Morfologi i Gråskala-Bilder II
|
|
- Magnhild Holt
- 7 år siden
- Visninger:
Transkript
1 Morfologi i Gråskala-Bilder II Lars Vidar Magnusson April 4, 2017 Delkapittel 9.6 Gray-Scale Morphology
2 Top-Hat (Topphatt) Transformasjon Et eksempel på bruk av top-hat transformasjonen
3 Top-Hat (Topphatt) Transformasjon Top-hat (topphatt) transformasjonen kan brukes til å fjerne irrelevant informasjon fra et gråskala-bilde. T hat (f ) = f (f b) Fjerner alt bortsett fra objektene hvor SE får plass Sitter igjen med toppene Benyttes for lyse objekter på mørk bakgrunn
4 Et Reelt Eksempel Her et bilde av ris tatt i ujevne lysforhold. Kan vi skille ut alle riskornene?
5 Et Reelt Eksempel Vi utfører thresholding av bildet ved hjelp av Otsu s metode (Kapittel 10). ikke alle riskornene er funnet det er noe støy
6 Et Reelt Eksempel Vi vil behold riskornene, men fjerne bakgrunnen. Under er resultatet av å åpne med en sirkulær SE med radius på 40. Dette fanger opp ujevnheten i bakgrunnen
7 Et Reelt Eksempel Her er resultatet fra hele topphatt-operasjonen med en sirkulær SE med radius 40
8 Et Reelt Eksempel Her er resultatet fra thresholding ved hjelp av Otsu s metode på det topphatt-transformert bildet Alle problemene er løst :)
9 Bottom-Hat (Bunnhatt) Transformasjonen Her er et eksempel på bruk av bottom-hat (bunnhatt) transformasjonen
10 Bottom-Hat (Bunnhatt) Transformasjonen Bottom-hat (bunnhatt) transformasjonen er den samme operasjonen som top-hat, bare for mørke objekter. B hat (f ) = (f b) f Fjerner alt bortsett fra objektene hvor SE får plass Sitter igjen med de mørke toppene Benyttes for mørke objekter på lys bakgrunn Kallers også black top-hat.
11 Et Eksempel Her har vi et bilde med mørke stjerner på en lysere bakgrunn.
12 Et Eksempel Vi fjerner bakgrunnen ved å bruke et SE som er stort nok til at stjernene forsvinner under lukkingen.
13 Granulometry (Finne Størrelser) Granulometry handler om å finne objekter/partikler av en spesiell størrelse. Kompliseres av at partiklene sjeldent er separerte Morfologi kan brukes til å indirekte estimere distribusjonen av størrelser uten å måle de direkte. Utfør en sekvens av åpninger med økende størrelse på SE For hver åpning registrerer vi summen av pikselene Når summene plottes kan vi se de ulike størrelsene
14 Et Reelt Eksempel Bildet under er av treplugger av ulik størrelse. La oss se om vi kan finne ut hvor mange typer (og antall).
15 Et Reelt Eksempel Vi begynner med å utføre morphologisk smoothing for å fjerne støy.
16 Et Reelt Eksempel Under er resultatet fra å åpne med en disk med radius 10.
17 Et Reelt Eksempel Under er resultatet fra å åpne med en disk med radius 20. Nesten alle små plugger har blitt borte
18 Et Reelt Eksempel Under er resultatet fra å åpne med en disk med radius 30. Dette tok hånd om resten
19 Et Reelt Eksempel Hvis vi plotter summene direkte får vi følgende Dette er ikke nødvendigvis lett å tolke
20 Et Reelt Eksempel Hvis vi plotter differansen mellom summene får vi følgende Nå er det lett å se at vi har to klare topper som tilsvarer to størrelser av plugger. Vi kunne også regnet ut ca. antall utifra summene
21 Textural (Tekstur) Segmentering Eksempel Man kan bruke morfologi til å segmentere et bildet basert på tekstur. Vi har to ulike teksturer. Hvordan kan vi segmentere de?
