Morfologi i Gråskala-Bilder II

Størrelse: px
Begynne med side:

Download "Morfologi i Gråskala-Bilder II"

Transkript

1 Morfologi i Gråskala-Bilder II Lars Vidar Magnusson April 4, 2017 Delkapittel 9.6 Gray-Scale Morphology

2 Top-Hat (Topphatt) Transformasjon Et eksempel på bruk av top-hat transformasjonen

3 Top-Hat (Topphatt) Transformasjon Top-hat (topphatt) transformasjonen kan brukes til å fjerne irrelevant informasjon fra et gråskala-bilde. T hat (f ) = f (f b) Fjerner alt bortsett fra objektene hvor SE får plass Sitter igjen med toppene Benyttes for lyse objekter på mørk bakgrunn

4 Et Reelt Eksempel Her et bilde av ris tatt i ujevne lysforhold. Kan vi skille ut alle riskornene?

5 Et Reelt Eksempel Vi utfører thresholding av bildet ved hjelp av Otsu s metode (Kapittel 10). ikke alle riskornene er funnet det er noe støy

6 Et Reelt Eksempel Vi vil behold riskornene, men fjerne bakgrunnen. Under er resultatet av å åpne med en sirkulær SE med radius på 40. Dette fanger opp ujevnheten i bakgrunnen

7 Et Reelt Eksempel Her er resultatet fra hele topphatt-operasjonen med en sirkulær SE med radius 40

8 Et Reelt Eksempel Her er resultatet fra thresholding ved hjelp av Otsu s metode på det topphatt-transformert bildet Alle problemene er løst :)

9 Bottom-Hat (Bunnhatt) Transformasjonen Her er et eksempel på bruk av bottom-hat (bunnhatt) transformasjonen

10 Bottom-Hat (Bunnhatt) Transformasjonen Bottom-hat (bunnhatt) transformasjonen er den samme operasjonen som top-hat, bare for mørke objekter. B hat (f ) = (f b) f Fjerner alt bortsett fra objektene hvor SE får plass Sitter igjen med de mørke toppene Benyttes for mørke objekter på lys bakgrunn Kallers også black top-hat.

11 Et Eksempel Her har vi et bilde med mørke stjerner på en lysere bakgrunn.

12 Et Eksempel Vi fjerner bakgrunnen ved å bruke et SE som er stort nok til at stjernene forsvinner under lukkingen.

13 Granulometry (Finne Størrelser) Granulometry handler om å finne objekter/partikler av en spesiell størrelse. Kompliseres av at partiklene sjeldent er separerte Morfologi kan brukes til å indirekte estimere distribusjonen av størrelser uten å måle de direkte. Utfør en sekvens av åpninger med økende størrelse på SE For hver åpning registrerer vi summen av pikselene Når summene plottes kan vi se de ulike størrelsene

14 Et Reelt Eksempel Bildet under er av treplugger av ulik størrelse. La oss se om vi kan finne ut hvor mange typer (og antall).

15 Et Reelt Eksempel Vi begynner med å utføre morphologisk smoothing for å fjerne støy.

16 Et Reelt Eksempel Under er resultatet fra å åpne med en disk med radius 10.

17 Et Reelt Eksempel Under er resultatet fra å åpne med en disk med radius 20. Nesten alle små plugger har blitt borte

18 Et Reelt Eksempel Under er resultatet fra å åpne med en disk med radius 30. Dette tok hånd om resten

19 Et Reelt Eksempel Hvis vi plotter summene direkte får vi følgende Dette er ikke nødvendigvis lett å tolke

20 Et Reelt Eksempel Hvis vi plotter differansen mellom summene får vi følgende Nå er det lett å se at vi har to klare topper som tilsvarer to størrelser av plugger. Vi kunne også regnet ut ca. antall utifra summene

21 Textural (Tekstur) Segmentering Eksempel Man kan bruke morfologi til å segmentere et bildet basert på tekstur. Vi har to ulike teksturer. Hvordan kan vi segmentere de?

