Karakteriseringen av like mengder. Mengder definert ved en egenskap.

Størrelse: px
Begynne med side:

Download "Karakteriseringen av like mengder. Mengder definert ved en egenskap."

Transkript

1 Notat 2 for MAT Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor oss selv, å bli helt sikre. I første omgang kan vi si at et bevis for P er en tekst bestående av utsagn, som begynner med kjente sanne utsagn og ender opp med P. Utsagnene i denne teksten skal være sanne, de er noe vi påstår, slik at vi bruker ordet påstand om dem. Hver påstand i et bevis skal følge av de tidligere påstandene og andre kjente sannheter, i henhold til deduksjonsregler. Vi må derfor være enige om hva vi anser som kjente sannheter og hva som utgjør gyldig argumentasjonsteknikk. Bildet kompliseres noe ved at vi tillater oss å gjøre antagelser og argumentere utifra dem. Sagt på en annen måte : vi tillater oss å drøfte hypoteser. Da antar vi at et utsagn er sant og jobber ut ifra det. Oppnår vi en selvmotsigelse kan vi konkludere med at hypotesen er feil. Slike bevis kalles motsigelsesbevis. En annen kjent type bevis er induksjonsbevis. I bevis er det vanlig å si ifra om hva slags type bevis man begir seg ut på. For å hjelpe leseren legger vi også inn hjelpeord som «Dermed...», «Men, i tillegg...» og liknende. Bemerkning 2.1. Hvordan beviser vi at alle nordmenn har vakkert hår? Jo, først sjekker vi at den norske stamfaren hadde vakkert hår. Så viser vi at det å ha vakkert hår er arvelig. Når vi har gjort det, har vi fullført vårt første induksjonsbevis. 2.1 Eksempler på bevis Euklidsk divisjon. Ting vi nå tar for gitt: Bruk av likhetstegnet. At vi har aksiomer for pardannelse. Karakteriseringen av like mengder. Mengder definert ved en egenskap. At vi har et tallsystem Z bestående av hele tall, utstyrt med addisjon (+), multiplikasjon ( ) og en orden ( ). Hva legger man i det siste? Det er en utfordring å finne en så liten som mulig samling aksiomer for de hele tallene slik at alle andre egenskaper følger ved bevisføring. Vi tillater oss her å bruke alle egenskapene ved de hele tallene som er listet opp side 23 i Lakins og i tillegg bevis ved induksjon. 1

2 Vi bruker følgende definisjon av de naturlige tallene: Merk spesielt at 0 N. Vi definerer også: N = {x : x Z x 0}. (1) N = {x : x Z x > 0}. (2) Her er et eksempel på bevis hvor man argumenterer både ved motsigelse og induksjon. Dette beviset illustrerer også hvordan man diskuterer flere hypoteser separat, ved disjunksjon av tilfeller. Teorem 2.1. Anta at n Z og d N. Da finnes det ett og bare ett par (q, r), slik at q Z, r Z, 0 r < d og n = qd + r. Bevis: Beviset har to deler. Vi viser først eksistens og så entydighet av slike par. (i) Eksistens: Vi anser at d Z, med d > 0 er gitt og lar n Z variere. For hver n Z lar vi P (n) være utsagnet: «Det finnes et par (q, r), slik at q Z, r Z, 0 r < d og n = qd + r.» Vi vil vise at P (n) er sant for alle n Z. Vi gjør det ved å tolke (q, r) som en representasjon av n og ser på hvordan representasjonen forandrer seg når vi legger 1 til n. P(0) er sant, siden vi kan velge (q, r) = (0, 0). La n Z og anta at utsagnet P (n) er sant. Vi viser nå at P (n + 1) er sant. Ved help av P (n) velger vi (q, r) slik at q Z, r Z, 0 r < d og n = qd + r. Vi skiller på de to tilfellene r = d 1 og r < d 1. Dersom r = d 1 setter vi (q, r ) = (q + 1, 0). Vi har da 0 r < d og: n + 1 = qd + r + 1 = qd + d = qd + d = (q + 1)d = q d + r (3) Dersom r < d 1 setter vi (q, r ) = (q, r + 1). Vi har da 0 r < d og: Vi har nå vist at P (n + 1) er sant. n + 1 = qd + r + 1 = q d + r. (4) Induksjonsprinsippet sier nå at for alle n N har vi at P (n). Hva med eksistens i tilfellene n < 0? Vi kan erstatte iterasjonen som består i å legge til 1 til n med det å trekke fra 1. Vi godtar med andre ord induksjonsbevis på Z hvor vi går i to retninger. Oppgave: fullføre denne delen av beviset. 2