22 Textural (Tekstur) Segmentering Eksempel Vi begynner med å fjerne de små hullene ved hjelp av lukking med en disk med radius 30 (flekkene til venstre er ca 50 piksler brede) Vi må nå finne et segment som dekker teksturen til høyre.
23 Textural (Tekstur) Segmentering Eksempel Vi fjerner skillene mellom flekkene ved å åpne med et SE som er større enn skillene. Dette segmenterer bildet i henhold til de to teksturene
24 Textural (Tekstur) Segmentering Eksempel Vi kan konvertere segmenteringen til en kant ved hjelp av morfologisk gradient Bildet til høyre har blitt superimposed med resultatet fra gradienten
Morfologi i Gråskala-Bilder
Morfologi i Gråskala-Bilder Lars Vidar Magnusson April 3, 2017 Delkapittel 9.6 Gray-Scale Morphology Generelt Gråskala morfologiske operasjoner har mye til felles med binære morfologiske operasjoner. Vi
DetaljerMorfologi i Binære Bilder II
Morfologi i Binære Bilder II Lars Vidar Magnusson March 28, 2017 Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation Opening (Åpning) Opening er en morfologisk operasjon
DetaljerMorfologi i Binære Bilder
Morfologi i Binære Bilder Lars Vidar Magnusson February 26, 2018 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation
DetaljerMorfologi i Binære Bilder III
Morfologi i Binære Bilder III Lars Vidar Magnusson March 28, 2017 Delkapittel 9.5 Some Basic Morphological Algorithms Boundary Extraction (Grenseuthenting) Vi kan hente ut grensen til et sett (boundary)
DetaljerMorfologi i Binære Bilder
Morfologi i Binære Bilder Lars Vidar Magnusson March 20, 2017 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Bakgrunn Morfologiske operasjoner på binære bilder beskrives med mengdeteori.
DetaljerMotivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.
1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser
DetaljerMotivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper
Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder
DetaljerMotivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk.
INF 230 Morfologi Morfologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. ammensatte operasjoner 4. Eksempler på anvendelser flettet inn GW, Kapittel
DetaljerSpatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters
Spatial Filtere Lars Vidar Magnusson February 6, 207 Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Hvordan Lage Spatial Filtere Det er å lage et filter er nokså enkelt;
DetaljerMorfologiske operasjoner på binære bilder
Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser
DetaljerMorfologiske operasjoner på binære bilder
Digital bildebehandling Forelesning 9-209 Morfologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Mandag 1. juni 2015 Tid for eksamen: 14:30 18:30 Oppgavesettett er på: 6 sider Vedlegg:
DetaljerMorfologiske operasjoner på binære bilder
Digital bildebehandling Forelesning 15 Morfologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser
DetaljerMatematisk morfologi II
Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 2 Elementære operasjoner: Erosjon. Dilasjon. Sammensatte operasjoner:
DetaljerOversikt, kursdag 2. Matematisk morfologi II. Morfologiske operatorer, erosjon og dilasjon. Morfologiske operatorer, erosjon og dilasjon
Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Elementære operasjoner: Erosjon. Dilasjon. Oversikt, kursdag 2 Sammensatte operasjoner: Åpning. Lukning. Flosshatt-transformasjoner.
DetaljerIntroduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling
Digital bildebehandling Forelesning 3 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser
DetaljerIntroduksjon. Morfologiske operasjoner på binære bilder. Litt mengdeteori. Eksempel: Lenke sammen objekter INF
INF230 5.05.202 Morfologiske operasjoner på binære bilder Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser er flettet inn DIP: 9.-9.4, 9.5.,
DetaljerPunkt, Linje og Kantdeteksjon
Punkt, Linje og Kantdeteksjon Lars Vidar Magnusson April 18, 2017 Delkapittel 10.2 Point, Line and Edge Detection Bakgrunn Punkt- og kantdeteksjon er basert på teorien om skjærping (forelesning 7 og 8).