22 Textural (Tekstur) Segmentering Eksempel Vi begynner med å fjerne de små hullene ved hjelp av lukking med en disk med radius 30 (flekkene til venstre er ca 50 piksler brede) Vi må nå finne et segment som dekker teksturen til høyre.

23 Textural (Tekstur) Segmentering Eksempel Vi fjerner skillene mellom flekkene ved å åpne med et SE som er større enn skillene. Dette segmenterer bildet i henhold til de to teksturene

24 Textural (Tekstur) Segmentering Eksempel Vi kan konvertere segmenteringen til en kant ved hjelp av morfologisk gradient Bildet til høyre har blitt superimposed med resultatet fra gradienten

Morfologi i Gråskala-Bilder

Morfologi i Gråskala-Bilder Morfologi i Gråskala-Bilder Lars Vidar Magnusson April 3, 2017 Delkapittel 9.6 Gray-Scale Morphology Generelt Gråskala morfologiske operasjoner har mye til felles med binære morfologiske operasjoner. Vi

Detaljer

Morfologi i Binære Bilder II

Morfologi i Binære Bilder II Morfologi i Binære Bilder II Lars Vidar Magnusson March 28, 2017 Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation Opening (Åpning) Opening er en morfologisk operasjon

Detaljer

Morfologi i Binære Bilder

Morfologi i Binære Bilder Morfologi i Binære Bilder Lars Vidar Magnusson February 26, 2018 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation

Detaljer

Morfologi i Binære Bilder III

Morfologi i Binære Bilder III Morfologi i Binære Bilder III Lars Vidar Magnusson March 28, 2017 Delkapittel 9.5 Some Basic Morphological Algorithms Boundary Extraction (Grenseuthenting) Vi kan hente ut grensen til et sett (boundary)

Detaljer

Morfologi i Binære Bilder

Morfologi i Binære Bilder Morfologi i Binære Bilder Lars Vidar Magnusson March 20, 2017 Delkapittel 9.1 Preliminaries Delkapittel 9.2 Dilation and Erosion Bakgrunn Morfologiske operasjoner på binære bilder beskrives med mengdeteori.

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder. 1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper

Motivasjon. Litt sett-teori. Eksempel. INF Kap. 11 i Efford Morfologiske operasjoner. Basis-begreper Basis-begreper INF 2310 08.05.2006 Kap. 11 i Efford Morfologiske operasjoner Fundamentale operasjoner på binære bilder Sammensatte operasjoner Morfologisk filtrering Morfologiske operasjoner på gråtonebilder

Detaljer

Motivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk.

Motivasjon. INF 2310 Morfologi. Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) Problem: gjenkjenn alle tall i bildet automatisk. INF 230 Morfologi Morfologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. ammensatte operasjoner 4. Eksempler på anvendelser flettet inn GW, Kapittel

Detaljer

Spatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters

Spatial Filtere. Lars Vidar Magnusson. February 6, Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Spatial Filtere Lars Vidar Magnusson February 6, 207 Delkapittel 3.5 Smoothing Spatial Filters Delkapittel 3.6 Sharpening Spatial Filters Hvordan Lage Spatial Filtere Det er å lage et filter er nokså enkelt;

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 13 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 9-209 Morfologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Mandag 1. juni 2015 Tid for eksamen: 14:30 18:30 Oppgavesettett er på: 6 sider Vedlegg:

Detaljer

Morfologiske operasjoner på binære bilder

Morfologiske operasjoner på binære bilder Digital bildebehandling Forelesning 15 Morfologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

Matematisk morfologi II

Matematisk morfologi II Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 2 Elementære operasjoner: Erosjon. Dilasjon. Sammensatte operasjoner:

Detaljer

Oversikt, kursdag 2. Matematisk morfologi II. Morfologiske operatorer, erosjon og dilasjon. Morfologiske operatorer, erosjon og dilasjon

Oversikt, kursdag 2. Matematisk morfologi II. Morfologiske operatorer, erosjon og dilasjon. Morfologiske operatorer, erosjon og dilasjon Matematisk morfologi II Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Elementære operasjoner: Erosjon. Dilasjon. Oversikt, kursdag 2 Sammensatte operasjoner: Åpning. Lukning. Flosshatt-transformasjoner.

