Hvordan forklare datamaskinen hva en vektor er
|
|
- Patrick Borge
- 8 år siden
- Visninger:
Transkript
1 Hvordan forklare datamaskinen hva en vektor er Lars Sydnes 20. mars Introduksjon Det finnes mange måter å presentere vektorbegrepet. Ulike stikkord kan være (i) En vektor er en pil AB som går fra punktet A til punktet B: A B (ii) En vektor er en veibeskrivelse: Hvordan skal du bevege deg for å komme fra A til B? Beveg deg 3 skritt mot øst og 2 skritt mot nord... (iii) En forskyvning. Hvor mye må vi forskyve A for at A skal falle sammen med B. (iv) En vektor er en størrelse som også har retning: Fart, akselerasjon, gravitasjon, andre krefter. (v) En vektor er en matematisk gjenstand som har flere komponenter. Vanligvis er dette x, y-komponenter: v = [x, y]. Det er også vanlig å arbeide med vektorer med flere komponenter. Vektorene er særdeles nyttige hjelpemidler for modellering av geometri og fysikk. Mange fremstillinger av fysikken benytter vektor-språket. Mange fremstillinger av geometrien benytter vektor-språket. 1
2 Dataspill som etterligner den fysiske virkeligheten vil ofte utnytte vektorregning. Jfr. XNA. Når vi skal lære datamaskinen å arbeide med vektorer, må vi forankre dem i noe som allerede foreligger. Det mest opplagte valget er å forankre vektorbegrepet i et koordinatsystem. 2 Vektor-klassen 2.1 Grunnleggende representasjon av vektorer En vektor med én x- og én y-komponent kan representeres slik 1 : Kodesnutt 2.1: vector.instansvariabler public final double x,y; Når x- og y-komponenten er angitt, er vektoren spesifisert. Men, vi må huske på at det ligger et koordinatsystem og lurer i bakgrunnen: Denne representasjonen gir mening kun i sammenheng med et gitt koordinatsyste: Retningen på x-aksen er spesifisert. y-aksen bestemmes av x-aksen. Lengdeskalaen er spesifisert. 2.2 Operasjoner De vanlige regneoperasjonene [x 1, y 1 ] + [x 2, y 2 ] = [x 1 + x 2, y 1 + y 2 ] (addisjon) [x 1, y 1 ] [x 2, y 2 ] = [x 1 x 2, y 1 y 2 ] (subtraksjon) t[x, y] = [tx, ty]] (skalarmultiplikasjon) [x 1, y 2 ] [x 2, y 2 ] = x 1 x 2 + y 1 y 2 (skalarprodukt) implementerer vi greit slik: Kodesnutt 2.2: vector.regneoperasjoner 1 Her velger vi å la x,y være offentlige variabler. Når vi deklarerer dem final, så gjør det at verdiene kun kan settes én gang. Dermed behøver vi ikke å beskytte dem ved å gjøre dem private. 2
3 public static Vector sum(vector u,vector v) { return new Vector(u.x+v.x, u.y+v.y); public static Vector diff(vector u, Vector v) { return new Vector(u.x-v.x, u.y-v.y); public static Vector scalarmul(double t, Vector v) { return new Vector(t*v.x, t*v.y); public static double scalarprod(vector u, Vector v) { return u.x*v.x+u.y*v.y; Vi lar metodene sum,diff,smul være klassemetoder (static). Disse metodene forandrer ikke på eksisterene objekter. 2.3 Andre metoder Lengde Vi er ofte interessert i å måle lengden til vektorer. For å få til det, kan vi bruke Pythagoras setning: lengden 2 = x 2 + y 2 Dette gir: Kodesnutt 2.3: vector.lengde public double length() { return Math.sqrt(x*x+y*y); Siden lengde så tydelig er en egenskap ved individuelle vektorer, representerer vi lengdemåling ved en instans-metode (ikke static) Vinkler Vinkelen α mellom to vektorer u, v er gitt ved u v = u v cos α Vår metode for å beregne vinkler kan dermed implementeres slik: 3