3 (ii) Entydighet. Vi vil nå vise unikhet av representasjonen (q, r) av n. Med andre ord, vi antar n = qd + r = q d + r med 0 r < d og 0 r < d, og vil vise at (q, r ) = (q, r). Vi får: (q q )d = r r. (5) Vi diskuterer de tre mulighetene q q > 0, q q < 0 og q = q separat. Anta q > q. Man kan vise ved induksjon at for m N så har vi md d. Spesielt har vi (q q )d d. Men siden r 0 har vi også r r r < d. Dette er en selvmotsigelse. Dermed kan vi konkludere at vi ikke har q > q. Antagelsen at q < q kan drøftes på samme måte (eventuelt ved å bemerke at (q q)d = r r). Dermed står vi igjen med q = q som eneste mulighet. Da får vi også r = r, dermed (q, r ) = (q, r). Kommentarer om 2. Beviset over for Euklidsk divisjon er ganske komplisert. Her følger noen eksempler på enklere ting man kanskje kan ønske å bevise: Lemma 2.1. La n Z. Da er n et partall eller et oddetall, og ikke begge deler. Eller kanskje vi vil bevise følgende: Lemma 2.2. La n N. Vi definerer en følge (u k ) k N induktivt slik: Først definerer vi: u 0 = n. (6) Så lar vi k N og antar at vi har definert u 0,..., u k. Dersom u k er et partall definerer vi: u k+1 = (u k )/2, (7) og hvis ikke definerer vi: Da er følgen (u k ) k N stasjonær. u k+1 = u k. (8) Dette lemmaet kan tolkes som at hele tall ikke kan deles med 2 uendelig mange ganger og fortsatt være et heltall (med mindre man starter med 0...). Sammenlikn dette med situasjonen for rasjonale tall. Er disse lemmaene opplagte? Er det aksiomer? La oss først se hva de kan brukes til og hva de har med 2 å gjøre. Først et nyttig delresultat. Lemma 2.3. Anta n Z. Hvis n 2 er et partall, så er n et partall. 3

4 Som nevnt tidligere har vi (P = Q) ( Q = P ). For å vise (P = Q) kan vi derfor like gjerne vise ( Q = P ), som kalles den kontrapositive implikasjonen. Bevis: Anta n Z. Vi argumenterer kontrapositivt. Anta nå at n ikke er et partall. Da er n et oddetall. Velg k Z slik at n = 2k + 1. Vi får: n 2 = (2k + 1) 2, (9) = 4k 2 + 4k + 1, (10) = 2(2k 2 + 2k) + 1. (11) Dermed er n 2 et oddetall, dermed er n 2 ikke et partall. Dette beviset ser greit ut, men hva var egentlig definisjonene av partall og oddetall? Er det egentlig så opplagt at partall ikke er oddetall og omvendt, ut ifra definisjonene? Pytagoras teorem tilsier at forholdet φ mellom lengdene på diagonalen og en side av en firkant må tilfredsstille φ 2 = = 2. Det var også kjent for Pytagoreerne at φ (som vi i all hemlighet vet at er det reelle tallet 2) ikke er et rasjonalt tall, dvs. ikke kan skrives som brøk av to hele tall. Siden vi ikke har tatt for gitt noe om brøker formulerer vi dette som følger: Teorem 2.2. Det finnes ikke noe par (p, q) med p Z og q Z slik at q 0 og 2q 2 = p 2. Bevis: Ved motsigelse. Anta at det finnes (p, q) med p Z og q Z slik at q 0 og 2q 2 = p 2. Hvis både p og q er partall, erstatter vi dem med q/2 og p/2. Dette fortsetter vi med til vi står igjen med et par (p, q ) hvor en av komponentene er et oddetall (vi bruker her Lemma 2.2). Vi har 2(q ) 2 = (p ) 2. Dermed er (p ) 2 et partall. Dermed er p et partall (Lemma 2.3). Skriv p = 2r. Vi får 2(q ) 2 = (2r) 2. Dermed får vi (q ) 2 = 2r 2. Dermed er q et partall ((Lemma 2.3). Vi har oppnådd en selvmotsigelse, slik at vår antagelse må være usann. Vi ser at for å bevise Teorem 2.2 bruker vi at partall kan skrives på formen 2k med k Z mens for å bevise Lemma 2.3 bruker vi at oddetall er på formen 2k + 1 med k Z. For å være helt presis: Definisjon 2.1. Vi sier at: n Z er et partall dersom det eksisterer k N slik at n = 2k. n Z er et oddetall dersom det eksisterer k N slik at n = 2k + 1, 4