Detaljer

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling Digital bildebehandling Forelesning 3 Morfologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser

Detaljer

Introduksjon. Morfologiske operasjoner på binære bilder. Litt mengdeteori. Eksempel: Lenke sammen objekter INF

Introduksjon. Morfologiske operasjoner på binære bilder. Litt mengdeteori. Eksempel: Lenke sammen objekter INF INF230 5.05.202 Morfologiske operasjoner på binære bilder Repetisjon av grunnleggende mengdeteori Fundamentale operatorer Sammensatte operatorer Eksempler på anvendelser er flettet inn DIP: 9.-9.4, 9.5.,

Detaljer

Punkt, Linje og Kantdeteksjon

Punkt, Linje og Kantdeteksjon Punkt, Linje og Kantdeteksjon Lars Vidar Magnusson April 18, 2017 Delkapittel 10.2 Point, Line and Edge Detection Bakgrunn Punkt- og kantdeteksjon er basert på teorien om skjærping (forelesning 7 og 8).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter

Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter. Oversikt, kursdag 3 Copyright Lars Aurdal, NTNU/NR

Detaljer

Matematisk morfologi IV

Matematisk morfologi IV Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.

Detaljer

Matematisk Morfologi Lars Aurdal

Matematisk Morfologi Lars Aurdal Matematisk Morfologi Lars Aurdal FORSVARETS FORSKNINGSINSTITUTT Motivasjon. Plan Grunnleggende setteori. Grunnleggende operasjoner. Dilasjon. Erosjon. Sammensatte operasjoner Åpning Lukning Algoritmer.

Detaljer

Matematisk morfologi III

Matematisk morfologi III Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 3 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter.

Detaljer

Histogramprosessering

Histogramprosessering Histogramprosessering Lars Vidar Magnusson January 24, 217 Delkapittel 3.3 Histogram Processing Histogram i Bildeanalyse Et histogram av et digitalt bilde med intensitet i intervallet [, L) er en diskret

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider

Detaljer

Filtrering i Frekvensdomenet II

Filtrering i Frekvensdomenet II Filtrering i Frekvensdomenet II Lars Vidar Magnusson March 7, 2017 Delkapittel 4.8 Image Smoothing Using Frequency Domain Filters Delkapittel 4.9 Image Sharpening Using Frequency Domain Filters Low-Pass

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

Motivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk.

Motivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk. INF 230 Morologi Morologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. Sammensatte operasjoner 4. Eksempler på anvendelser lettet inn GW, Kapittel 9.-9.4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er

Detaljer

Oversikt, kursdag 4. Matematisk morfologi IV. Geodesi-transformasjoner: Dilasjon. Geodesi-transformasjoner

Oversikt, kursdag 4. Matematisk morfologi IV. Geodesi-transformasjoner: Dilasjon. Geodesi-transformasjoner Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember Geodesi-transformasjoner: Oversikt, kursdag Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.. Åpning/lukning

Detaljer

Fargebilder. Lars Vidar Magnusson. March 12, 2018

Fargebilder. Lars Vidar Magnusson. March 12, 2018 Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder

Detaljer

Matematisk morfologi V

Matematisk morfologi V Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 5 Segmentering: Watershedtransformen. Copyright Lars Aurdal, NTNU/NR

Detaljer

Oversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral

Oversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Segmentering: Watershedtransformen. Oversikt, kursdag 5 Copyright Lars Aurdal, NTNU/NR Copyright Lars Aurdal, NTNU/NR

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : :3 8:3 Løsningsforslaget er på : 9

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING

SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING SEGMENTERING IN 106, V-2001 Segmentering er en prosess som deler opp bildet i meningsfulle regioner. I det enkleste tilfelle har vi bare to typer regioner BILDE-SEGMENTERING DEL I Forgrunn Bakgrunn Problemet