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider
DetaljerOversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter
Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter. Oversikt, kursdag 3 Copyright Lars Aurdal, NTNU/NR
DetaljerMatematisk morfologi IV
Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.
DetaljerMatematisk Morfologi Lars Aurdal
Matematisk Morfologi Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Motivasjon. Plan Grunnleggende setteori. Grunnleggende operasjoner. Dilasjon. Erosjon. Sammensatte operasjoner Åpning Lukning Algoritmer.
DetaljerMatematisk morfologi III
Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 3 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter.
DetaljerHistogramprosessering
Histogramprosessering Lars Vidar Magnusson January 24, 217 Delkapittel 3.3 Histogram Processing Histogram i Bildeanalyse Et histogram av et digitalt bilde med intensitet i intervallet [, L) er en diskret
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen
DetaljerUNIVERSITETET I OSLO
Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider
DetaljerFiltrering i Frekvensdomenet II
Filtrering i Frekvensdomenet II Lars Vidar Magnusson March 7, 2017 Delkapittel 4.8 Image Smoothing Using Frequency Domain Filters Delkapittel 4.9 Image Sharpening Using Frequency Domain Filters Low-Pass
DetaljerUNIVERSITETET I OSLO. Dette er et løsningsforslag
Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :
DetaljerMotivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk.
INF 230 Morologi Morologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. Sammensatte operasjoner 4. Eksempler på anvendelser lettet inn GW, Kapittel 9.-9.4
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er
DetaljerOversikt, kursdag 4. Matematisk morfologi IV. Geodesi-transformasjoner: Dilasjon. Geodesi-transformasjoner
Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember Geodesi-transformasjoner: Oversikt, kursdag Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.. Åpning/lukning
DetaljerFargebilder. Lars Vidar Magnusson. March 12, 2018
Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder
DetaljerMatematisk morfologi V
Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 5 Segmentering: Watershedtransformen. Copyright Lars Aurdal, NTNU/NR
DetaljerOversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral
Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Segmentering: Watershedtransformen. Oversikt, kursdag 5 Copyright Lars Aurdal, NTNU/NR Copyright Lars Aurdal, NTNU/NR
DetaljerUNIVERSITETET I OSLO
Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : :3 8:3 Løsningsforslaget er på : 9
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
DetaljerSEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING
SEGMENTERING IN 106, V-2001 Segmentering er en prosess som deler opp bildet i meningsfulle regioner. I det enkleste tilfelle har vi bare to typer regioner BILDE-SEGMENTERING DEL I Forgrunn Bakgrunn Problemet
DetaljerEKSAMEN. Bildebehandling og mønstergjenkjenning
EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 2007 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : 5 sider
DetaljerInf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.
Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014
DetaljerKantdeteksjon og Fargebilder
Kantdeteksjon og Fargebilder Lars Vidar Magnusson April 25, 2017 Delkapittel 10.2.6 More Advanced Techniques for Edge Detection Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Marr-Hildreth
DetaljerGrunnleggende Matematiske Operasjoner
Grunnleggende Matematiske Operasjoner Lars Vidar Magnusson January 16, 2017 Delkapittel 2.6 Array vs Matrise Operasjoner Det er vanlig med både array- og matrise-operasjoner på bilder. Array-multiplikasjon
DetaljerFourier-Transformasjoner II
Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
DetaljerUNIVERSITETET I OSLO
Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget
DetaljerHistogramprosessering
Histogramprosessering Lars Vidar Magnusson January 22, 2018 Delkapittel 3.3 Histogram Processing Histogram i Bildeanalyse Et histogram av et digitalt bilde med intensitet i intervallet [0, L) er en diskret
Detaljermål pinner Rundp nr. 3,5. Heklenål nr. 3,5. Strikkefasthet Garnforbruk pute broderi Montering
STERK - PUS - HEXA JULEPUTER GOD JUL-PUTE Bredde: 30 cm. Høyde 21 cm. STERK - BLING pinner Rundp nr.. Heklenål nr.. 22 m glattstrikk = 10 cm i bredden. Farge 1: Lys brun 823: 50 g Farge 2: Natur 806: 50
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai
DetaljerMatlab og Bilder. Øyvind Ryan September 2008
Matlab og Bilder Øyvind Ryan (oyvindry@i.uio.no) September 2008 Kommandoer for bilder Med Matlab kan dere lese inn bilder, vise frem bilder, og skrive bilder til l: imread A = imread('filnavn.fmt','fmt')
DetaljerKantsegmentering NTNU
Kantsegmentering Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 24 Oversikt, kantsegmentering Litt praktisk informasjon. Motivasjon. Hva er en kant i et bilde? Hva er segmentering? Hva er kantsegmentering?
DetaljerINF 1040 Løsningsforslag til kapittel
INF 040 Løsningsforslag til kapittel 8 Oppgave : Huffmankoding med kjente sannsynligheter Gitt en sekvens av symboler som er tilstrekkelig lang, og som inneholder de 6 symbolene A, B, C, D, E, F. Symbolene
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
DetaljerDyp læring. Sigmund Rolfsjord
Dyp læring Sigmund Rolfsjord Oversikt 1. Grunnleggende om dyp læring og nevrale nett 2. Konvolusjonsnett 3. Synsfelt med konvolusjonsnett Lær mer: Kurs fra Stanford: http://cs231n.stanford.edu/ Mer inngående
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:
DetaljerFourier-Transformasjoner
Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.
DetaljerKonvertering mellom tallsystemer
Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,
DetaljerGrådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder
Grådige Algoritmer Lars Vidar Magnusson 12.3.2014 Kapittel 16 Grådige algoritmer Aktivitetvelgingsproblemet Huffmankoder Ideen bak Grådige Algoritmer Ideen bak grådige algoritmer er å løse optimaliseringsproblem
DetaljerIntroduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling
Introduksjon Digital bildebehandling Forelesning 3 Morologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler
DetaljerOversikt, matematisk morfologi. Matematisk morfologi. Oversikt, matematisk morfologi. Oversikt, matematisk morfologi. Praktisk informasjon
Matematisk morfologi Lars urdal Norsk regnesentral aurdal@nr.no 9. august 2005 Litt praktisk informasjon.. Historie. Matematisk grunnlag. Fundamentale operatorer: Dilasjon. Erosjon. 1 Sammensatte operatorer:
DetaljerLøsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding
Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av
DetaljerIntensitetstransformasjoner og Spatial Filtrering
Intensitetstransformasjoner og Spatial Filtrering Lars Vidar Magnusson January 23, 2017 Delkapittel 3.1 Background Delkapittel 3.2 Some Basic Intensity Tranformation Functions Spatial Domain Som vi allerede
DetaljerPrøve- EKSAMEN med løsningsforslag
Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 28. mars 2007 Tid for eksamen : 13:30 16:30 Oppgavesettet er på : 4 sider
DetaljerAvsluttende eksamen i TDT4120 Algoritmer og datastrukturer
Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.
DetaljerSteg 0: Installere Pygame Zero
PGZ - Sprettball Skrevet av: Ole Kristian Pedersen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert, Spill Fag: Matematikk, Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse Introduksjon I denne
Detaljermed canvas Canvas Grafikk Læreplansmål Gløer Olav Langslet Sandvika VGS
Grafikk med canvas Gløer Olav Langslet Sandvika VGS Høsten 2011 Informasjonsteknologi 2 Canvas Læreplansmål Eleven skal kunne bruke programmeringsspråk i multimedieapplikasjoner Med CSS3, HTML og JavaScript
DetaljerIntroduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling
Introduksjon Digital bildebehandling Forelesning 4 Morologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler
DetaljerENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING.
ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING. Det finnes flere måter å strekkodemerke varer på: Ved å integrere strekkoden i emballasjedesignen Ved å sette på en forhåndstrykt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider
DetaljerMerombilderogvideo. Fra bilder til video. Fra Edison til moderne kino. Luminans-variasjon
Merombilderogvideo Fra bilder til video Når vi lukker øynene, tar det litt tid før etter - bildet forsvinner, spesielt hvis intensiteten er høy (i deler av) bildet. Bildet forsvinner gradvis (eksponensielt)
DetaljerR E G I O N A L A V D E L I N G E N F Y L K E S K O N S E R V A T O R E N. Huseby 2/32 Farsund kommune
R E G I O N A L A V D E L I N G E N F Y L K E S K O N S E R V A T O R E N ARKEOLOGISKE REGISTRERINGER Huseby 2/32 Farsund kommune R A P P O RT F R A A R K E O L O G I S K B E FA R I N G / R E G I S T R
DetaljerNeste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder
3/8/29 Digitale bilder med spesielt fokus på medisinske bilder Karsten Eilertsen Radiumhospitalet Neste to forelesninger Torsdag 29/: Enkel innføring i digitale bilder Eksempler på noen enkle metoder for
DetaljerEKSAMENSFORSIDE Skriftlig eksamen med tilsyn
EKSAMENSFORSIDE Skriftlig eksamen med tilsyn Emnekode:6121 Emnenavn: Bildebehandling Dato: 08.12.2016 Tid fra / til: 09.00 13.00 Ant. timer: 4 Ansv. faglærer: Tor Lønnestad Campus: Bø Fakultet: Allmennvitenskapelige
DetaljerGrunnleggende om Digitale Bilder (ITD33515)
Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og
DetaljerUNIVERSITETET I OSLO
Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF30 Digital bildebehandling Eksamensdag : Fredag 9. mars 09 Tid for eksamen : :30 8:30 ( timer) Løsningsforslaget
DetaljerAST5220 forelesning 1 Litt praktisk CMB-analyse
AST5220 forelesning 1 Litt praktisk CMB-analyse Hans Kristian Eriksen 16. januar 2008 Litt om kurset Pensum basert på Modern Cosmology av Scott Dodelson Mål : Å forstå dannelse av storskala-strukturer
DetaljerESERO AKTIVITET HVA ER EN KONSTELLASJON? Lærerveiledning og elevaktivitet. Klassetrinn 7-8
ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 80 min. Å: vite at stjernene i en konstellasjon er veldig langt fra hverandre vite at det du
DetaljerFourier-Transformasjoner IV
Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde
DetaljerMatematisk morfologi NTNU
Matematisk morfologi Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 2004 Oversikt, matematisk morfologi Litt praktisk informasjon. Motivasjon. Historie. Matematisk grunnlag. Fundamentale operatorer:
DetaljerHeuristiske søkemetoder III
Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.
Detaljerwww.ir.hiof.no/~eb/viz.htm Side 1 av 12
VIZhtm Side 1 av 12 Innhold Side MÅL 1 OPPGAVE / RESULTAT 1 BESKRIVELSE ØVING 6A 2 BESKRIVELSE ØVING 6B 9 BESKRIVELSE ØVING 6C 12 MÅL Når du har utført denne øvingen, skal du kunne: Benytte et kamera som
DetaljerMålet med denne masteroppgaven blir å sette seg inn i kunstnerens problemstillinger og prøve å finne metoder for hvordan ideene hans kan realiseres.