4 Kodesnutt 2.4: vector.vinkel public static double angle(vector u, Vector v) { double cosu = scalarprod(u,v) / (u.length()*v. length()); return Math.acos(cosU); Areal To vektorer u, v vil som regel spenne ut et parallellogram. Arealet A av dette parallellogrammet er bestemt av følgende formel: A = x 1 y2 x 2 y 1 dersom u = [x 1, y 1 ], v = [x2, y 2 ]. Når vi kjenner arealet av parallellogrammet spent ut av u, v, så kjenner vi også arealet av trekanten spent ut av disse. Disse arealberegningene gir oss til og med en metode for å sjekke om vektorer er parallelle: De er parallelle dersom arealet av det utspente parallellogrammet er 0, altså dersom x 1 y 2 = x 2 y 1 Utifra disse overlegningene, utstyrer vi klassen vår med følgende metoder Kodesnutt 2.5: vector.areal public static double parallellogramarea(vector u, Vector v) { return u.x*v.y-u.y*v.x; public static boolean areparallel(vector u, Vector v) { return u.x*v.y == u.y*v.x; public static double trianglearea(vector u, Vector v) { return (u.x*v.y-u.y*v.x)/2; 2.4 Innpakning i klassefil For å lage kjørbar java-kode, pakker vi det hele sammen i følgende java-fil: 4
5 Kodesnutt 2.6: Vector.java package javavector; public class Vector { (vector.instansvariabler: Kodesnutt 2.1) public Vector(double ex, double why) { x = ex; y = why; (vector.regneoperasjoner: Kodesnutt 2.2) (vector.lengde: Kodesnutt 2.3) (vector.vinkel: Kodesnutt 2.4) (vector.areal: Kodesnutt 2.5) public String tostring() { return String.format("Vector(%.2f,%.2f )",x,y); 3 Punkter Når vi har vektor-klassen tilgjengelig, kan vi innføre en klasse som representerer punkter i planet. Kodesnutt 3.1: Point.java package javavector; public class Point { public final Vector vect; public Point(double ex,double why) { vect = new Vector(ex,why); (point.operasjoner: Kodesnutt 3.2) (point.tostring: Kodesnutt 3.4) 5
6 For to punkter A, B, er vi gjerne interssert i å bestemme avstandsvektoren AB og avstanden AB. Kodesnutt 3.2: point.operasjoner public static Vector dvector(point A, Point B) { return Vector.diff(B.vect,A.vect); public static double dist(point A,Point B) { return dvector(a,b).length(); (point.andre.operasjoner: Kodesnutt 3.3) Dersom vi studerer tre punkter A, B, C, kan vi f.eks være interessert i Arealet av trekanten ABC Ligger de tre punktene på linje? For å kunne gi enkle svar på slike spørsmål tilføyer vi følgende metoder: Kodesnutt 3.3: point.andre.operasjoner public static double area(point A, Point B, Point C) { return Vector.triangleArea(dVector(A,B),dVector(A,C )); public static boolean ononeline(point A, Point B, Point C) { return Vector.areParallel(dVector(A,B),dVector(A,C) ); For testingens del legger vi til en tostring()-metode: Kodesnutt 3.4: point.tostring public String tostring() { return String.format("Point(%.2f, %.2f)",vect.x, vect.y); 6
7 4 Testing Nå har vi en fullt funksjonell klasse, og vi kan skrive følgende klasse for å teste om det virker: Kodesnutt 4.1: Client.java package javavector; public class Client { public static void main(string[] args) { Vector u = new Vector(3.45,2.34); Vector v = new Vector(-2.0,4.3); System.out.printf("u=%s, v=%s\n\n",u,v); System.out.printf("Lengde u: %.2f\t Lengde v: %.2 f\t Vinkel: %.2f\n",u.length(),v.length(), Vector.angle(u,v)); System.out.printf("Areal av resulterende parallellogram: %.2f\n",Vector. parallellogramarea(u,v)); System.out.printf("Areal av resulterende trekant: %.2f\n",Vector.triangleArea(u,v)); System.out.println("======================"); Point A = new Point(0,0); Point B = new Point(3,4); Point C = new Point(-2,5); System.out.printf("\nA = %s\n B = %s\nc = %s\n\n",a,b,c); System.out.printf("Areal av trekant ABC = %.2f\n",Point.area(A,B,C)); 4.1 Output u=vector(3.45,2.34 ), v=vector(-2.00,4.30 ) 7
8 Lengde u: 4.17 Lengde v: 4.74 Vinkel: 1.41 Areal av resulterende parallellogram: Areal av resulterende trekant: 9.76 ====================== A = Point(0.00, 0.00) B = Point(3.00, 4.00) C = Point(-2.00, 5.00) Areal av trekant ABC =
Projeksjoner av vektorer Analyse av værdata
Projeksjoner av vektorer Analyse av værdata Lars Sydnes 11. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger gjort
DetaljerRF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
DetaljerTempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.
Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken
DetaljerMatematikk R1 Oversikt
Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac
DetaljerEKSAMEN RF5100, Lineær algebra
Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes
DetaljerPRIMTALL FRA A TIL Å
PRIMTALL FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til primtall P - 2 2 Grunnleggende om primtall P - 2 3 Hvordan finne et primtall P - 5 Innledning til primtall
DetaljerNøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:
Areal og omkrets Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene refererer til en lært formel for areal uten at vi vet om de skjønner at areal er et mål
DetaljerObligatorisk oppgave i MAT 1100, H-03 Løsningsforslag
Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe
DetaljerArbeidsoppgaver i vektorregning
Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:
DetaljerKapittel 7: Mer om arv
Kapittel 7: Mer om arv Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk Forlag,
Detaljer1.8 Digital tegning av vinkler
1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerGeometri. Kapittel 3. 3.1 Vektorproduktet
Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan
DetaljerR2 - Vektorer Løsningsskisser
K.. -.5 I R2 - Vektorer 25.09.09 Løsningsskisser Gitt vektorene u,2,3 og v 2, 3,5. Regn ut: a) u v b) u v c) u v d) 5u 2v e) v f) Vinkelen mellom u og v Oppgave I: Krever lavt kompetansenivå: Grunnleggende
DetaljerDagens tema: Mer av det dere trenger til del 1
Dagens tema Dagens tema: Mer av det dere trenger til del 1 Hvilke klasser trenger vi? Uttrykk Typer Testutskrifter 12 gode råd Dagens tema Prosjektet Utifra dette AlboC-programmet: int pot2 (int x) { int
DetaljerKrefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
DetaljerGeoGebra U + V (Elevark)
GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:
DetaljerHva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; }
Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; Hva skrives ut på skjermen når følgende kode utføres? int [] tallene =
DetaljerLøsning eksamen R1 høsten 2009
Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed
DetaljerTOD063 Datastrukturer og algoritmer
TOD063 Datastrukturer og algoritmer Øving : 3 Utlevert : Uke 7 Innleveringsfrist : 26. februar 2010 Klasse : 1 Data og 1 Informasjonsteknologi Gruppearbeid: 2-3 personer pr. gruppe. Oppgave 1 Vi skal lage
DetaljerForelesning 9 mandag den 15. september
Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi
DetaljerMesteparten av kodingen av Donkey Kong skal du gjøre selv. Underveis vil du lære hvordan du lager et enkelt plattform-spill i Scratch.