Detaljer

EKSAMEN. Bildebehandling og mønstergjenkjenning

EKSAMEN. Bildebehandling og mønstergjenkjenning EKSAMEN Emnekode: ITD33514 Dato: 18. mai 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg Eksamensoppgaven: Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 2007 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : 5 sider

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

Kantdeteksjon og Fargebilder

Kantdeteksjon og Fargebilder Kantdeteksjon og Fargebilder Lars Vidar Magnusson April 25, 2017 Delkapittel 10.2.6 More Advanced Techniques for Edge Detection Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Marr-Hildreth

Detaljer

Grunnleggende Matematiske Operasjoner

Grunnleggende Matematiske Operasjoner Grunnleggende Matematiske Operasjoner Lars Vidar Magnusson January 16, 2017 Delkapittel 2.6 Array vs Matrise Operasjoner Det er vanlig med både array- og matrise-operasjoner på bilder. Array-multiplikasjon

Detaljer

Fourier-Transformasjoner II

Fourier-Transformasjoner II Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

Histogramprosessering

Histogramprosessering Histogramprosessering Lars Vidar Magnusson January 22, 2018 Delkapittel 3.3 Histogram Processing Histogram i Bildeanalyse Et histogram av et digitalt bilde med intensitet i intervallet [0, L) er en diskret

Detaljer

mål pinner Rundp nr. 3,5. Heklenål nr. 3,5. Strikkefasthet Garnforbruk pute broderi Montering

mål pinner Rundp nr. 3,5. Heklenål nr. 3,5. Strikkefasthet Garnforbruk pute broderi Montering STERK - PUS - HEXA JULEPUTER GOD JUL-PUTE Bredde: 30 cm. Høyde 21 cm. STERK - BLING pinner Rundp nr.. Heklenål nr.. 22 m glattstrikk = 10 cm i bredden. Farge 1: Lys brun 823: 50 g Farge 2: Natur 806: 50

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

Matlab og Bilder. Øyvind Ryan September 2008

Matlab og Bilder. Øyvind Ryan September 2008 Matlab og Bilder Øyvind Ryan (oyvindry@i.uio.no) September 2008 Kommandoer for bilder Med Matlab kan dere lese inn bilder, vise frem bilder, og skrive bilder til l: imread A = imread('filnavn.fmt','fmt')

Detaljer

Kantsegmentering NTNU

Kantsegmentering NTNU Kantsegmentering Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 24 Oversikt, kantsegmentering Litt praktisk informasjon. Motivasjon. Hva er en kant i et bilde? Hva er segmentering? Hva er kantsegmentering?

Detaljer

INF 1040 Løsningsforslag til kapittel

INF 1040 Løsningsforslag til kapittel INF 040 Løsningsforslag til kapittel 8 Oppgave : Huffmankoding med kjente sannsynligheter Gitt en sekvens av symboler som er tilstrekkelig lang, og som inneholder de 6 symbolene A, B, C, D, E, F. Symbolene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

Dyp læring. Sigmund Rolfsjord

Dyp læring. Sigmund Rolfsjord Dyp læring Sigmund Rolfsjord Oversikt 1. Grunnleggende om dyp læring og nevrale nett 2. Konvolusjonsnett 3. Synsfelt med konvolusjonsnett Lær mer: Kurs fra Stanford: http://cs231n.stanford.edu/ Mer inngående

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder Grådige Algoritmer Lars Vidar Magnusson 12.3.2014 Kapittel 16 Grådige algoritmer Aktivitetvelgingsproblemet Huffmankoder Ideen bak Grådige Algoritmer Ideen bak grådige algoritmer er å løse optimaliseringsproblem

Detaljer

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling Introduksjon Digital bildebehandling Forelesning 3 Morologiske operasjoner på binære bilder Fritz Albregtsen Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler

Detaljer

Oversikt, matematisk morfologi. Matematisk morfologi. Oversikt, matematisk morfologi. Oversikt, matematisk morfologi. Praktisk informasjon