5 Gitt disse definisjonene er det da opplagt at Lemma 2.1 holder? Det at et heltall ikke kan være både partall og odde tall har med unikhet av Euklidsk divisjon med 2 å gjøre, mens det at et heltall må være partall eller oddetall har med eksistens av Euklidsk divisjon med 2 å gjøre. Er Euklidsk divisjon med 2 vesentlig enklere enn Euklidsk divisjon med andre d > 0? Delbarhet. Definisjon 2.2. La a, b Z. Vi sier at a deler b dersom det finnes k Z slik at ka = b. I såfall skriver vi a b. Med andre ord: (a b) ( k Z ka = b). (12) Vi sier også at a er en divisor til b dersom a deler b. Hvilke hele tall deler 0? Hvilker hele tall har 0 som divisor? Definisjon 2.3. La a Z. Vi sier at a er invertibel (i Z) dersom a deler 1, i.e. dersom det finnes b slik at ba = 1. Vi skal nå vise to delresultater som krever at vi har tungen rett i munnen i forhold til hvilke aksiomer vi arbeider ut ifra. Lemma 2.4. For alle n Z, hvis n > 0 så n 1. Bevis: Ved induksjon. For hver n N lar vi P (n) være utsagnet : n > 0 = n 1. Vi vet at 0 > 0 er usant. Dermed er (0 > 0 = 0 1) sant. Dermed er P (0) sant. La n N og anta at P (n) er sant. Vi vet at n 0, dermed n Dermed har vi at (n + 1 > 0 = n + 1 1). Vi har dermed bevist ( n N P (n) = P (n + 1)). Dette fullfører induksjonsbeviset for at n N n > 0 = n 1. Hvis vi nå lar n Z skiller vi på de to tilfellene n 0 og n < 0. Hvis n 0 har vi n N og dermed (n > 0 = n 1) fra det over. Hvis n < 0 har vi ikke n > 0, dermed har vi (n > 0 = n 1). Dette viser at: N = {n N : n 1}. (13) Proposisjon 2.3. De eneste invertible elementene i Z er 1 og 1. 5

