Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe kluss her), så mulige maks/min der den deriverte ikke eksisterer finnes ikke. f (x) =0 x =0 x =1.Detvilsiatf(1) = 1 1 + = 1 er en kandidat til ekstremalverdi. De eneste gjensående kandidatene er endepunktene med funksjonsverdier f(0) = og f(3) = 3 3+=5. Ved å sammenlikne de tre mulige kandidatene ser vi at f(1) = 1 er minst, slik at (1, 1) er et minimumspunkt. Det største tallet er f(3) = 5, så (3, 5) er er maksimumspunkt. Punktet (0,f(0)) = (0, ) er altså ingen av delene. Det er maksimum i nærheten av 0 (større enn alle verdier i definisjonsområdet i nærhenten av x = 0, i dette tilfellet fram til x = ). Dette kalles et lokalt maksimumspunkt. b) Nå er ikke 3 med i definisjonsområdet, så verdien f(3) = 5 oppnåes ikke. Verdier større enn 7 oppnås selvfølgelig ikke heller. En hvilken som helst verdi mindre enn 5 overstiges ved å velge x tilstrekkelig nær 3, så ingen tall mindre enn 5 kan være maksimumsverdi. Dermed finnes det ingen maksimum. c) f (x) =6x 6x 1 er definert over alt. Nullpunkter for den deriverte: 6x 6x 1 = 0 x x =0 x = ( 1) ± ( 1) 4 1 ( ) = 1 ± 3 d ) En rot er x = 1, som er utenfor domenet og dermed ingen kandidat (hadde domenet vært hele den reelle tallinja ville dette vært et lokalt maksimum). Den andre roten er x =, som er en kandidat sammen med de to endepunktene: f(0) = 0, størst. f() = 3 3 1 = 0, minst. f(3) = 3 3 3 3 1 3= 9 Det vil si minimumspunktet er (, 0) og maksimumspunktet (0, 0). Kjerneregelen med u = x med derivert x og ytre funksjon u med derivert 1/( u): x = d x = 1 u x = x = x x x e ) Hvis x>0erx = x så x =1.Hvisx<0erx = x så x = 1. Hvis x = 0 har vi null i nevner, og den deriverte er udefinert. Den deriverte er aldri 0, men for x = 0 ekksisterer den ikke, så dette er en kandidat. De to andre kandidatene er endepunktene: =,maksimum. 0 = 0, minimum. 1 = 1, ingen av delene. Oppgave a) f (x) =6cos(x)+4sin(x).
Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. b) y 0 = f(x 0 )=6sin(π/) 4cos(π/) = 6 1 4 0=6 f (x 0 )=6cos(π/) + 4 sin(π/) = 6 1+4 1=4 Tangentlikningen (på formen fra fasiten til oppgave ) blir da: y =6+4(x π/) y =4x +(6 π) c ) Produktregelen (uv) = u v + uv med u =sin(x), v =cos(x): sin(x) cos(x)) =(sin(x)) cos(x)+sin(x)(cos(x)) = cos(x)cos(x)+sin(x)( sin(x)) = cos (x) sin (x) (= cos(x)) d) 1 sin(x)+x cos(x) =sin(x)+x cos(x). e) cos(x) cos(x) sin(x) ( sin(x) (cos(x)) = cos (x)+sin (x) (cos (x)) Ved å bruke den trigonometriske identiteten cos (x)+sin (x) =1får vi da at den deriverte er 1 cos (x). f ) Et alternativ er å skrive brøk med summeuttrykket som en sum av to brøker: cos (x) cos (x) + sin (x) cos (x) =1+ ( ) sin(x) =1+tan (x). cos(x) Siden funksjonen som skulle deriveres er en omskrivning av tan(x), er dette en utledning av de to variantene av derivasjonsregelen for tangens, med utgangspunkt i derivasjonsreglene for cosinus og sinus. Oppgave 3 a) Ved å derivere posisjonsfunksjonen med hensyn på tiden får vi farten: v(t) = ds =cos(t) 3sin(t) så v(0) = cos(0) 3sin(0)= b ) Aksellerasjonen er den deriverte av farten (og dermed den andrederiverte av posisjonen) med hensyn på tiden: a(t) = dv = sin(t) 3cos(t) så a(0) = sin(0) 3cos(0) = 3
Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 3 Oppgave 4 a) e 0 =1, en av egenskapene med eksponentialfunksjone dere bør kjenne. g(0) = (3 0 )e 0 = 1=. b ) Eksponentialfunksjonen er sin egen deriverte (dette brukes ofte som definisjonen av e x ): f (x) =e x. c ) Dermed er f (0) = e 0 =1. Tangentlikningen y = f(a)+f (a)(x a) meda =0girnå y =1+1(x 0) y = x +1. d) Med en desimal har vi f(1) = e 1 = e.7. e.7 7.3. f( 1) = e 1 =1/e 1/.7 0.4. f( ) = e =1/e 1/7.3 0.1: 6 4 - -1 0 0 1 e ) Produktregelen: g (x) =3 e x +(3x ) e x =(3x +1)e x. f) Dermed er g (0) = (3 0+1)e 0 = e 0 =1. y = g(0) + g (0)(x 0) y = +1 x y = x. Oppgave 5 a ) Ytre funksjon sin(u) med derivert cos(u) og kjerne u = πt med derivert π: b) y (t) =a ω cos(ωt) b ω sin(ωt) =cos(u) π =π cos(πt) c) s (t) =Rω cos(ωt + φ) (som også kanskrivesrω sin(ωt +(φ + π/))) d ) Ytre funksjon e u med derivert e u,kjernet med derivert : f (t) =e t e) Her må i første omgang produktregelen (uv) = u v + uv brukes med u = t, u =1. Denandrefaktorenerv = e t,sommå deriveres med kjerneregelen med kjerne z = t og dermed z =. Siden jeg har brukt symbolet u i produktregelen må jeg finne på en annen bokstav, f.eks. z, for kjernen. Dermed er v (t) =e t ( ) = e t, og produktregelen gir dg =1 e t + t ( e t) = e t te t =(1 t)e t