Oversikt, matematisk morfologi. Matematisk morfologi. Oversikt, matematisk morfologi. Oversikt, matematisk morfologi. Praktisk informasjon Matematisk morfologi Lars urdal Norsk regnesentral aurdal@nr.no 9. august 2005 Litt praktisk informasjon.. Historie. Matematisk grunnlag. Fundamentale operatorer: Dilasjon. Erosjon. 1 Sammensatte operatorer:

Detaljer

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av

Detaljer

Intensitetstransformasjoner og Spatial Filtrering

Intensitetstransformasjoner og Spatial Filtrering Intensitetstransformasjoner og Spatial Filtrering Lars Vidar Magnusson January 23, 2017 Delkapittel 3.1 Background Delkapittel 3.2 Some Basic Intensity Tranformation Functions Spatial Domain Som vi allerede

Detaljer

Prøve- EKSAMEN med løsningsforslag

Prøve- EKSAMEN med løsningsforslag Prøve- EKSAMEN med løsningsforslag Emnekode: ITD33514 Dato: Vår 2015 Hjelpemidler: Alle trykte og skrevne. Emne: Bildebehandling og mønstergjenkjenning Eksamenstid: 4 timers eksamen Faglærer: Jan Høiberg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 28. mars 2007 Tid for eksamen : 13:30 16:30 Oppgavesettet er på : 4 sider

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Steg 0: Installere Pygame Zero

Steg 0: Installere Pygame Zero PGZ - Sprettball Skrevet av: Ole Kristian Pedersen, Kodeklubben Trondheim Kurs: Python Tema: Tekstbasert, Spill Fag: Matematikk, Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse Introduksjon I denne

Detaljer

med canvas Canvas Grafikk Læreplansmål Gløer Olav Langslet Sandvika VGS

med canvas Canvas Grafikk Læreplansmål Gløer Olav Langslet Sandvika VGS Grafikk med canvas Gløer Olav Langslet Sandvika VGS Høsten 2011 Informasjonsteknologi 2 Canvas Læreplansmål Eleven skal kunne bruke programmeringsspråk i multimedieapplikasjoner Med CSS3, HTML og JavaScript

Detaljer

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling

Introduksjon. Litt mengdeteori. Eksempel: Lenke sammen objekter. Morfologiske operasjoner på binære bilder. INF2310 Digital bildebehandling Introduksjon Digital bildebehandling Forelesning 4 Morologiske operasjoner på binære bilder Andreas Kleppe Repetisjon av grunnleggende mengdeteori Fundamentale operatorer ammensatte operatorer Eksempler

Detaljer

ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING.

ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING. ENKEL GUIDE FOR UTSKRIFT OG PLASSERING AV STREKKODER PÅ FORBRUKERPAKNING. Det finnes flere måter å strekkodemerke varer på: Ved å integrere strekkoden i emballasjedesignen Ved å sette på en forhåndstrykt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

Merombilderogvideo. Fra bilder til video. Fra Edison til moderne kino. Luminans-variasjon

Merombilderogvideo. Fra bilder til video. Fra Edison til moderne kino. Luminans-variasjon Merombilderogvideo Fra bilder til video Når vi lukker øynene, tar det litt tid før etter - bildet forsvinner, spesielt hvis intensiteten er høy (i deler av) bildet. Bildet forsvinner gradvis (eksponensielt)

Detaljer

R E G I O N A L A V D E L I N G E N F Y L K E S K O N S E R V A T O R E N. Huseby 2/32 Farsund kommune

R E G I O N A L A V D E L I N G E N F Y L K E S K O N S E R V A T O R E N. Huseby 2/32 Farsund kommune R E G I O N A L A V D E L I N G E N F Y L K E S K O N S E R V A T O R E N ARKEOLOGISKE REGISTRERINGER Huseby 2/32 Farsund kommune R A P P O RT F R A A R K E O L O G I S K B E FA R I N G / R E G I S T R