Donkey Kong Ekspert Scratch Introduksjon Donkey Kong var det første virkelig plattform-spillet da det ble gitt ut i 1981. I tillegg til Donkey Kong var det også her vi første gang ble kjent med Super Mario
DetaljerLøsningsforslag til eksamen i MAT111 Vår 2013
BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )
DetaljerRF5100 Lineær algebra Leksjon 12
RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring AITeL
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring AITeL Delprøve Kandidatnr: Prøvedato: 2. mars 2005 Varighet: 3 timer (9:00 12:00) Fagnummer: LO196D Fagnavn: Videregående programmering med
Detaljer4. kurskveld: Brøk og geometri
4. kurskveld: Brøk og geometri I dag skal vi se på begrepet brøk, regning med brøk, og hvorfor de ulike regnereglene fungerer. Mange har bedre grep om desimaltall fordi regnereglene er lik regnereglene
DetaljerINF1000 Metoder. Marit Nybakken marnybak@ifi.uio.no 16. februar 2004
INF1000 Metoder Marit Nybakken marnybak@ifi.uio.no 16. februar 2004 Motivasjon Når man begynner å skrive store programmer, vil man fort oppleve at programmene blir uoversiktlige. Det blir vanskeligere
DetaljerINF1000 Variable. Marit Nybakken 27. januar 2004
INF1000 Variable Marit Nybakken marnybak@ifi.uio.no 27. januar 2004 Hva er en variabel Datamaskinens minne (eller hurtiglager) består av en masse celler som kan inneholde verdier. Hver av cellene har en
DetaljerForelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2
Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe
DetaljerKompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5
1 Geometri Innhold Kompetansemål Geometri, R2... 3 1.1 Vektorer... 4 1.2 Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 Multiplikasjon av vektor med tall... 6 Parallelle vektorer...
DetaljerINF1010 Arv. Marit Nybakken marnybak@ifi.uio.no 2. februar 2004
INF1010 Arv Marit Nybakken marnybak@ifi.uio.no 2. februar 2004 Motivasjon Arv bruker vi så vi skal slippe å skrive oss i hjel. Når vi programmerer, prøver vi gjerne å modellere en del av verden ved hjelp
DetaljerSammendrag kapittel 9 - Geometri
Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning
DetaljerMAT1030 Diskret matematikk. Kompleksitetsteori. Forelesning 29: Kompleksitetsteori. Dag Normann KAPITTEL 13: Kompleksitetsteori. 7.
MAT1030 Diskret matematikk Forelesning 29: Dag Normann KAPITTEL 13: Matematisk Institutt, Universitetet i Oslo 7. mai 2008 MAT1030 Diskret matematikk 7. mai 2008 2 Meldinger: Det blir hovedsaklig tavleregning
DetaljerEmnekode: LV121A Dato: 03.03.2005. Alle skrevne og trykte hjelpemidler
II ~ høgskolen i oslo Emne: Programmering i C++ Gruppe(r): EksamensoppgavenAntall sider (inkl. består av: forsiden):5 Emnekode: LV121A Dato: 03.03.2005 Antall oppgaver:3 Faglig veileder: Simen Hagen Eksamenstid:
DetaljerEKSAMENSFORSIDE Skriftlig eksamen med tilsyn
BOKMÅL EKSAMENSFORSIDE Skriftlig eksamen med tilsyn Emnekode: 108 + 108N Dato: 19.12.201 Ansv. faglærer: Roy M. Istad Campus: Bø Antall oppgaver: 5 Tillatte hjelpemidler (jfr. emnebeskrivelse): Alt trykt
DetaljerKapittel 3 Geometri Mer øving
Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d
DetaljerEksamen 1T høsten 2015, løsningsforslag
Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =
Detaljer2 = 4 x = x = 3000 x 5 = = 3125 x = = 5
Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene
DetaljerHØGSKOLEN I SØR-TRØNDELAG
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato: 4.mai 2011 Varighet: 0900-1300 Emnekode: Emnenavn: Klasse(r): LO191D / LC191D Campus: LC191D Videregående
DetaljerAlgoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2
Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et
DetaljerÅrsplan i matematikk 5.klasse 2015/16
Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp
DetaljerProgrammeringsspråk for nybegynnere. Krav til språket. Krav til språket. Krav til språket
Programmeringsspråk for nybegynnere Krav til språket Hva om vi laget vårt eget språk til INF1000? Programmeringsspråket må være så enkelt som mulig. (Programmering er vanskelig nok som det er.) Hvilke
DetaljerLegg merke til at at over de blå klossene er det flere kategorier av kommandoer i forskjellige farger, for eksempel
Astrokatt Introduksjon Scratch Introduksjon Katten vår har så lyst å være en astronaut, la oss se om vi kan hjelpe ham? Underveis vil vi lære hvordan vi flytter figurer rundt på skjermen, og hvordan katter
DetaljerRepetisjon: høydepunkter fra første del av MA1301-tallteori.
Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:
DetaljerKonstruktører. Bruk av konstruktører når vi opererer med "enkle" klasser er ganske ukomplisert. Når vi skriver. skjer følgende:
Konstruktører Bruk av konstruktører når vi opererer med "enkle" klasser er ganske ukomplisert. Når vi skriver Punkt p = new Punkt(3,4); class Punkt { skjer følgende: int x, y; 1. Det settes av plass i
Detaljer1 Geometri R2 Oppgaver
1 Geometri R2 Oppgaver Innhold 1.1 Vektorer... 2 1.2 Regning med vektorer... 15 1.3 Vektorer på koordinatform... 19 1.4 Vektorprodukt... 22 1.5 Linjer i rommet... 27 1.6 Plan i rommet... 30 1.7 Kuleflater...
Detaljer13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER
.9.22 LITT OM OPPLEGGET INF EKSTRATILBUD Stoff fra uke - 2. September 22 Siri Moe Jensen Målgruppe: De som mangler forståelse for konseptene gjennomgått så langt. Trening får du ved å jobbe med oppgaver,
DetaljerGenerell trigonometri
7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave
DetaljerÅrsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser
Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag
DetaljerLøsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
DetaljerOblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59
Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Formål Formålet med denne oppgaven er å gi trening i hele pensum og i å lage et større program. Løsningen du lager skal være
DetaljerTyngdekraft og luftmotstand
Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget
DetaljerFra Python til Java. En introduksjon til programmeringsspråkenes verden. Dag Langmyhr
Fra Python til Java En introduksjon til programmeringsspråkenes verden dag@ifi.uio.no Oversikt Introduksjon Python Java Noe er likt Noe bare ser anderledes ut Noe er helt forskjellig Et eksempel Klasser
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4
DetaljerKlasser, objekter, pekere og UML. INF1000 - gruppe 13
Klasser, objekter, pekere og UML INF1000 - gruppe 13 Klasse Beskriver ofte ting fra den virkelige verden Veldig ofte et substantiv (Person, Bok, Bil osv.) class Person { String navn; int alder; } class
DetaljerGeometri R2, Prøve 2 løsning
Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4
DetaljerKapittel 1. Potensregning
Kapittel. Potensregning I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Dette kapitlet handler blant annet om: Betydningen av potenser som har negativ eksponent
DetaljerModellering i barnehagen
Modellering i barnehagen begrepsinnhold begrepsuttrykk ting, kontekst Marit J. Høines på hus, to sider, én spiss øverst, takras tak trekant 3 tre 3 mengde med 3 elementer, 1 + 2, mellom 2 og 4, halvparten
DetaljerLC191D Videregående programmering Høgskolen i Sør-Trøndelag, Avdeling for informatikk og e-læring. Else Lervik, januar 2012.