4 Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. f) T (r) =sin(r)(sin(r) )+cos(r)(cos(r) =sin(r)cos(r) cos(r)sin(r) =0 Svaret kan sees i lys av den trigonometriske identiteten: sin (v) +cos (v) =1,såvihar egentlig derivert den funksjonen som er konstant lik 1. g) Kjerneregelen måbrukespå begge faktorer: e x har kjerne x med derivert 1, så d e x = e x og sin(x) harkjernex med derivert, så d sin(x) =cos(x). Produktregelen gir da d e x sin(x) = ( ) ( d d e x sin(x)+e x cos(x) ) = e x sin(x)+e x cos(x) =e x ( cos(x) sin(x)) h ) i ) Ytre funksjon ln(u) med derivert 1/u. Kjernenu = x +1medu =x: f (x) = 1 u x = x x +1 Ytre funksjon ln(u) med derivert 1/u. Kjernenu = g(x) med derivert som betegnes g (x): ln(g(x)) = g (x) g(x) Dette er spesielt nyttig i integrasjon. Når en brøk skal integreres er noe av det første man bør se etter om telleren er den deriverte av nevneren, eventuelt etter litt omforming. j) Kjerneregelen må brukes to ganger, først med f(u) = sin(u) og u resten, deretter med f(u) =u 3 og u = t +1: ( (t f (t) =cos +1 ) ) 3 d ( t +1 ) ( 3 (t =cos +1 ) ) 3 3 ( t +1 ) ( (t t =6t(t +1) cos +1 ) ) 3 Oppgave 6 a ) Siden x meter brukes til siden parallell med låven, er det 80 x meter igjen til de to sidene vinkelrett på låven. Siden disse er like lange får de sideelengde (80 x)/ =40 x/. Arealet av innhegningen er dermed A(x) =x (40 x/) = 40x 1 x, D A =[0, 80] b ) Definisjonsområdet er avgrenset nedover med 0, siden lengden ikke kan være negativ, og oppover med 80 som vi får om hele gjerdet brukes til en av sidene. Det goas åangid A som et åpent intervall, endepunktene utgjør neppe aktuell konstruksjon, men det er matematisk hensiktsmessig åha definisjonsområdet lukket (dette sikrer eksistens av maksimum- og minimumspunkter, når funksjonen er kontinuerlig). Finner maksimum via derivasjon: A (x) =40 x =0forx = 40. Dette er eneste mulige maks/min utenom endepunktene, og må derfor opplagt være maksimum. Arealet blir da A max = A(40) = 40 (40 40/) = 800 kvadratmeter. Verdimengden blir da at arealet er mellom 0 og maksimum, dvs. V A =[0, 800].
Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 5 Oppgave 7 Hvis vi kaller lengden av de sidene det er tre av for x, og de det er to av for y er arealet A = xy. Den totale lengden gjerde han har til disposisjon gir følgende sammenheng mellom x og y: x + x + x + y + y = 10 y = 10 3x y =60 3 x Ved å sette inn dette uttrykket for y i arealformelen, får vi uttrykt arealet som en funksjon av x: A(x) =xy = x (60 3 ) x =60x 3 x. Definisjonsområdet blir 0 x 40, siden x ikke kan være mindre enn 0, og med x =40brukes hele gjerdet til de tre sidene med lengde x. Dermed er A en kontinuerlig funksjon (et polynom) på et lukket intervall, og maksimum må finnes. Endepunktene x =0ogx = 40 er i utgangspunktet kandidater, men for disse verdiene blir arealet 0 som ikke kan være maks. Andre kandidater er der den deriverte er 0 eller ikke eksisterer. A (x) =60 3x A (x) =0forx =0 Siden den deriverte eksisterer over alt, er x = 0 eneste gjenstående kandidat, som dermed må gi maks. Det maksimale arealet er derfor A(0) = 0 (60 3 ) 0 = 0 30 = 600 (kvadratmeter). Oppgave 8 a) b) lim (cos() 1)(cos() +1) (cos()+1) sin () (cos()+1) = lim sin() cos () 1 (cos()+1) = sin() cos()+1 = 1 0 =0 f (x) sin(x +) sin(x) sin(x)cos()+cos(x)sin() sin(x) cos(x)sin() +sin(x) cos() 1 =cos(x) 1+sin(x) 0=cos(x) Hans Petter Hornæs