Detaljer

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder

Neste to forelesninger. Bildefiler - bildeformater De aller fleste bildeformater 3/18/2009. Digitale bilder med spesielt fokus på medisinske bilder 3/8/29 Digitale bilder med spesielt fokus på medisinske bilder Karsten Eilertsen Radiumhospitalet Neste to forelesninger Torsdag 29/: Enkel innføring i digitale bilder Eksempler på noen enkle metoder for

Detaljer

EKSAMENSFORSIDE Skriftlig eksamen med tilsyn

EKSAMENSFORSIDE Skriftlig eksamen med tilsyn EKSAMENSFORSIDE Skriftlig eksamen med tilsyn Emnekode:6121 Emnenavn: Bildebehandling Dato: 08.12.2016 Tid fra / til: 09.00 13.00 Ant. timer: 4 Ansv. faglærer: Tor Lønnestad Campus: Bø Fakultet: Allmennvitenskapelige

Detaljer

Grunnleggende om Digitale Bilder (ITD33515)

Grunnleggende om Digitale Bilder (ITD33515) Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF30 Digital bildebehandling Eksamensdag : Fredag 9. mars 09 Tid for eksamen : :30 8:30 ( timer) Løsningsforslaget

Detaljer

AST5220 forelesning 1 Litt praktisk CMB-analyse

AST5220 forelesning 1 Litt praktisk CMB-analyse AST5220 forelesning 1 Litt praktisk CMB-analyse Hans Kristian Eriksen 16. januar 2008 Litt om kurset Pensum basert på Modern Cosmology av Scott Dodelson Mål : Å forstå dannelse av storskala-strukturer

Detaljer

ESERO AKTIVITET HVA ER EN KONSTELLASJON? Lærerveiledning og elevaktivitet. Klassetrinn 7-8

ESERO AKTIVITET HVA ER EN KONSTELLASJON? Lærerveiledning og elevaktivitet. Klassetrinn 7-8 ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 80 min. Å: vite at stjernene i en konstellasjon er veldig langt fra hverandre vite at det du

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

Matematisk morfologi NTNU

Matematisk morfologi NTNU Matematisk morfologi Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 2004 Oversikt, matematisk morfologi Litt praktisk informasjon. Motivasjon. Historie. Matematisk grunnlag. Fundamentale operatorer:

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

www.ir.hiof.no/~eb/viz.htm Side 1 av 12

www.ir.hiof.no/~eb/viz.htm Side 1 av 12 VIZhtm Side 1 av 12 Innhold Side MÅL 1 OPPGAVE / RESULTAT 1 BESKRIVELSE ØVING 6A 2 BESKRIVELSE ØVING 6B 9 BESKRIVELSE ØVING 6C 12 MÅL Når du har utført denne øvingen, skal du kunne: Benytte et kamera som

Detaljer

Målet med denne masteroppgaven blir å sette seg inn i kunstnerens problemstillinger og prøve å finne metoder for hvordan ideene hans kan realiseres.

Målet med denne masteroppgaven blir å sette seg inn i kunstnerens problemstillinger og prøve å finne metoder for hvordan ideene hans kan realiseres. i Sammendrag Terrengmodellering i 3D er i dag en mye brukt måte å fremstille landskap på. Slike modeller kan man se i utallige dataspill, animasjonsfilmer, og geologiske modeller. Den vanligste måten å

Detaljer

Morfologiske operasjoner. Motivasjon

Morfologiske operasjoner. Motivasjon INF 230 Digital bildebehandling orelesning nr 2-9.04.2005 Morologiske operasjoner Litteratur : Eord, Kap. Temaer : Neste gang : Basis-begreper Fundamentale operasjoner på binære bilder ammensatte operasjoner

Detaljer

ESERO AKTIVITET Klassetrinn: grunnskole

ESERO AKTIVITET Klassetrinn: grunnskole ESERO AKTIVITET Klassetrinn: grunnskole Kommunikasjon i verdensrommet Lærerveiledning og elevaktivitet Oversikt Tid Læringsmål Nødvendige materialer 60 min 60 min I denne oppgaven skal elevene lære: hvordan

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Dynamisk programmering Undervises av Stein Krogdahl

Dynamisk programmering Undervises av Stein Krogdahl Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

Eksamen Løsningsforslag

Eksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Eksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Torsdag 1. juni 2017 Tidspunkt for eksamen:

Detaljer

Hvordan lage et sammensatt buevindu med sprosser?