6 Bevis: La a, b Z og anta ab = 1. Vi antar først a 0. Hvis a = 0 får vi ab = 0 hvilket motstrider hypotesen. Vi kan derfor anta a > 0. Dermed har vi a 1. Anta for motisgelse at a > 1. Vi viser ved induksjon at for alle c N har vi ca > 1. For hver c N lar vi P (c) være utsagnet ca > 1. 1a = a > 1 ved vår antagelse. Dermed er P (1) sant. La c N og anta at ca > 1. Vi har da (c + 1)a = ca + a ca > 1. Dette fullfører beviset for at for alle c N er P (c) sant. Dermed har vi (b N ) slik at b 0. Men da får vi ba 0 < 1. Antagelsen a > 1 er da feil slik at vi har a 1. Siden også a 1 får vi a = 1. Dermed b = 1b = ab = 1. Hvis nå a > 0 får vi a 0 og ( a)( b) = 1. Fra det foregående får vi da a = 1 og b = 1. Dermed a = 1 og b = 1. Proposisjon 2.4. For alle a, b, c Z gjelder det at: a a, (14) (a b b a) = a = ±b, (15) a b b c = a c. (16) Bevis: (i) Anta a Z. Vi har 1a = a. Dermed k Z ka = a. Dermed a a. (ii) Anta a, b Z, at a b og at b a. Velg k Z slik at ka = b. Velg l Z slik at lb = c. Vi får da kla = lb = a. Hvis a = 0 får vi også b = 0 fra a b, slik at a = ±b. Hvis a 0 får vi kl = 1. Dermed får vi k = ±1 og l = k. Dermed a = ±b. (iii) Anta a, b, c Z, at a b og at b c. Velg k Z slik at ka = b. Velg l Z slik at lb = c. Vi har da kla = lb = c. Dermed a b. 2.2 Deduksjonsregler Modus ponens Den mest grunnleggende deduksjonsregelen kalles modus ponens og består i følgende: Har vi kunnet påstå P og P = Q, har vi også lov til å påstå Q. 6

7 Man kan begrunne dette med ekvivalensen: kombinert med de intuitive fakta at: (P (P = Q)) (P Q), (17) Hvis vi kan påstå utsagn A og også utsagn B, så kan vi påstå utsagn (A B). Vi anvender dette prinsippet på utsagnene P og P = Q. Vi kan erstatte en påstand med en ekvivalent påstand. Her erstatter vi (P (P = Q)) med (P Q). Hvis vi er istand til å påstå A B så har vi også lov til å påstå B. Disjunksjon og konjunksjon av tilfeller La oss si vi ønsker å bevise A og vi vet at (P Q R) = A. Da er det tilstrekkelig å vise P, Q og R. La oss si ønsker å bevise A og vi vet at (P = A) (Q = A) (R = A). Da er det tilstrekkelig å vise en av P, Q og R. Bevis med kvantorer og : Vi har fire deduksjonsregler for bruk av kvantorene Hypoteser med eksistensiell kvantor Hvis vi kan påstå ( x P (x)) har vi lov til å introdusere et objekt y med egenskapen P. Vi kan gjøre dette ved å skrive «Velg y slik at P (y)». Merk at i setningen ( x P (x)) forekommer x som såkalt stum variabel. Vi skiller ikke den påstanden fra for eksempel ( z P (z)). Etter at en slik påstand er fremmet er det ikke noe objekt x som er navngitt. Navngivningen skjer når vi skriver «Velg y...». Da er vi istand til å jobbe med objektet y. Hypoteser med universell kvantor Hvis vi kan påstå at y er et objekt med egenskap P og vi i tillegg vet at ( x P (x) = Q(x)), da kan vi påstå at y har egenskap Q. Dette er den vanlige formen av modus ponens. Konklusjoner med eksistensiell kvantor Hvis vi er istand til å påstå at objekt y tilfredsstiller P kan vi trekke den slutningen at ( x P (x)). Har vi vært eksplisitte i hvordan y er definert, er det vanlig å snakke om et konstruktivt eksistensbevis. 7

8 Konklusjoner med universell kvantor For å bevise en påstand på formen ( x P (x) = Q(x)) kan man introdusere en ny hypotese, nemlig den at y er et objekt med egenskap P, og vise at i såfall har y også egenskap Q. Vi kan gjøre dette ved å skrive «Anta at y er slik at P (y).» og argumentere derifra. Teknikkene over kalles direkte bevis. Merk bruk av de to hjelpeordene «Velg...» og «Anta...». Et annet hjelpeord som er mye brukt er «La...». Setningen «La y være et objekt med egenskap P» introduserer en hypotese, den at y er et objekt med egenskap P (på samme måte som «Anta»), men tilføyer den ekstra informasjonen at vi vet at et slikt objekt eksisterer (på samme måte som «Velg»). Indirekte bevis med kvantorer bevise kvantifiserte påstander. Man kan også bruke motsigelsesbevis for å Motsigelsesbevis for eksistensiell kvantor Et motsigelsesbevis for ( x P (x)) vil begynne med å innføre hypotesen: «Anta at ( x P (x)).». Deretter ønsker man å argumentere seg frem til en selvmotigelse. Klarer man det har man vist at ( x P (x)) uten å finne noen eksempler på objekter med egenskap P! Man kaller det et ikke-konstruktivt eksistensbevis. Motsigelsesbevis for universell kvantor Et motigelsesbevis for ( x P (x) = Q(x)) vil begynne med hypotesen: «Anta at y er et objekt slik at P (y) Q(y)». Deretter ønsker man å argumentere seg frem til en selvmotsigelse. Entydighetsbevis En tredje mye brukt kvantor forekommer på formen «Det eksisterer en unik x slik at P (x)», som skrives (! x P (x)). Det betyr per definisjon at følgende to holder: x P (x), (18) x y (P (x) P (y)) = (x = y). (19) Har man først funnet et objekt z med egenskapen P kan man også bevise entydighet ved å bevise: y P (y) = (y = z). (20) 8

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017. Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere

Detaljer

Notat om Peanos aksiomer for MAT1140

Notat om Peanos aksiomer for MAT1140 Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi

Detaljer

Slides til 1.6 og 1.7. Andreas Leopold Knutsen

Slides til 1.6 og 1.7. Andreas Leopold Knutsen Slides til 1.6 og 1.7 Andreas Leopold Knutsen January 17, 2010 Begreper Matematiske resultater/utsagn som er sanne kalles gjerne: Teorem = viktig utsagn Proposisjon/Sats/Setning = litt mindre viktig utsagn

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

Notat om kardinalitet for MAT1140 (litt uferdig)

Notat om kardinalitet for MAT1140 (litt uferdig) Notat om kardinalitet for MAT1140 (litt uferdig) Poenget med tall kan man kanskje si er det å telle. In mengdeteorien ønsker man å telle antall elementer i en mengde, og det tallet man oppnår kalles da

Detaljer

Emne 13 Utsagnslogikk

Emne 13 Utsagnslogikk Emne 13 Utsagnslogikk Et utsagn er en erklæring som er entydig sann eller usann, men ikke begge deler. Noen eksempler på (ekte) utsagn: Utsagn : Gjøvik har bystatus er sann ( i alle fall pr. dags dato

Detaljer

Den første implikasjonen er bevist i oppgave 1.30c. Den andre vises kontrapositivt slik:

Den første implikasjonen er bevist i oppgave 1.30c. Den andre vises kontrapositivt slik: 1. Noen bevismetoder OPPGAVE 1.0 a) x og y er begge partall x= 2 k og y = 2 l og k og l er begge hele tall x y = 2k 2l = 22 kl = 2 s Når både k og l er hele tall, må også s = 2 kl være et helt tall. Derfor

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

MAT1030 Plenumsregning 5

MAT1030 Plenumsregning 5 MAT1030 Plenumsregning 5 Ukeoppgaver Mathias Barra - 13. februar 2009 (Sist oppdatert: 2009-03-06 18:29) Oppgave 4.18 Uttrykk følgende påstander i predikatlogikk, og finn deres sannhetsverdier. (a) Det

Detaljer

Matematikk for IT, høsten 2015

Matematikk for IT, høsten 2015 Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,

Detaljer

TMA 4140 Diskret Matematikk, 3. forelesning

TMA 4140 Diskret Matematikk, 3. forelesning TMA 4140 Diskret Matematikk, 3. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 5, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

Fagdag 4 - R

Fagdag 4 - R Innhold: Gjennomgå Algebraprøve Begreper i sannsynlighetsregning Bevis Fagdag 4 - R1-27.11.08 Vi arbeider og samarbeider i grupper som vanlig. I Sannsynlighetsregning Begreper: Diskuter og prøv å forstå

Detaljer

INF1800 Forelesning 20

INF1800 Forelesning 20 INF1800 Forelesning 20 Førsteordens logikk Roger Antonsen - 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:51) Mer om førsteordens logikk Tillukninger Vi har definert semantikk kun for lukkede formler.

Detaljer

Notat 1 for MAT1140 høsten 2017

Notat 1 for MAT1140 høsten 2017 Notat 1 for MAT1140 høsten 2017 0 Innledningsvis 0.1 Om kurset Vi begynner med å introdusere et fundament for matematikk. Hovedtemaene er: Logikk (utsagn, konnektiver, kvantorer, bevis). Mengder (aksiomer

Detaljer

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring Kvantorer MAT1030 Diskret matematikk Forelesning 8: Predikatlogikk, bevisføring Dag Normann Matematisk Institutt, Universitetet i Oslo 6. februar 008 Mandag 04.0.008 introduserte vi predikatlogikk Vi innførte

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 8: Predikatlogikk, bevisføring Dag Normann Matematisk Institutt, Universitetet i Oslo 6. februar 2008 Kvantorer Mandag 04.02.2008 introduserte vi predikatlogikk Vi

Detaljer

7 Ordnede ringer, hele tall, induksjon

7 Ordnede ringer, hele tall, induksjon Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:50) Mer om førsteordens

Detaljer

Mer om førsteordens logikk

Mer om førsteordens logikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Mer om førsteordens logikk Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22

Detaljer

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere! Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

Kapittel 4: Mer predikatlogikk

Kapittel 4: Mer predikatlogikk MAT1030 Diskret Matematikk Forelesning 8: Logikk, predikatlogikk, bevisteknikker Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 4: Mer predikatlogikk 10. februar 010 (Sist oppdatert: 010-0-10

Detaljer

TMA 4140 Diskret Matematikk, 2. forelesning

TMA 4140 Diskret Matematikk, 2. forelesning TMA 4140 Diskret Matematikk, 2. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 2, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Kapittel 4: Mer predikatlogikk

Kapittel 4: Mer predikatlogikk MAT1030 Diskret Matematikk Forelesning 8: Logikk, predikatlogikk, bevisteknikker Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Mer predikatlogikk 11. februar 009 (Sist oppdatert:

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

Utvalgsaksiomet, velordningsprinsippet og Zorns lemma

Utvalgsaksiomet, velordningsprinsippet og Zorns lemma Utvalgsaksiomet, velordningsprinsippet og Zorns lemma Dag Normann Universitetet i Oslo Matematisk Institutt Boks 1053 - Blindern 0316 Oslo 13. mars 2007 I dette notatet skal vi gi et bevis for ekvivalensen

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

MAT1030 Forelesning 8

MAT1030 Forelesning 8 MAT1030 Forelesning 8 Logikk, predikatlogikk, bevisteknikker Roger Antonsen - 11. februar 009 (Sist oppdatert: 009-0-17 10:5) Kapittel 4: Mer predikatlogikk Oppsummering Læringsmålene for kapitlet om logikk

Detaljer

Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn.

Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Plenumsregning 5 Ukeoppgaver fra kapittel 4 Roger Antonsen - 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden,

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 1 Førsteordens sekventkalkyle 1.1 Introduksjon Vi har til nå sett sekventkalkyle for utsagnslogikk. Vi

Detaljer

Partielle ordninger, Zorns lemma og utvalgsaksiomet

Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140, H-15 Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 5: Ukeoppgaver fra kapittel 4 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Karl K. Brustad 14. august 2013 1 Logikk Logikk er læren om lovene som gjør tenkningen,

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5. INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen 1 Institutt for informatikk, Universitetet i Oslo 2 5. mars 2007 Institutt for informatikk

Detaljer

MA1301 Uke 1: In(tro)duksjon

MA1301 Uke 1: In(tro)duksjon MA1301 Uke 1: In(tro)duksjon Magnus Bakke Botnan 21. august 2012 Magnus Bakke Botnan () MA1301 Uke 1: In(tro)duksjon 21. august 2012 1 / 14 Introduksjon Praktisk Praktisk Faglærer Magnus B. Landstad: magnus.landstad@math.ntnu.no

Detaljer

x A e x = x e = x. (2)

x A e x = x e = x. (2) Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,

Detaljer

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p Ekvivalente utsagn Definisjoner: Et sammensatt utsagn som ALLTID er SANT kalles for en TAUTOLOGI. Et sammensatt utsagn som ALLTID er USANT kalles for en SELVMOTIGELSE eller en KONTRADIKSJON (eng. contradiction).

Detaljer

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Karl K. Brustad 11. august 2013 1 Logikk Logikk er læren om lovene som gjør tenkningen,

Detaljer

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 6

INF3170 Logikk. Ukeoppgaver oppgavesett 6 INF3170 Logikk Ukeoppgaver oppgavesett 6 Normalformer Negasjons normalform I dette oppgavesettet skal vi se nærmere på normalformer. Formelen (P Q) kan også skrives som P Q. Formlene er ekvivalente, dvs.

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 1 Sekventkalkyle 1.1 Semantikk for sekventer Semantikk for sekventer Definisjon 1.1 (Gyldig

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel.

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel. INF3170 Logikk Dagens plan Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet 1 Sekventkalkyle Christian Mahesh Hansen 2 Institutt for informatikk, Universitetet i Oslo 3 5. februar 2007

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo 6. april 2010 (Sist oppdatert: 2010-04-06 14:23) Fortsettelse INF3170 Logikk 6.

Detaljer

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fortsettelse 6. april 2010 (Sist oppdatert: 2010-04-06 14:24) INF3170 Logikk 6.

Detaljer

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo INF4170 { Logikk Forelesning 1: Utsagnslogikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 20. august 2013 Dagens plan 1 Utsagnslogikk 2 Sekventkalkyle 3 Sunnhet 4 Kompletthet Institutt

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

Repetisjonsforelesning

Repetisjonsforelesning Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Analysedrypp II: Kompletthet

Analysedrypp II: Kompletthet Analysedrypp II: Kompletthet Kompletthet er et begrep som står sentralt i både MAT1100 og MAT1110, og som vil stå enda mer sentralt i MAT2400. I de tidligere kursene fremstår begrepet på litt forskjellig

Detaljer

Et detaljert induksjonsbevis

Et detaljert induksjonsbevis Et detaljert induksjonsbevis Knut Mørken 0. august 014 1 Innledning På forelesningen 0/8 gjennomgikk vi i detalj et induksjonsbevis for at formelen n i = 1 n(n + 1) (1) er riktig for alle naturlige tall

Detaljer

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006 Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 4.5 1 La ABC være en trekant, og la D være et punkt på AB slik at A B D. Utsagnet

Detaljer

Hva man må kunne i kapittel 2 - Algebra

Hva man må kunne i kapittel 2 - Algebra Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig. Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar

Detaljer

Databaser fra et logikkperspektiv

Databaser fra et logikkperspektiv Databaser fra et logikkperspektiv Evgenij Thorstensen IFI, UiO Høst 2013 Evgenij Thorstensen (IFI, UiO) Databaser fra et logikkperspektiv Høst 2013 1 / 31 Outline 1 Logikk som verktøy 2 Relasjonsdatabaser

Detaljer

Repetisjonsforelesning - INF1080

Repetisjonsforelesning - INF1080 Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Grafteori Vi regner oppgavene på tavlen

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

Matchinger i ikke-bipartite grafer

Matchinger i ikke-bipartite grafer Matchinger i ikke-bipartite grafer Stein Krogdahl, Notat til INF 3/4130 Sist revidert september 2006 Vi skal i dette notatet se på det å finne matchinger i generelle grafer, uten noe krav om at grafen

Detaljer

Preludium til et kurs i Reell Analyse våren 2017

Preludium til et kurs i Reell Analyse våren 2017 Preludium til et kurs i Reell Analyse våren 2017 Snorre H. Christiansen 8. februar 2017 1 0 Innledningsvis 0.1 Om kurset Dette kurset er både tilbake- og fremover-skuende. Tilbakeskuende i den forstand

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Deduksjon i utsagnslogikk

Deduksjon i utsagnslogikk Deduksjon i utsagnslogikk Lars Reinholdtsen, Universitetet i Oslo Merknad Dette notatet om deduksjon er ikke pensum, og den behandlingen som Goldfarb gir av emnet fra 33 og utover dekker fullt ut det som

Detaljer

MAT1030 Forelesning 19

MAT1030 Forelesning 19 MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer