsmetoder med vipper, tofase transparente latcher og latcher som styres av klokkepulser

Detaljer

PENSUM INF1400 H11. Joakim Myrvoll Johansen. Digital Design, M. Morris Mano, 4th edition

PENSUM INF1400 H11. Joakim Myrvoll Johansen. Digital Design, M. Morris Mano, 4th edition PENSUM INF1400 H11 Digital Design, M. Morris Mano, 4th edition Joakim Myrvoll Johansen 1 STIKKORDREGISTER: 2'er komplement s. 20 AND s. 25 Binær adder s. 34 Boolsk algebra s. 22, 26 CMOS s. 10 CPU s. 48

Detaljer

Forslag B til løsning på eksamen FYS august 2004

Forslag B til løsning på eksamen FYS august 2004 Forslag B til løsning på eksamen FYS20 3 august 2004 Oppgave (Sweeper frekvensområdet 00Hz til 0MHz Figur viser et båndpassfilter. Motstandene R og R2 har verdi 2kΩ. Kondensatorene C = 00nF og C2 = 0.nF.

Detaljer

SIE 4005, 8/10 (3. Forelesn.)

SIE 4005, 8/10 (3. Forelesn.) SIE 4005, 8/10 (3. Forelesn.) Andre forelesning: litt repetisjon 7.7 Arithmetic / Logic unit 7.8 The Shifter 7.9 Datapath representation 7.10 The control word 7.11 Pipelined datapath Tredje forelesning:

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 9 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Forelesning 5. Diverse komponenter/større system

Forelesning 5. Diverse komponenter/større system Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall

Detaljer

EKSAMEN (Del 1, høsten 2014)

EKSAMEN (Del 1, høsten 2014) EKSAMEN (Del 1, høsten 2014) Emnekode: ITD13012 Emne: Datateknikk Dato: 03.12.2014 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Lab 5 Enkle logiske kretser - DTL og 74LS00

Lab 5 Enkle logiske kretser - DTL og 74LS00 Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 5 Enkle logiske kretser - DTL og 74LS00 Sindre Rannem Bilden 4. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Funksjonstabell En logisk

Detaljer

SIE 4005, 2/10 (2. Forelesn.)

SIE 4005, 2/10 (2. Forelesn.) SIE 4005, 2/10 (2. Forelesn.) Første forelesning: 7.1 Datapaths and operations 7.2 Register Transfer operations 7.3 Microoperations (atitm., logic, shift) 7.4 MUX-based transfer 7.5 Bus-based transfer

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 8

VEILEDNING TIL LABORATORIEØVELSE NR 8 VEILEDNING TIL LABORATORIEØVELSE NR 8 «DIGITALVOLTMETER» FY-IN 204 Revidert utgave 98-03-05 Veiledning FY-IN 204 : Oppgave 8 8 Digital voltmeter Litteratur: Skjema på fig. 1, Millmann side 717-720 Oppgave:

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid kl. 09:00 13:00. Digital sensorveiledning

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid kl. 09:00 13:00. Digital sensorveiledning 5.juni 2 Digital sensorveiledning 4.6.2 Side av 4 BOKMÅL NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Bjørn B. Larsen 73 59 44

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK

Detaljer

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk Bokmål / Nynorsk / English Side av 4 NOGES TEKNISK- NATUITENSKAPELIGE UNIESITET INSTITUTT FO FYSIKK Steinar aaen, tel.482 96 758 Eksamen TFY485 Måleteknikk Lørdag 7. desember 20 Tid: 09.00-3.00 Tillatt

Detaljer

Forslag til løsning på eksame n FY-IN 204 våren 2002

Forslag til løsning på eksame n FY-IN 204 våren 2002 Forslag til løsning på eksame n FY-N 04 våren 00 Spenningsforsterkningen er tilnærmet gitt av motstandene og. Motstanden har ingen innflytelse på forsterkningen. For midlere frekvenser ser vi bort fra

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK .juni 20 Side av 9 NORGES TEKNISK- BOKMÅL NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 37 (Digitaldel)

Detaljer

Gruppa består av studenter fra AU2: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen

Gruppa består av studenter fra AU2: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen Gruppa består av studenter fra AU: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen Dette er et prosjekt som ble gitt i faget Digitalteknikk ved Høgskolen i Tromsø avd. Ingeniør, år 003. Prosjektet

Detaljer