Repetisjon innkapsling static tabell av primitiv datatype LC191D Videregående programmering Høgskolen i Sør-Trøndelag, Avdeling for informatikk og e-læring. Else Lervik, januar 2012. Objektorientert modellering
DetaljerÅrsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5. Vurdering
Årsplan 5.trinn Matematikk 2015/16 Lærebok: Multi 5 Veke Tema Kompetansemål Læringsmål: 34-40 Heile tal Multi 5a s 4-45 42-44 Statistikk s 46-61 -Regne med positive og hele tall. -Bruke, diskutere og utvikle
DetaljerLabyrint Introduksjon Scratch Lærerveiledning. Steg 1: Hvordan styre figurer med piltastene
Labyrint Introduksjon Scratch Lærerveiledning Introduksjon I dette spillet vil vi kontrollere en liten utforsker mens hun leter etter skatten gjemt inne i labyrinten. Dessverre er skatten beskyttet av
DetaljerFlagg Erfaren Scratch Lærerveiledning
Flagg Erfaren Scratch Lærerveiledning Introduksjon I denne oppgaven vil vi se litt nærmere på hvordan vi kan lage spennende mønstre og animasjoner ved hjelp av litt matematikk. Spesielt skal vi tegne et
DetaljerEksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
DetaljerINF1000 - Løsning på seminaropppgaver til uke 8
INF1000 - Løsning på seminaropppgaver til uke 8 Oppgave 1 a) for(string nokkel : studenter.keyset){ System.out.println(nokkel); Studenten sitt navn blir skrevet ut. b) for(student dennestudenten : studenter.values()){
Detaljer23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.
Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler
DetaljerEKSAMEN RF3100 Matematikk og fysikk
Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes
DetaljerHvor mange er en meter?
Else H. Devold Hvor mange er en meter? 39 + 2 matematiske samtaler GAN Aschehoug Innhold Til læreren 3 Faglig og metodisk del Matematisk kompetanse hva er det? Tall, telling og tallforståelse 6 Hva sier
DetaljerHypotesetesting. Notat til STK1110. Ørnulf Borgan Matematisk institutt Universitetet i Oslo. September 2007
Hypotesetesting Notat til STK1110 Ørnulf Borgan Matematisk institutt Universitetet i Oslo September 2007 Teorien for hypotesetesting er beskrevet i kapittel 9 læreboka til Rice. I STK1110 tar vi bare for
Detaljer1.7 Digitale hjelpemidler i geometri
1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene
DetaljerMatematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Øving 16. mars 2015 Tidsfrist: 23. mars 2015 klokken 14.00 Oppgave 1 Her skal vi se på hvordan man kan sikte seg inn på stridsvogner i bevegelse. Ved t = 0 befinner vi
DetaljerH. Aschehoug & Co www.lokus.no Side 1
1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss
DetaljerKapittel 1. Datamaskiner og programmeringsspråk. 1.1 Programmering
Kapittel 1 Datamaskiner og programmeringsspråk Dette kapitlet er en kort introduksjon til programmering. Vi vil se på hvordan man skriver, bygger og kjører programmer, samt illustrere noen sentrale programmeringsbegrep
DetaljerMA-132 Geometri Torsdag 4. desember 2008 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Institutt for matematiske fag EKSAMEN i MA-1 Geometri Torsdag 4. desember 008 kl. 9.00-14.00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Bokmål Oppgave 1 Gitt et linjestykke.
DetaljerNyGIV Regning som grunnleggende ferdighet
NyGIV Regning som grunnleggende ferdighet Yrkesfaglærere Hefte med utdelt materiell Tone Elisabeth Bakken 3.april 2014 På denne og neste fire sider er det kopier fra Tangentens oppgavehefte: MATEMATISKE
DetaljerOversikt. INF1000 Uke 1 time 2. Repetisjon - Introduksjon. Repetisjon - Program
Oversikt INF1000 Uke 1 time 2 Variable, enkle datatyper og tilordning Litt repetisjon Datamaskinen Programmeringsspråk Kompilering og kjøring av programmer Variabler, deklarasjoner og typer Tilordning
DetaljerForelesning 28: Kompleksitetsteori
MAT1030 Diskret Matematikk Forelesning 28: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 28: Kompleksitetsteori 12. mai 2009 (Sist oppdatert: 2009-05-13
DetaljerKanter, kanter, mange mangekanter
Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte
DetaljerFasit til utvalgte oppgaver MAT1100, uka 29/11-3/12
Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Kandidatnr Det matematisk-naturvitenskapelige fakultet LØSNINGSFORSLAG Eksamen i: PRØVEEKSAMEN INF1000 Eksamensdag: Prøveeksamen 22.11.2011 Tid for eksamen: 12:15-16:15 Oppgavesettet
DetaljerOm oppgaveteksten på noe punkt er uklar eller upresis, kan du gjøre egne presiseringer. Formulér i så fall disse tydelig i oppgavebesvarelsen din.
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 211 Programmeringsspråk Eksamensdag: 6. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 9 sider. Vedlegg: Ingen
DetaljerLøse reelle problemer
Løse reelle problemer Litt mer om løkker, metoder med returverdier og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve Repetisjon fra forrige uke: while Syntaks: while (condition) do1; do2;... Eksempel:
DetaljerSeksjonene : Vektorer
Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren
DetaljerOPPGAVE 5b og 8b Java Kode
OPPGAVE 5b og 8b Java Kode public class Kant boolean behandlereturavbil() BehandleReturAvBil behandler = new BehandleReturAvBil(this); String regnr; int kmstand, tanknivaa; boolean erskadet; // 1: Få verdiene
DetaljerTRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD
TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Kandidatnr Det matematisk-naturvitenskapelige fakultet Eksamen i: PRØVEEKSAMEN INF1000 Eksamensdag: Prøveeksamen 22.11.2011 Tid for eksamen: 12:15-16:15 Oppgavesettet er på
DetaljerSeksjonene : Vektorer
Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren
DetaljerEneboerspillet del 2. Håvard Johnsbråten, januar 2014
Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
DetaljerNorges Informasjonsteknologiske Høgskole
Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:
DetaljerIN1010. Fra Python til Java. En introduksjon til programmeringsspråkenes verden Dag Langmyhr
IN1010 Fra Python til Java En introduksjon til programmeringsspråkenes verden dag@ifi.uio.no Oversikt Introduksjon Python Java Noe er likt Noe bare ser anderledes ut Noe er helt forskjellig Et par eksempler
DetaljerTDT4100 Objektorientert programmering
Eksamensoppgave i TDT4100 Objektorientert programmering Torsdag 12. august 2010, kl. 09:00-13:00 Oppgaven er utarbeidet av faglærer Hallvard Trætteberg og kvalitetssikret av Svein Erik Bratsberg. Kontaktperson
DetaljerTest, 2 Geometri. 2.1 Grunnleggende begreper og sammenhenger. 1T, Geometri Quiz løsning. Grete Larsen
Test, Geometri Innhold.1 Grunnleggende begreper og sammenhenger... 1. Mangekanter og sirkler... 6.3 Formlikhet... 10.4 Pytagoras setning... 16.5 Areal... 1.6 Trigonometri 1... 7.7 Trigonometri... 35 Grete
DetaljerTre måter å lese fra terminal. Java 4. Eksempel. Formatert utskrift til skjerm
Mer om easyio Mer om forgreninger Løkker 7. september 2004 Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 4 1 Tre måter å lese fra terminal Først:
DetaljerIN våren 2019 Onsdag 16. januar
IN1010 - våren 2019 Onsdag 16. januar Java Objekter og klasser Stein Gjessing Universitetet i Oslo 1 1 IN1010: Objektorientert programmering Hva er et objekt? Hva er en klasse? Aller enkleste eksempel
DetaljerEksamen 27.11.2014. REA3022 Matematikk R1. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 7.11.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
DetaljerMatematisk julekalender for 1. - 4. trinn
Matematisk julekalender for 1. - 4. trinn Årets julekalender for 1. 4. trinn består av ni oppgaver. Alle oppgavene er laget i tre utgaver; lett, middels og vanskelig (merket med hhv. L, M og V). Alle tre
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
Detaljer