Hvordan lage et sammensatt buevindu med sprosser? Hvordan lage et sammensatt buevindu med sprosser? I flere tilfeller er et vindu som ikke er standard ønskelig. I dette tilfellet skal vinduet under lages. Prinsippene er de samme for andre sammensatte

Detaljer

LED-flomlys med solcellepanel fra Ladelys AS

LED-flomlys med solcellepanel fra Ladelys AS LED-flomlys med solcellepanel fra Ladelys AS Testrapport 1 06.01.2015 Bakgrunn: Pga. tidligere innbrudd er det ønskelig med bevegelsesstyrt øyeblikksbelysning foran noen oppbevaringsbuer/uthus for å overraske/skremme

Detaljer

MONTERINGSVEILEDNING Levegg

MONTERINGSVEILEDNING Levegg MONTERINGSVEILEDNING Levegg Denne manualen viser en typisk leveggsmontering.vi bruker både vanlige leveggselementer og diagonale levegger som kan brukes ved overgang mellom levegg og rekkverk/gjerde, eller

Detaljer

Høgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00

Høgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00 Or Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD33506 Bildebehandling og monstergjenkjenning Dato: 25.11.2013 Eksamenstid: kl 9.00 til kl 12.00 Hjelpemidler: Læreboken, ett A4-ark skrevet på begge sider

Detaljer

MÅL. Innhold OPPGAVE / RESULTAT. Forelesning Klasse A3A Side 1 av 9. Side MÅL. 1 OPPGAVE / RESULTAT. 1 BESKRIVELSE 2 VIKTIGE KOMMANDOER 8

MÅL. Innhold OPPGAVE / RESULTAT. Forelesning Klasse A3A Side 1 av 9. Side MÅL. 1 OPPGAVE / RESULTAT. 1 BESKRIVELSE 2 VIKTIGE KOMMANDOER 8 Forelesning 14.2.06 Klasse A3A Side 1 av 9 Innhold Side MÅL. 1 OPPGAVE / RESULTAT. 1 BESKRIVELSE 2 VIKTIGE KOMMANDOER 8 MÅL Når du har utført denne øvingen, skal du kunne: Importere geometri vha 3ds filformat.

Detaljer

I denne oppgaven skal du lære hvordan du kan flytte rundt på elementer og gjemme elementene bak andre elementer ved hjelp av CSS.

I denne oppgaven skal du lære hvordan du kan flytte rundt på elementer og gjemme elementene bak andre elementer ved hjelp av CSS. CSS: Skjul ninjaene Skrevet av: Oversatt fra Code Club UK (//codeclub.org.uk) Oversatt av: Trude Martinsen Kurs: Web Tema: Tekstbasert, Nettside Fag: Matematikk, Programmering, Teknologi, Kunst og håndverk

Detaljer

Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist)

Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Dynamisk programmering Undervises av Stein Krogdahl 5. september 2012 Dagens stoff er hentet fra kapittel 9 i læreboka, samt kapittel 20.5 (som vi «hoppet over» sist) Kapittel 9 er lagt ut på undervisningsplanen.

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Sarpsborg 13.01.2005 12.01.05 Ny oppgave Log LMN Log,

Detaljer

Montering av ledd bak (Høyre og venstre side) Du har fått 4 ledstriper (D modeller) eller 6 led striper for ikke D modeller.

Montering av ledd bak (Høyre og venstre side) Du har fått 4 ledstriper (D modeller) eller 6 led striper for ikke D modeller. Bilde 1 Bilde 2. Montering av ledd bak (Høyre og venstre side) Du har fått 4 ledstriper (D modeller) eller 6 led striper for ikke D modeller. Bilde 1 Frunk: to lange (50-60cm kabel) er for Frunk ikke D

Detaljer

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer