Notat om kardinalitet for MAT1140 (litt uferdig)

Størrelse: px
Begynne med side:

Download "Notat om kardinalitet for MAT1140 (litt uferdig)"

Transkript

1 Notat om kardinalitet for MAT1140 (litt uferdig) Poenget med tall kan man kanskje si er det å telle. In mengdeteorien ønsker man å telle antall elementer i en mengde, og det tallet man oppnår kalles da kardinaliteten til mengden. Overfører man denne terminologien tilbake til daglidagstale, blir det noe tungvint: man sier for eksempel at en edderkopp har 8 bein, ikke at kardinaliteten til mengden av bein på en edderkopp er 8. I matematikk er det litt situasjonbetinget om det er best å si at det finnes 4 avbildninger fra {0, 1} til {0, 1} eller at mengden av avbildninger fra {0, 1} til {0, 1} har kardinalitet 4. Vi skal her innføre en notasjon som gjør det mulig å skrive det enda mer konsist: {0, 1} {0,1} = 4. (1) Mengdeteorien gjør det mulig å snakke om uendelige mengder (dvs mengder som ikke er endelige!) og det gjør det nødvendig å presisere hva vi har i tankene når vi snakker om kardinalitet: hvordan sammenlikne størrelsen på uendelige mengder? Utgangspunktet er at to endelige mengder er like store når det finnes en bijeksjon mellom dem. Bruker vi den samme definisjonen på uendelige mengder oppnår vi paradokser som at det finnes like mange naturlige partall som det finnes naturlige tall. Et annet paradoks er Hilberts hotell : der er det alltid plass til en ny gjest, selv om hotellet er fullt. Disse paradoksene er indikasjon på at teorien må bygges opp møysommelig, til og med for endelige mengder. Denne måten å sammenlikne størrelse på uendelige mengder er ikke den eneste mulige. Når man snakker om volumet til, la oss si, et tredimensionalt legeme er det et annet begrep, for eksempel. 1 Endelige mengder 1.1 Definisjon av kardinalitet og endelige mengder Hva vil det si å telle antall elementer i en (endelige mengde). Vi kan si at en enumerasjon av en mengde A, er en avbildning: e : [[1, n] A, () med n N. Vi krever at hvert element i A opptrer én og bare én gang i enumerasjonen, altså at e er en bijeksjon. Det naturlige tallet n kalles da kardinaliteten til A. Men vent nå litt... er n bare avhenging av A eller kunne det tenkes at n er avhengig av valg av enumerasjon? Vi velger her å enumerere på en litt annen måte ; vi definerer N n = [[0, n[[. (3) 1

2 Spesielt har vi N 0 =. Man kan si at poenget med N n er at det er en referansemengde som på en opplagt måte har kardinalitet n. Definisjon og Proposisjon 1.1. La A være en mengde. Vi sier at A er endelig dersom det finnes n N slik at det finnes en bijeksjon N n A. I såfall er n entydig bestemt av A og kalles kardinaliteten til A, og vi skriver n = A. Påstanden i definisjonen kan utledes av følgende intuitive resultat, ofte kalt dueslagsprinsippet: Teorem 1.1. La m, n N. Hvis det finnes en injeksjon N m N n har vi m n. Bevis: Ved induksjon på n. For hver n N, la P (n) være følgende egenskap: For hver m N, hvis det finnes en injeksjon N m N n, er m n. Hvis N m er en avbildning må m = 0 dermed m 0. Dette viser P (0). La n N og anta P (n). La m N og anta at u : N m N n+1 er en injeksjon. Hvis u ikke tar verdien n bestemmer u en injeksjon N m N n dermed har vi m n n + 1. Hvis u tar verdien n, har vi m 1 og vi lar p N m være slik at u(p) = n. La σ : N m N m være bijeksjonen som utveksler p og m 1 og lar andre elementer i fred. Da er u σ : N m N n+1 en injeksjon slik at u σ(m 1) = n. Den bestemmer en injeksjon N m 1 N n. Fra induksjonshypotesen følger det at m 1 n, dermed m n + 1. Vi har med det vist P (n) P (n + 1). Lemmaet følger av induksjonsprinsippet. Følgende korollar garanterer at kardinalitet er veldefinert. Korollar 1.. La m, n N. Hvis det finnes en bijeksjon N m N n har vi m = n. Korollar 1.3. La A og B være to endelige mengder. Det finnes en bijeksjon fra A til B hvis og bare hvis A = B. Vi kan også formulere dueslagsprinsippet for generelle mengder: Korollar 1.4. La A og B være to endelige mengder. Det finnes en injeksjon fra A til B hvis og bare hvis A B. En variant er: Korollar 1.5. La A og B være to endelige mengder. Det finnes en surjeksjon fra A til B hvis og bare hvis A B.

3 Eksempel 1.1. For hver n N er N n endelig og N n = n. For hver x er {x} endelig og {x} = 1. For hver endelige mengde A har vi: A = A = 0. For m, n N med m n er intervaller med endepunkter m og n endelige og vi har for eksempel: [[m, n] = n m + 1. (4) Lemma 1.1. La A være en mengde og x / A. Da er A endelig hvis og bare hvis A {x} er endelig. I såfall har vi A {x} = A + 1. Bevis: Hvis A er endelig, med kardinal n velger vi en bijeksjon u : N n A. Vi utvider u til ũ : N n+1 A {x} ved å sette ũ(n) = x. Da er ũ en bijeksjon og vi ser at A {x} = A + 1. Hvis A {x} er endelig med kardinal m velger vi en bijeksjon u : N m A {x}. Vi har 1 = {x} m. La p N m være slik at u(p) = x. La σ : N m N m være bijeksjonen som utveksler p og m 1 og lar andre elementer i fred. Da har vi u σ(m 1) = x så u σ bestemmer en bijeksjon N m 1 A. Dermed er A endelig. Teorem 1.6. La A være en endelig mengde og B en del av A. Da er B endelig og B A. I tillegg har vi: B = A B = A. (5) Bevis: Vi bruker induksjon på kardinalen til A. Teoremet er sant når A har kardinal 0. La n N og anta at teoremet holder for alle endelige mengder A med kardinal n. La A være en endelig mengde med kardinal n + 1. La B være en del av A. Hvis B = A er det trivielt at B er endelig og B = A. Hvis B A velger vi en y A \ B. Fra Lemma 1.1 følger det at A \ {y} endelig med kardinal n. Vi har B A \ {y}. Fra induksjonshypotesen følger det at B er endelig og B n < A. Dette teoremet har følgende viktige korollar. Korollar 1.7. La A være en endelig mengde. Hvis f : A A er en injeksjon er f en bijeksjon. Bevis: La altså A være en endelig mengde og la f : A A være en injeksjon. Da induserer f en bijeksjon A f (A) så f (A) = A. Siden vi har f (A) A følger det at f (A) = A. Dermed er f en bijeksjon. 3

4 Korollar 1.8. La A være en endelig mengde. Hvis f : A A er en surjeksjon er f en bijeksjon. Bevis: Dette får være en oppgave. Proposisjon 1.9. La A og B være to endelige mengder. Anta A B =. Da er A B endelig og: A B = A + B. (6) Bevis: La A være en endelig mengde. Vi viser resultatet med induksjon på kardinalen til B ved hjelp av Lemma 1.1. Hvis B = 0 har vi B = så A B er endelig og: A B = A = A + B. (7) Anta at n N og at resultatet er vist for alle B med kardinalitet n. La B være en mengde med kardinal n + 1. Velg y B. Da er B \ {y} endelig, har kardinalitet n og er disjunkt fra A. Dermed har vi: Siden y / A (B \ {y}) har vi: A (B \ {y}) = A + n. (8) A B = A + n + 1 = A + B. (9) Dette fullfører beviset. Korollar La A og B være to endelige mengder. Da er A B og A B endelige og: A B + A B = A + B. (10) Bevis: Vi har: A B + A B = A + B \ A + A B, (11) = A + B. (1) Oppgave 1.1. La A, B og C være tre endelige mengder. Vis at: A B C = A + B + C (13) A B B C C A (14) + A B C. (15) Kan du generalisere til en familie endelige mengder, indeksert av en endelig mengde? 4

5 Proposisjon La A og B være to endelige mengder. Da er A B endelig og : A B = A B. (16) Bevis: Man lar den ene faktoren være gitt og resonnerer med induksjon på kardinalen til den andre, ved hjelp av Lemma 1.1. La B være gitt (egentlig bedre å la A være gitt!). Dersom A = 0 har vi A =, derfor A B =, så: A B = 0 = A B. (17) La n N og anta at resultatet holder for mengder A med kardinal n. La A være en mengde med kardinal n + 1. Velg x A. Da har vi: A B = ((A \ {x}) B) ({x} B). (18) Disse mengdene er disjunkte. I tillegg er A \ {x} endelig med kardinal n, og {x} B er endelig med kardinal B (hvorfor?). Fra Proposisjon 1.9 og induksjonshypotesen følger det at: A B = n B + B = A B. (19) Dette avslutter beviset. 1. Videre eksempler på kardinaliteter Her bruker vi en del regneoperasjoner som bør defineres først: potens og fakultet kan defineres ved induksjon. Binomialkoeffisienter er naturlige tall, men det er mest behagelig å definere dem når man har innført brøker. Proposisjon 1.1. La A og B være to endelige mengder. Da er B A endelig og : B A = B A. (0) Bevis: La B være gitt. Vi resonnerer ved induksjon på kardinaliteten til A. Hvis A = 0 er A =. Da har vi B A = {(, B, )}. Dermed: B A = 1 = B A. (1) La n N og anta at resultatet holder for alle A med kardinalitet n. La A være en mengde med kardinalitet n + 1. Velg x A. Fra Proposisjon?? har vi en kanonisk bijekson: B A B A\{x} B {x}. () Siden A \ {x} er endelig med kardinalitet n og B {x} er endelig med kardinal B (hvorfor?), følger det av Proposisjon 1.11 at B A er endelig og: B A = B n B = B A. (3) 5

6 Dette avslutter beviset. Endelige unioner og produkter...: bruk av summetegn og produkttegn. Proposisjon La A og B være endelige mengder med kardinalitet henholdsvis m og n. Antall injeksjoner A B er n!/(n m)!. Proposisjon Hvis A er en endelig mengde med kardinal n, er det ( n ) m delmengder av A med kardinal m. Uendelige mengder.1 Definisjon av tellbarhet og uendelighet Definisjon.1. En mengde sies å være uendelig dersom den ikke er endelig. Definisjon.. Vi sier at en mengde A er tellbar dersom det finnes en bijeksjon N A. Proposisjon.1. Tellbare mengder er ikke endelige. Definisjon.3. Vi sier at en mengde A er høyst tellbar, dersom den er endelig eller tellbar. Proposisjon.. La A være en mengde. Følgende er ekvivalente: A er uendelig Det finnes en injeksjon N A. A har en tellbar delmengde. Bevis: Man konstruerer injeksjonen ved induksjon, men man gjør uendelig mange valg etter hverandre. Dette krever egentlig Zorn s lemma. Proposisjon.3. La A være en uendelig delmengde av N. Da er A tellbar og det finnes det en og bare en voksende bijeksjon N X. Bevis: (i) Entydighet. (ii) Eksistens: Vi definerer f : N A, ved induksjon 1 slik: f(0) = min A. (4) f(n + 1) = min(a \ {f(k) : k [[0, n]}). (5) 1 Dette er en ny type konstruksjon ved induksjon, og bør begrunnes for seg... 6

7 injektivitet av f: opplagt. surjektivitet av f: La V f være verdimengden til f. Vi viser ved induksjon at for hver n N har vi at utsagnet P (n) definert som: A [[0, n[[ V f, (6) er sant. Korollar.4. La A være en delmengde av en tellbar mengde. Da er A enten endelig eller tellbar. Proposisjon.5. La A være en mengde. Følgende er ekvivalente: A er høyst tellbar. Det finnes en injeksjon A N. Det finnes en surjeksjon N A eller A er tom. Teorem.6. Det finnes en bijeksjon N N N. Bevis: Vi bemerker: n(n + 1) Gitt k N finn n N slik at: Definer så: Vi definerer da: n(n + 1) l = k + n + 1 = k < n(n + 1) Påstand: Φ : N N N er en bijeksjon. Først bør man sjekke at n er veldifinert fra k... (n + 1)(n + ). (7) (n + 1)(n + ). (8) [[0, n]. (9) Φ(k) = (l, n l). (30) Teorem.7. La U og I være mengder. Anta at I er høyst tellbar. Anta videre at (A i ) i I er en familie delmengder av U slik hver A i er høyst tellbar. Da er i I A i høyst tellbar. Bemerkning.1. En av de første anvendelsene av dette prinsippet var å vise at det finnes transendentale tall, uten å gi noen eksempler! Dette krever forøvrig noen presiseringer om hva reelle tall er... 7

8 Hvor store mengder finnes det? Følgende proposisjon viser at P(A) alltid vil være strengt større en A, i en viss forstand. Proposisjon.8. La A være en mengde. Det finnes ingen surjeksjon X P(X). Bemerkning.. Definer en naturlig injeksjon A P(A). Bemerkning.3. Proposisjonen viser spesielt at P(N) representerer en strengt større form for uendelighet en N. Finnes det noen uendelighet som ligger strengt mellom N og P(N)? Dette var et av Hilberts problemer. Arbeider av Gödel og Cohen viser at dette hverken kan bevises eller motbevises i det aksiomatiske systemet vi bruker for mengdeteorien (ZFC).. Videregående temaer For den interesse det måtte ha: Teorem.9. La A og B være mengder. Da finnes det en injeksjon fra A til B eller en injeksjon fra B til A. Bevis: Ved hjelp av Zorn s lemma. Teorem.10 (Cantor Bernstein Schröder). For alle mengder A, B har vi at hvis det finnes en injeksjon A B og en injeksjon B A, finnes det en bijeksjon A B. Definisjon av kardinaler som ordinaler: Man kan utvide kardinalitets begrepet til uendelige mengder, som visse tall brukt til å måle størrelsen på mengder som kan være uendelige... 8

x A e x = x e = x. (2)

x A e x = x e = x. (2) Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,

Detaljer

Notat om Peanos aksiomer for MAT1140

Notat om Peanos aksiomer for MAT1140 Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi

Detaljer

7 Ordnede ringer, hele tall, induksjon

7 Ordnede ringer, hele tall, induksjon Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med

Detaljer

Notat med oppgaver for MAT1140

Notat med oppgaver for MAT1140 Notat med oppgaver for MAT1140 1 Injeksjon, surjeksjon Oppgave 1.1. La f : A B være en avbildning. Vis at da er f injektiv hvis og bare hvis følgende holder: for hver mengde C og for hver g, h : C A hvis

Detaljer

MAT1140 Strukturer og argumenter

MAT1140 Strukturer og argumenter 12. november 2018 MAT1140 Strukturer og argumenter Innleveringsfrist Obligatorisk oppgave 2 av 2 Torsdag 8. november 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om

Detaljer

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene.

Aksiom 3.1 (Likhet av mengder). La A og B være mengder. Da er A og B like hvis og bare hvis de har akkurat de samme elementene. Notat 3 for MAT1140 3 Mengder 3.1 Mengder definert ved en egenskap Det matematiske begrepet mengde har sin opprinnelse i vår intuisjon om samlinger. Objekter kan samles sammen til et nytt objekt kalt mengde.

Detaljer

Repetisjonsforelesning - INF1080

Repetisjonsforelesning - INF1080 Repetisjonsforelesning - INF1080 Mengder, relasjoner og funksjoner 18. november 2015 1 Grunnleggende mengdelære 1.1 Elementært om mengder 1.1.1 Hva er en mengde? Definisjon 1.1 (Mengde). En mengde er en

Detaljer

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008. INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1

Detaljer

Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har:

Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har: Notat 4 for MAT1140 4 Mer om mengder 4.1 Familier av mengder Union og snitt. Aksiom 4.1. Dersom A er en mengde bestående av mengder, kan de sistnevnte føyes sammen til en stor mengde, kalt unionen til

Detaljer

Karakteriseringen av like mengder. Mengder definert ved en egenskap.

Karakteriseringen av like mengder. Mengder definert ved en egenskap. Notat 2 for MAT1140 2 Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor

Detaljer

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}.

To mengder S og T er like, S = T, hvis de inneholder de samme elementene. Notasjon. Mengden med elementene a, b, c og d skrives ofte {a, b, c, d}. Forelesning 0: Mengdelære, Induksjon Martin Giese - 23. januar 2008 1 Mengdelære 1.1 Mengder Mengder Definisjon 1.1. En mengde er en endelig eller uendelig samling objekter der innbyrdes rekkefølge og

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

Utvalgsaksiomet, velordningsprinsippet og Zorns lemma

Utvalgsaksiomet, velordningsprinsippet og Zorns lemma Utvalgsaksiomet, velordningsprinsippet og Zorns lemma Dag Normann Universitetet i Oslo Matematisk Institutt Boks 1053 - Blindern 0316 Oslo 13. mars 2007 I dette notatet skal vi gi et bevis for ekvivalensen

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017. Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere

Detaljer

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8.

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8. INF3170 / INF4171 Predikatlogikk: kompletthet, kompakthet Andreas Nakkerud 8. september 2015 Forberedelse Theorem La x være en variabel som ikke forekommer i Γ eller i φ. (i) Γ φ Γ[x/c] Γ[x/c]. (ii) Hvis

Detaljer

TMA 4140 Diskret Matematikk, 4. forelesning

TMA 4140 Diskret Matematikk, 4. forelesning TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Tillegg til kapittel 11: Mer om relasjoner

Tillegg til kapittel 11: Mer om relasjoner MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker

Detaljer

Kleene-Kreisels funksjonaler

Kleene-Kreisels funksjonaler Kapittel 7 Kleene-Kreisels funksjonaler 7.1 De hereditært totale funksjonalene Det er en kjent sak at hvis vi har en opplisting av beregnbare funksjoner fra N til N så vil enten opplistingen selv ikke

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

Analysedrypp II: Kompletthet

Analysedrypp II: Kompletthet Analysedrypp II: Kompletthet Kompletthet er et begrep som står sentralt i både MAT1100 og MAT1110, og som vil stå enda mer sentralt i MAT2400. I de tidligere kursene fremstår begrepet på litt forskjellig

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2010 (Sist oppdatert: 2010-02-17 12:41) MAT1030 Diskret Matematikk

Detaljer

Litt topologi. Harald Hanche-Olsen

Litt topologi. Harald Hanche-Olsen MA2104 2006 Litt topologi Harald Hanche-Olsen hanche@math.ntnu.no De reelle tall En grunnleggende egenskap ved de reelle tall, som skiller dem fra de rasjonale tall, er kompletthetsaksiomet. Det har flere

Detaljer

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS INVERST FUNKSJONSTEOREM MAT1100 KALKULUS Simon Foldvik 29. Oktober 2017 1. Introduksjon Vi skal i dette dokumentet bevise en global og en lokal versjon av inverst unksjonsteorem i én variabel. Kort oppsummert

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Forelesning januar 2006 Induktive denisjoner og utsagnslogikk

Forelesning januar 2006 Induktive denisjoner og utsagnslogikk Forelesning 2-30. januar 2006 Induktive denisjoner og utsagnslogikk 1 Praktisk informasjon INF5170 { Logikkseminar Tirsdager 14:15-16:00 pa Buerommet (3. etg, I). Flg med pa forskning og aktuelle temaer

Detaljer

Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted

Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen januar Praktisk informasjon. 1.1 Forelesere og tid/sted Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen - 22. januar 2007 1 Praktisk informasjon 1.1 Forelesere og tid/sted Foreleser: Christian Mahesh Hansen (chrisha@ifi.uio.no) Kontor 2403,

Detaljer

Dedekind introduserer nå en spesiell klasse snitt som han kaller rasjonale snitt:

Dedekind introduserer nå en spesiell klasse snitt som han kaller rasjonale snitt: DE IRRASJONALE TALLENE EUDOXUS TESTAMENTE. Dedekind s snitt. Vi så tidligere at de greske matmatikerene kom til klarhet over at ikke alle forhold kunne beskrives som de vi kaller rasjonale tall dvs at

Detaljer

MAT1030 Forelesning 10

MAT1030 Forelesning 10 MAT1030 Forelesning 10 Mengdelære Roger Antonsen - 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære Oversikt Vi har nå innført de Boolske operasjonene, union snitt komplement

Detaljer

Dagens plan. INF3170 Logikk

Dagens plan. INF3170 Logikk INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret

Detaljer

INF3170 / INF4171. Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet. Andreas Nakkerud. 15. september 2015

INF3170 / INF4171. Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet. Andreas Nakkerud. 15. september 2015 INF3170 / INF4171 Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet Andreas Nakkerud 15. september 2015 Kripke-modeller Vi ser på modeller for et språk L. Definisjon En Kripke-modell er et

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) MAT1030 Diskret

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven Richard Williamson 3. oktober 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?..........................

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil

Detaljer

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Forelesning 9 mandag den 15. september

Forelesning 9 mandag den 15. september Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

Grublegruppe 19. sept. 2011: Algebra I

Grublegruppe 19. sept. 2011: Algebra I Grublegruppe 19. sept. 2011: Algebra I Ivar Staurseth ivarsta@math.uio.no Innledning, definisjoner Vi har så langt jobbet med mengder, X, hvor vi har hatt et avstandsbegrep og hvor vi har vært i stand

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

TMA 4140 Diskret Matematikk, 3. forelesning

TMA 4140 Diskret Matematikk, 3. forelesning TMA 4140 Diskret Matematikk, 3. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 5, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Partielle ordninger, Zorns lemma og utvalgsaksiomet

Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140, H-15 Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Grafteori Vi regner oppgavene på tavlen

Detaljer

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

Eksamen MAT H Løsninger

Eksamen MAT H Løsninger Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F

Detaljer

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere! Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:

Detaljer

Matematisk induksjon

Matematisk induksjon Matematisk induksjon 1 Innledning Dette er et nytt forsøk på å forklare induksjon. Strategien min i forelesning var å prøve å unngå å få det til å se ut som magi, ved å forklare prinsippet fort ved hjelp

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Eliminasjon av ubetsemthet

Eliminasjon av ubetsemthet 1. Del Eliminasjon av ubetsemthet Warning: En svært midlertidig versjon som er ikke er ferdig. Den er rotete og sikkert full av feil. Forbedring følger etterhvert! versjon 0.3 last update: 10/21/15 2:48:38

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55) Repetisjon

Detaljer

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler. INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Repetisjon Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55)

Detaljer

Preludium til et kurs i Reell Analyse våren 2017

Preludium til et kurs i Reell Analyse våren 2017 Preludium til et kurs i Reell Analyse våren 2017 Snorre H. Christiansen 8. februar 2017 1 0 Innledningsvis 0.1 Om kurset Dette kurset er både tilbake- og fremover-skuende. Tilbakeskuende i den forstand

Detaljer

HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510

HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510 HILBERTS AKSIOMSYSTEM FOR PLANGEOMETRI MAT4510/3510 BJØRN JAHREN Euklids Elementer introduserte den aksiomatiske metode i geometrien, og i mer enn 2000 år var den omtrent enerådende som lærebok i geometri.

Detaljer

Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis. Andreas Leopold Knutsen

Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis. Andreas Leopold Knutsen Slides til 4.1 og 4.2: Eksempler på feil i induksjonsbevis Andreas Leopold Knutsen February 9, 2010 Eks. 1: Finn feilen Fibonaccitallene F 1, F 2, F 3,... er denert rekursivt ved: F 0 = 0, F 1 = 1, og

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

Zorns lemma og utvalgsaksiomet

Zorns lemma og utvalgsaksiomet MAT1140, H-16 Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma bygger på det

Detaljer

TOPOLOGI. Dan Laksov

TOPOLOGI. Dan Laksov Forum för matematiklärare TOPOLOGI Dan Laksov Institutionen för Matematik, 2009 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Topologi Dan Laksov Notater for Forum för Matematiklärare. Høst

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

MA3301 Beregnbarhets- og kompleksitetsteori Høsten

MA3301 Beregnbarhets- og kompleksitetsteori Høsten MA3301 Beregnbarhets- og kompleksitetsteori Høsten 2012 1 Notat 2 Om den kanoniske automaten til et språk og minimalisering. Vi vil si at en automat M = Q, Σ, q 0, A, δ er redusert enhver tilstand q Q

Detaljer

INDUKSJONSPRINSIPPET MAT111 - H16

INDUKSJONSPRINSIPPET MAT111 - H16 INDUKSJONSPRINSIPPET MAT - H ANDREAS LEOPOLD KNUTSEN. Matematisk induksjon I læreboken står kun en liten trudelutt om matematisk induksjon i margen på side 0 (side 09 i utg. 7, side 08 i utg. ). Det er

Detaljer

MA1301 Uke 1: In(tro)duksjon

MA1301 Uke 1: In(tro)duksjon MA1301 Uke 1: In(tro)duksjon Magnus Bakke Botnan 21. august 2012 Magnus Bakke Botnan () MA1301 Uke 1: In(tro)duksjon 21. august 2012 1 / 14 Introduksjon Praktisk Praktisk Faglærer Magnus B. Landstad: magnus.landstad@math.ntnu.no

Detaljer

Viktige begrep i kapittel 1.

Viktige begrep i kapittel 1. Viktige begrep i kapittel 1. 1. Egenskaper ved relasjoner. La R A A være en binær relasjon. (a) At R er refleksiv betyr at x (x, x) R. (b) At R er symmetrisk betyr at x y ((x, y) R (y, x) R ). (c) At R

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo K A L K U L U S Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Forord Dette er en samling løsningsforslag som jeg opprinnelig

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Om forholdet mellom produkt og barysentrisk oppdeling av simplisialkomplekser

Om forholdet mellom produkt og barysentrisk oppdeling av simplisialkomplekser Om forholdet mellom produkt og barysentrisk oppdeling av simplisialkomplekser Vegard Fjellbo Matematisk institutt Universitetet i Oslo rvfjellb[at]student.matnat.uio.no 28. mai 2009 En prosjektoppgave

Detaljer

INF3170 Forelesning 11

INF3170 Forelesning 11 INF3170 Forelesning 11 Intuisjonistisk logikk Roger Antonsen - 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Innhold Intuisjonistisk logikk 1 Innledning........................................... 1

Detaljer

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31, Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

Notater fra forelesning i MAT1100 torsdag 27.08.09

Notater fra forelesning i MAT1100 torsdag 27.08.09 Notater fra forelesning i MAT1100 torsdag 27.08.09 Amandip Sangha, amandips@math.uio.no 28. august 2009 Definisjon 1.1. En delmengde A R kalles oppad begrenset dersom det finnes et tall b R slik at b x

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

Forelesning 4 torsdag den 28. august

Forelesning 4 torsdag den 28. august Forelesning 4 torsdag den 28. august 1.10 Rekursjon Merknad 1.10.1. Hvert tall i sekvensen 1, 2, 4, 8, 16,... er to ganger det foregående. Hvordan kan vi beskrive sekvensen formelt? Vi kan ikke skrive

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Harald Hanche-Olsen og Marius Irgens 20-02-02 Dette notatet ble først laget for MA02 våren 2008. Denne versjonen er omskrevet for MA02 våren 20. Du vil oppdage at mange

Detaljer