Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Størrelse: px
Begynne med side:

Download "Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall"

Transkript

1 Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL Som binært tall (internt, native ) Eksempel: = Brukes som internt format ved lagring og beregninger Verdien av et binært tall er (jf. lysark tall-9) x = s (n-) + s * (n-) + + s n- * () + s n * () = s * (n-) + s * (n-) + + s n- * () + s n * () n = s k * (n-k) Vi skal her se nærmere k= på binære tall INF-repravtall- INF-repravtall- Binære regnestykker Enkel addisjonstabell + = + = + = Tall som tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Binære tall positive, negative heltall, flytende tall + = med i mente Enkel multiplikasjonstabell * = * = * = * = Et binært tall ganges med ved å føye til en bakerst Disse operasjonene kan utføres på nanosekunder i datamaskinenes elektroniske kretser INF-repravtall- INF-repravtall-

2 Binær addisjon - eksempel Binær multiplikasjon - eksempel =, = = = = * + * = + = * = * + * + 9 * = = INF-repravtall- INF-repravtall- Overløp ("overflow") I en datamaskin regner vi som regel med tallrepresentasjoner med et fastlagt antall biter (vanligvis 8,,, eller ) Dersom en aritmetisk operasjon fører til at resultatet faller utenfor det mulige tallområdet, har vi et overløp ("overflow") Regneenheten sender da et signal til den omkringliggende programvaren slik at den kan ta seg av situasjonen (feilmelding) Eksempel forutsetter 8 biters tallrepresentasjon Negative tall Mange representasjonsmuligheter, men stor fordel om vi kan bruke samme elektronikk for å regne som for positive tall Derfor representeres negative tall som komplementer Vi ser først på litt "klokkearitmetikk" (modulo-operasjoner) Deretter lager vi oss en -timers ( biters) klokke, og blir enige om at tallene på venstre del av skiven (som alle starter med en binær ) skal tolkes som negative = = 8 biter begrenser mulig tallområde til [,,] + = 9 Modulo-operatoren utføres ganske enkelt ved å se bort fra overløpet overløp INF-repravtall- INF-repravtall-8

3 "Klokkearitmetikk" Negative tall som er-komplement Hvis klokka er, hvor mye er den om timer? Jo: (+)% %: Modulo-operanden (rest av heltallsdivisjon) Tenk deg en digital teller som står på. Drei den i negativ retning. Første nye tall som dukker opp er komplementet til, dvs INF-repravtall-9 INF-repravtall- "Klokkearitmetikk" er-komplement Forutsetter -biters tallrepresentasjon, gir verdiområdet [ 8,,] Hvis klokka er, hvor mye er den om timer? Jo: (+)% er-komplementet Det binære er-komplementet er lett å beregne: Ta et binært tall Erstatt alle med, alle med (legg merke til at vi må vite antall biter for tallrepresentasjonen) Legg til Eksempel: = (forutsetter 8 bit) er-komplementet er + =, dvs. * + * = Regne ut + ( ): + = = * = Hva er det binære er-komplementet til? INF-repravtall- INF-repravtall-

4 Noen observasjoner om er-komplement Positive binære tall begynner på (mest signifikante bit, MSB =) Negative binære tall begynner på (mest signifikante bit, MSB =) Dersom vi adderer to tall og får mente som renner over i forkant, skal menten bare kastes dette er en konsekvens av trikset med er-komplementrepresentasjon Men dersom overløpsmenten ( eller ) ikke har samme verdi ( eller ) som foregående mente, har vi et overløp! Eksempel: To ulike menter -> overløp Se Dersom vi legger sammen et binært tall med dets er-komplement, får vi (selvfølgelig ) er-komplementet av er-komplementet av et tall er tallet dette gjelder dog ikke for tallet - n ( the weird number ) En annen vri tall med "bias" Vi skal representere tallene [ 8,,] (8 biters tallrepresentasjon) Vi legger en bias 8 til alle tallene, slik at vi istedenfor kan representere tallene [,,] og det er jo helt kurant Ved addisjon kommer bias med to ganger, så vi må trekke den fra igjen Eksempel (forutsetter 8 biters tallrepresentasjon og derfor bias 8): Vi skal addere og. bias 8 = 8 = - bias 8 = = = + - = = * = = bias 8 Dette prinsippet brukes for eksponenten i flytende tall, se lysark Tall-xx INF-repravtall- INF-repravtall- Heltallstyper i Java Flytende tall datatype byte antall biter 8 minste tall 8 største tall Hva hvis heltallsområdet ikke er stort nok? Hva med desimaler etter komma? short 8 Svaret er flytende tall! int long Vi ser først på den desimale verden: Et tall kan skrives som eksponent * mantisse Legg merke til at største tall er en mindre enn minste tall med motsatt fortegn. Tallet tar den første positive plassen! Eksempler: *, = *, = *, = *, =, - *, =, *, =, - *, =, *, =, INF-repravtall- INF-repravtall-

5 Et binært flytende tall er basert på eksponent * mantisse Vi må representere eksponent og mantisse Begge må kunne være både positive og negative (og null) Mange representasjonsmuligheter, verden har imidlertid standardisert på IEEE To varianter: Binære flytende tall -biter representasjon (single precision, datatype real ) Single precision Double precision Binære flytende tall (forts.) fortegnsbit 8 eksponent med bias mantisse. Ikke-lagret ledende med antatt binærpunkt fortegnsbit eksponent med bias mantisse Vi legger en bias til eksponenten slik at representasjonen aldri er negativ! -biter representasjon (double precision, datatype double ) se INF-repravtall-. Ikke-lagret ledende med antatt binærpunkt Mantissen er normalisert, slik at første bit alltid er. Derfor sparer vi plass ved ikke å lagre denne biten! INF-repravtall-8 datatype real double Flyttallsområder i IEEE (og i Java) antall biter minste positive tall + = + ~,8 + = + ~, og tilsvarende for negative tall minste positive tall overflow-område underflow-område største positive tall + ( )* = + ~ 8, + ( )* = + ~ 8. største positive tall overflow-område Spesielle verdier: Null: Både eksponent og mantisse er (både + og ) Uendelig: Eksponent med bare ere, mantisse med bare ere Not A Number: Eksponent med bare ere, mantisse Mantisse som starter med : Resultat av en udefinert operasjon (eksempel: /) Mantisse som starter med : Resultat av en ulovlig operasjon (eksempel: N/) INF-repravtall-9 Om presisjon og nøyaktighet Presisjon ( precision ): Hvor presist vi ønsker å representere et tall. Er direkte avhengig av hvor mange biter vi velger å bruke. Heltall er alltid presist representert innenfor tallområdet. Nøyaktighet ( accuracy ): Hvor nøyaktig vi ønsker (eller greier) å måle eller observere en størrelse. Heltall er alltid presist representert innenfor tallområdet. Presisjonen for flytende tall varierer, men er omvendt proporsjonal med tallets størrelse. Jo mindre tall, jo større presisjon! INF-repravtall-

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6 Tall Tallsstemer - - - - = = 7B - - -7-8 7 Lærebokas kapittel INF-tall- INF-tall- Posisjonstallsstemer Vårt velkjente titallsstem er et posisjonssstem: 7 = + + + + 7 eller: 7 = ( * ) + ( * ) + ( * ) +

Detaljer

INF1040 Oppgavesett 7: Tall og geometrier

INF1040 Oppgavesett 7: Tall og geometrier INF1040 Oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende

Detaljer

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier INF1040 løsningsforslag oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Hvis du finner feil i løsningsforslaget er det fint om du gir beskjed om dette ved å sende en mail til

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B TDT4160 Datamaskiner Grunnkurs Forelesning 15.11 Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B Dagens tema Datatyper (5.2) Heltall Ikke-numeriske datatyper Instruksjonsformat (5.3) Antall

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet Tall Kunne prefikser for store tall i Læringsmål tall 0000 000 titallsstemet t t 0 0-2 - 0 2-3 3 000 00 det binære tallsstemet Forstå ulike prinsipper for representasjon av 00-4 4 000 negative heltall

Detaljer

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av.

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av. Tall 1111 0000 0001 1101 1110-2 -1 0 1 2 0010 0011-3 3 1100-4 4 0100 1011-5 -6 6 5 0101 1010-7 -8 7 0110 1001 1000 0111 (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) INF1040-Tall-1 Kunne prefikser for store

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004

Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 Litt om Javas håndtering av tall MAT-INF 1100 høsten 2004 13. september 2004 En viktig del av den første obligatoriske oppgaven er å få erfaring med hvordan Java håndterer tall. Til å begynne med kan dette

Detaljer

Flyttalls aritmetikk. I datamaskinen er alle tall representert i flyttalls aritmetikk.

Flyttalls aritmetikk. I datamaskinen er alle tall representert i flyttalls aritmetikk. Flyttalls aritmetikk I datamaskinen er alle tall representert i flyttalls aritmetikk. 1/21 Det betyr at desimal punktet ( float, floating point arithmetic på engelsk) beveger seg slik at store og små tall

Detaljer

INF1040 Digital representasjon Oppsummering

INF1040 Digital representasjon Oppsummering INF1040 Digital representasjon Oppsummering Ragnhild Kobro Runde, Fritz Albregtsen INF1040-Oppsummering-1 Fredag 7. desember 2007. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 3: Ukeoppgaver fra kapittel 2 & 3 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 31. januar 2008 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

Oppsummering 2008 del 1

Oppsummering 2008 del 1 INF1040 Digital it representasjon Oppsummering 2008 del 1 Ragnhild Kobro Runde INF1040-Oppsummering-1 Fredag 5. desember 2008. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.

I Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall. Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med

Detaljer

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall

Valg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til

Detaljer

Del 1 En oversikt over C-programmering

Del 1 En oversikt over C-programmering Del 1 En oversikt over C-programmering 1 RR 2016 Starten C ble utviklet mellom 1969 og 1973 for å re-implementere Unix operativsystemet. Er et strukturert programmeringsspråk, hvor program bygges opp av

Detaljer

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet INF1000: Forelesning 12 Digital representasjon av tall og tekst Læringsmål Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet Det heksadesimale Det binære tallsystemet

Detaljer

Ordliste 2. Byte (byte) En streng på 8 biter som behandles som en enhet.

Ordliste 2. Byte (byte) En streng på 8 biter som behandles som en enhet. Ordliste 2 Dette er et forsøk på å gi forklaringer til ord og uttrykk som brukes i forbindelse med tekst og tall (og litt datakommunikasjon og kryptering) i kurset INF1040 høsten 2004. En del av nøkkelordene

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

Forelesning 5. Diverse komponenter/større system

Forelesning 5. Diverse komponenter/større system Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin INF Digital representasjon, høsten 25 Hvordan telle binært? Binære tall Skal

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 7. oktober 2015. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Programmeringsspråket C

Programmeringsspråket C Programmeringsspråket C Bakgrunn Implementasjon av Unix ved AT&Ts laboratorium i Palo Alto 1960 75. Navnet kommer fra BCPL B C. Opphavsmannnen heter Dennis Ritchie. ANSI standard i 1988; omtrent alle følger

Detaljer

Kompendium til TOD065 - Diskret matematisk programmering

Kompendium til TOD065 - Diskret matematisk programmering Kompendium til TOD065 - Diskret matematisk programmering Jon Eivind Vatne Institutt for data- og realfag, HiB, Tlf: 55587112, Mob: 90203117, jev@hib.no 27. oktober 2011 2 Introduksjon Emnet vårt tar for

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

INF1400. Kombinatorisk Logikk

INF1400. Kombinatorisk Logikk INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre

Detaljer

Leksjon 2. Setninger og uttrykk

Leksjon 2. Setninger og uttrykk 6108 Programmering i Java Leksjon 2 Setninger og uttrykk Del 2 Roy M. Istad 2015 Uttrykk, operatorer og verdier int tall = 3; int x = 1 + tall; // x er 4 Uttrykk: Variabler, verdier, konstanter og metodekall

Detaljer

Leksjon 2. Setninger og uttrykk

Leksjon 2. Setninger og uttrykk 6108 Programmering i Java Leksjon 2 Setninger og uttrykk Del 2 Roy M. Istad 2015 Uttrykk, operatorer og verdier int tall = 3; int x = 1 + tall; // x er 4 Uttrykk: Variabler, verdier, konstanter og metodekall

Detaljer

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen

Forside. MAT INF 1100 Modellering og beregninger. Mandag 9. oktober 2017 kl Vedlegg (deles ut): formelark. Tillatte hjelpemidler: ingen Forside MAT INF 1100 Modellering og beregninger Mandag 9. oktober 2017 kl 1430 1630 Vedlegg (deles ut): formelark Tillatte hjelpemidler: ingen De 10 første oppgavene teller 2 poeng hver, de 10 siste teller

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

IN 147 Program og maskinvare. Vanlige feil ved bruk av pekere Feilsøking Debuggere

IN 147 Program og maskinvare. Vanlige feil ved bruk av pekere Feilsøking Debuggere Dagens tema Vanlige feil ved bruk av pekere Feilsøking Debuggere lint Kompilatormeldinger Egne testutskrifter Flyt-tall (P&H: 4.8) Representasjon av flyt-tall Standarden IEEE 754 MIPS-operasjoner på flyt-tall

Detaljer

INF1400 Kap4rest Kombinatorisk Logikk

INF1400 Kap4rest Kombinatorisk Logikk INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3

Detaljer

Dagens tema. Nyttige programmer Programmet make. Flyt-tall Representasjon av flyt-tall. Standarden IEEE 754. Systemkall i Unix

Dagens tema. Nyttige programmer Programmet make. Flyt-tall Representasjon av flyt-tall. Standarden IEEE 754. Systemkall i Unix Dagens tema Nyttige programmer Programmet make Flyt-tall Representasjon av flyt-tall Standarden IEEE 754 Systemkall i Unix Ark 1 av 24 Programmet make Det er mange praktiske problemer forbundet med programmering

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

Plan for dagen. Vprg 4. Dagens tema - filbehandling! Strømmer. Klassen FilLeser.java. Tekstfiler

Plan for dagen. Vprg 4. Dagens tema - filbehandling! Strømmer. Klassen FilLeser.java. Tekstfiler Plan for dagen Vprg 4 LC191D Videregående programmering Høgskolen i Sør-Trøndelag Avdeling for informatikk og e-læring Anette Wrålsen Del: Intro til tekstfiler Del II: Mer om tekstfiler, Scanner-klassen

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin Hvordan telle binært? Binære tall For å bruke bit (0 og 1) som tall, må vi

Detaljer

IN 147 Program og maskinvare

IN 147 Program og maskinvare Dagens tema Basistyper i C Typekonvertering Formater i printf Pekere i C En kort repetisjon om pekere Hva er egentlig en peker? Pekere til alt og ingenting Pekere som parametre Pekere og vektorer Ark 1

Detaljer

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3.

Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF1000 ett av to alternativer for oblig 3. Oblig3Pi- en matematisk rettet obligatorisk oppgave nr. 3 (av 4) i INF ett av to alternativer for oblig 3. Leveringsfrist Oppgaven må leveres senest fredag. oktober kl 6.. Viktig: les slutten av oppgaven

Detaljer

INF1000 : Forelesning 1 (del 2)

INF1000 : Forelesning 1 (del 2) INF1000 : Forelesning 1 (del 2) Java Variable og tilordninger Heltall, desimaltall og sannhetsverdier Utskrift på skjerm Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet

Detaljer

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

Dagens tema. Representasjon av mantissen En desimalbrøk: 1 1, INF2270 INF2270 INF2270 INF2270

Dagens tema. Representasjon av mantissen En desimalbrøk: 1 1, INF2270 INF2270 INF2270 INF2270 Dagens tema Flyt-tall (B&O H-boken 2.4, 3.4) Hvordan lagres de? Hvordan regner man med dem? Bit-fikling (B&O H-boken 2..7) Skifting (B&O H-boken 3.5.3 4) Pakking Instruksjoner for enkelt-bit Flyt-tall

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

Arbeidskrav 1. Se fremdriftsplanen for innleveringsfrist. Emneansvarlig: Olav Dæhli 1

Arbeidskrav 1. Se fremdriftsplanen for innleveringsfrist. Emneansvarlig: Olav Dæhli 1 Arbeidskrav 1 Se fremdriftsplanen for innleveringsfrist Emneansvarlig: Olav Dæhli 1 Skjemaer Løsningen skal inneholde minst 3 skjemaer (Forms) Ett av skjemaene skal være en meny som kan åpne de andre skjemaene

Detaljer

Kapittel 1 En oversikt over C-språket

Kapittel 1 En oversikt over C-språket Kapittel 1 En oversikt over C-språket RR 2015 1 Skal se på hvordan man En innføring i C Skriver data til skjermen Lese data fra tastaturet Benytter de grunnleggende datatypene Foretar enkle matematiske

Detaljer

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java:

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java: Variable og tilordninger Heltall, desimaltall og sannhetsverdier Kompilering og kjøring Utskrift på skjerm Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Kort om meg. INF1000 Uke 2. Oversikt. Repetisjon - Introduksjon

Kort om meg. INF1000 Uke 2. Oversikt. Repetisjon - Introduksjon Kort om meg INF1000 Uke 2 Variable, enkle datatyper og tilordning Fredrik Sørensen Kontor: Rom 4311-NR, Informatikkbygget Brukernavn/e-post: fredrso@ifi.uio.no Utdanning: Dataingeniør, 2000 Cand.Scient,

Detaljer

som jobbet nærmest døgnet rundt i 18 måneder i Menlo Park i California for å forberede den neste bølgen innen computing.

som jobbet nærmest døgnet rundt i 18 måneder i Menlo Park i California for å forberede den neste bølgen innen computing. The Green Team Litt Java-historikk I 1991 opprettet Sun Microsystems en arbeidsgruppe som jobbet nærmest døgnet rundt i 18 måneder i Menlo Park i California for å forberede den neste bølgen innen computing.

Detaljer

Litt Java-historikk. Litt Java-historikk. Ulike varianter for ulike behov. Litt Java-historikk. The Green Team

Litt Java-historikk. Litt Java-historikk. Ulike varianter for ulike behov. Litt Java-historikk. The Green Team The Green Team Litt Java-historikk I 1991 opprettet Sun Microsystems en arbeidsgruppe som jobbet nærmest døgnet rundt i 18 måneder i Menlo Park i California for å forberede den neste bølgen innen computing.

Detaljer

Læringsmål for forelesningen

Læringsmål for forelesningen Læringsmål for forelesningen Java-programmering Tall-klasser i Java Andre wrapper-klasser Eclipse bruk av scrapbook for evaluering og utførelse av kodesnutter 1 Tall i Java (1) Java har støtte for en rekke

Detaljer

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008 MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste

Detaljer

Forelesning 4. Binær adder m.m.

Forelesning 4. Binær adder m.m. Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 8. september, 2005 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 23/9-2005, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

IN1020. Logiske porter om forenkling til ALU

IN1020. Logiske porter om forenkling til ALU IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor

Detaljer

Kompendium med oppgaver for MAT-INF Høsten Knut Mørken

Kompendium med oppgaver for MAT-INF Høsten Knut Mørken Kompendium med oppgaver for MAT-INF 1100 Høsten 2003 Knut Mørken 14. november 2003 ii Innhold 1 Innledning 1 2 Tall og datamaskiner 5 2.1 Naturlige, hele, rasjonale, reelle og komplekse tall..........

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

TDT4110 IT Grunnkurs Høst 2015

TDT4110 IT Grunnkurs Høst 2015 TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

INF 1000 høsten 2011 Uke 11: 2. november

INF 1000 høsten 2011 Uke 11: 2. november INF 1000 høsten 2011 Uke 11: 2. november Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Kursansvarlige: Arne Maus og Siri Moe Jensen 1 Info Obligene skal være

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

Læringsmål og pensum. Oversikt

Læringsmål og pensum. Oversikt 1 2 Læringsmål og pensum TDT4105 Informasjonsteknologi grunnkurs: Uke 39 Betingede løkker og vektorisering Læringsmål Skal kunne forstå og programmere betingede løkker med while Skal kunne utnytte plassallokering

Detaljer

Pensum Hovedtanker Selvmodifiserende Overflyt Veien videre Eksamen. Oppsummering

Pensum Hovedtanker Selvmodifiserende Overflyt Veien videre Eksamen. Oppsummering Oppsummering Pensum Grovt sett er alt fra forelesningene og øvingsoppgavene pensum. Detaljert oversikt finnes på kurssidene. Hovedtanker fra kurset Litt om eksamen Hvorfor har dere lært dette? Ikke mange

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5 Forelesning 9 Mengdelære Dag Normann - 11. februar 2008 OVER TIL KAPITTEL 5 De fleste som tar MAT1030 har vært borti mengder i en eller annen form tidligere. I statistikk og sannsynlighetsteori på VGS

Detaljer

Oppgaver til kapittel 19 - Kryptering og steganografi

Oppgaver til kapittel 19 - Kryptering og steganografi Oppgaver til kapittel 19 - Kryptering og steganografi Oppgave 1 - Cæsars kode (plenum) I symmetrisk kryptering brukes samme nøkkel både for å kryptere og dekryptere. Avhengig av hvordan nøkkelen utformes

Detaljer

Tall, vektorer og matriser

Tall, vektorer og matriser Tall, vektorer og matriser Kompendium: MATLAB intro Tallformat Komplekse tall Matriser, vektorer og skalarer BoP(oS) modul 1 del 2-1 Oversikt Tallformat Matriser og vektorer Begreper Bruksområder Typer

Detaljer

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9 IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen

Detaljer

Forelesning 10. Mengdelære. Dag Normann februar Venn-diagrammer. Venn-diagrammer. Venn-diagrammer. Venn-diagrammer

Forelesning 10. Mengdelære. Dag Normann februar Venn-diagrammer. Venn-diagrammer. Venn-diagrammer. Venn-diagrammer Forelesning 10 Mengdelære Dag Normann - 13. februar 2008 Venn-diagrammer Mandag innførte vi de Booleske operasjonene Union Snitt Komplement A Mengdedifferens A B samt de faste mengdene og E. Venn-diagrammer

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Faglig kontakt: Ragnar Hergum (1 3.5) / Per Gunnar

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu. 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer

Detaljer

Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå

Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå Vedlegg A.1 Filbehandling på bit-nivå Side 1 av 9 Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå A.1 Filbehandling på bit-nivå A.1.1 Sammendrag Klassen BitInputStream gjør det mulig å lese

Detaljer

Venn-diagrammer. MAT1030 Diskret matematikk. Venn-diagrammer. Venn-diagrammer. Eksempel. Forelesning 10: Mengdelære

Venn-diagrammer. MAT1030 Diskret matematikk. Venn-diagrammer. Venn-diagrammer. Eksempel. Forelesning 10: Mengdelære Venn-diagrammer MAT1030 Diskret matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 13. februar 2008 Mandag innførte vi de Booleske operasjonene Union Snitt Komplement

Detaljer

En oppsummering (og litt som står igjen)

En oppsummering (og litt som står igjen) En oppsummering (og litt som står igjen) Pensumoversikt Hovedtanker i kurset Selvmodifiserende kode Overflyt Eksamen En oppsummering Oppsummering Pensum læreboken til og med kapittel 7 forelesningene de

Detaljer