i Sammendrag Terrengmodellering i 3D er i dag en mye brukt måte å fremstille landskap på. Slike modeller kan man se i utallige dataspill, animasjonsfilmer, og geologiske modeller. Den vanligste måten å
DetaljerMorfologiske operasjoner. Motivasjon
INF 230 Digital bildebehandling orelesning nr 2-9.04.2005 Morologiske operasjoner Litteratur : Eord, Kap. Temaer : Neste gang : Basis-begreper Fundamentale operasjoner på binære bilder ammensatte operasjoner
DetaljerESERO AKTIVITET Klassetrinn: grunnskole
ESERO AKTIVITET Klassetrinn: grunnskole Kommunikasjon i verdensrommet Lærerveiledning og elevaktivitet Oversikt Tid Læringsmål Nødvendige materialer 60 min 60 min I denne oppgaven skal elevene lære: hvordan
DetaljerTDT4105/TDT4110 Informasjonsteknologi grunnkurs:
1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et
DetaljerDynamisk programmering Undervises av Stein Krogdahl
Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.
DetaljerEksamen Løsningsforslag
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Eksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Torsdag 1. juni 2017 Tidspunkt for eksamen:
DetaljerHvordan lage et sammensatt buevindu med sprosser?
Hvordan lage et sammensatt buevindu med sprosser? I flere tilfeller er et vindu som ikke er standard ønskelig. I dette tilfellet skal vinduet under lages. Prinsippene er de samme for andre sammensatte
DetaljerLED-flomlys med solcellepanel fra Ladelys AS
LED-flomlys med solcellepanel fra Ladelys AS Testrapport 1 06.01.2015 Bakgrunn: Pga. tidligere innbrudd er det ønskelig med bevegelsesstyrt øyeblikksbelysning foran noen oppbevaringsbuer/uthus for å overraske/skremme
DetaljerMONTERINGSVEILEDNING Levegg
MONTERINGSVEILEDNING Levegg Denne manualen viser en typisk leveggsmontering.vi bruker både vanlige leveggselementer og diagonale levegger som kan brukes ved overgang mellom levegg og rekkverk/gjerde, eller
DetaljerHøgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00
Or Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD33506 Bildebehandling og monstergjenkjenning Dato: 25.11.2013 Eksamenstid: kl 9.00 til kl 12.00 Hjelpemidler: Læreboken, ett A4-ark skrevet på begge sider
DetaljerMÅL. Innhold OPPGAVE / RESULTAT. Forelesning Klasse A3A Side 1 av 9. Side MÅL. 1 OPPGAVE / RESULTAT. 1 BESKRIVELSE 2 VIKTIGE KOMMANDOER 8
Forelesning 14.2.06 Klasse A3A Side 1 av 9 Innhold Side MÅL. 1 OPPGAVE / RESULTAT. 1 BESKRIVELSE 2 VIKTIGE KOMMANDOER 8 MÅL Når du har utført denne øvingen, skal du kunne: Importere geometri vha 3ds filformat.
DetaljerI denne oppgaven skal du lære hvordan du kan flytte rundt på elementer og gjemme elementene bak andre elementer ved hjelp av CSS.
CSS: Skjul ninjaene Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk) Oversatt av: Trude Martinsen Kurs: Web Tema: Tekstbasert, Nettside Fag: Matematikk, Programmering, Teknologi, Kunst og håndverk
DetaljerDagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist)
Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.
DetaljerInnføring i bildebehandling
Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Sarpsborg 13.01.2005 12.01.05 Ny oppgave Log LMN Log,
DetaljerMontering av ledd bak (Høyre og venstre side) Du har fått 4 ledstriper (D modeller) eller 6 led striper for ikke D modeller.
Bilde 1 Bilde 2. Montering av ledd bak (Høyre og venstre side) Du har fått 4 ledstriper (D modeller) eller 6 led striper for ikke D modeller. Bilde 1 Frunk: to lange (50-60cm kabel) er for Frunk ikke D
DetaljerDynamisk programmering
Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å
DetaljerAlgoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1
Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha
Detaljer