Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Størrelse: px
Begynne med side:

Download "Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert."

Transkript

1 Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi oss riktige svar. Altså litt som DAG-SP, men ikke topologisk sortert vi ordner (på magisk vis) etter faktisk avstand. (Hvis vi bare tar med kanter i de korteste stiene så er grafen topologisk sortert ) Dijkstras algoritme 1

2 I stedet for topologisk rekkefølge: Etter stigende avstand fra s Som BFS men prioritetskø (med d[v]) i stedet for FIFO-kø Takler ikke negative kanter! 2

3 For spinkle grafer: Bruker binær haug som prioritetskø Må kunne endre nøkler (dvs. d[v]) underveis Må ha kobling mellom mellom noder og haug-innslag Kan evt. legge inn noder flere ganger i stedet 3

4 Initialiser grafen Så lenge det finnes uferdige noder: Velg u med lavest d[u] For alle kanter (u, v): Relax(u, v) 4

5 Hvis nodene besøkes etter stigende avstand: Kantene i korteste veier bli relaxet i riktig rekkefølge Topologisk sortering av kantene som «teller» Men Hvordan vet vi at lavest d[v] faktisk er nærmest? 5

6 Bokas variant av korrekthetsbeviset. Merk: Det er snakk om nok et bevis ved kontradiksjon. Vi antar at d[u] ikke er korrekt i det en node u legges til, og viser at vi får en selvmotsigelse. Den neste er kanskje forelesningens vanskeligste slide. 6

7 Anta at u er den første som ikke har riktig d- verdi når den legges til. Da må x ha hatt riktig d- verdi, og siden (x, y) er relaxet, så må y også ha riktig d-verdi i det u legges til. d[y] = δ(s, y) δ(s, u) d[u] 2 ). H Vi vet her at y forekommer før u på den korteste stien (Merk at x og y godt kan sammenfalle med s her.) Husk også at d er et overestimat av. = Dette virker bare hvis vi ikke har negative kanter; ellers kan vi ta «snarveier» og vi vet ikke lenger hvilken node som er nærmest. 7 <. I Men Siden u ble valgt før y så vet vi at d[u] d[y]. d[u] d[y] % d[y] = δ(s, y) = δ(s, u) = d[u] Sandwitch!

8 Underliggende antagelse: u er den første med galt men minimalt avstandsestimat (blant de hittil ubesøkte). Vi har y med korrekt d d[y] = δ(s, y) Dette viste vi ved å se at det må finnes en y med en forgjenger x rett innenfor og som altså har fått kjørt relax på sin forgjengerkant i den korteste stien, og dermed har korrekt d. u ligger senere på korteste vei δ(s, y) δ(s, u) d[u] men besøkes likevel (feilaktig) Det er denne ulikheten som ikke gjelder hvis vi har negative kanter. Da kan en node tidligere på den korteste stien likevel ligge lenger unna startnoden. d[u] d[y] 8 Vi får altså både d[y] d[u] og d[u] d[y], dvs. d[y] = d[u], med de faktiske avstandene klemt imellom. Med andre ord: Begge avstandene er korrekte likevel og vi har en selvmotsigelse.

9 (Min egen variant av korrekthetsbeviset litt enklere (IMO) enn det i boka.) Hypotetisk: Vi ordner noder etter faktisk avstand. Vi har positive kanter, så bakoverkantene vil være irrelevante (selv om vi jo ikke vet hvilke de er). Med andre ord har vi en (skjult, ukjent) DAG. Vi ønsker å besøke nodene i avstandsrekkefølge *uten å kjenne til* denne rekkefølgen (eller DAG-en). Induksjon to the rescue 0 3 7??? Vi har besøkt de k 1 første nodene, og relaxet kantene ut. Disse nodene har nå riktig avstandsestimat og det har også den neste i rekka (selv om vi ikke vet hvilken det er ennå). Det er akkurat som i DAG-shortest-path. 9 Betrakt den neste i sortert rekkefølge. Den har korrekt estimat. Alle de gjenværende har større avstand, og minst like store estimater. Dermed må den med lavest estimat være den neste, og vi har løst problemet for k.

10 Kjøretid avhengig av prioritetskøen. Hver Relax (det vil si, hver kant) kan måtte bruke Decrease-Key som koster O(lg V). Hver Extract-Min (dvs. for hver node) koster også O(lg V). Vi har altså: O(E lg V) + O(V lg V). Hvis alle kan nås fra starten vil E dominere, og vi får O((E+V) lg V) = O(E lg V). Kjøretid: O(E lg V) * * Hvis alle noder kan nås fra s 10

11 _ Z - ^ [ \ a B ` ] ` A s x y z

12 Korteste vei Én til alle Ingen neg. kanter Besøk nærmeste Relax til alle naboer Effektiv Spes. på spinkle G Kravstor O(E lg V) Dette er jo en gjenganger. Jo sterkere krav vi stiller, jo mer effektive er algoritmene. Dijkstras algoritme 12

13 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 13

14 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 14

15 Dijkstra recap Noder «plottet» etter avstandsestimat. Nærmeste er alltid den med lavest estimat. Hvor langt kan nodene komme etter Relax? d x Relax y z d y z A. Relax fra nyeste korrekte B. Gjenta med nærmeste Start-noden er korrekt fra starten av. 15 Den med nærmest estimat vil være korrekt (se neste slide )

16 s og x er alt ferdigbehandlede. Relax(x,y) er kjørt. d =! u antatt gal s x y u u velges nå vi antar den er den første som velges med *gal* d-verdi. Antar u valgt før y: d[u] d[y] Kan bare garanteres uten negative vekter. y kommer før u på stien: δ(s, y) δ(s, u) d[y] riktig og d overest.: d[y] d[u] Med andre ord: d[y] = δ(s, y) = δ(s, u) = d[u] Vi har nå vist at u får *riktig* d-verdi, 16 som er en selvmotsigelse. Selvmotsigelse!

17 Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 17

18 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 18

19 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 19

20 DP kort oppsummert: Løsningsmetode der vi bygger løsninger fra optimale delløsninger. Utregningene av disse overlapper, så vi mellomlagrer delløsninger for å unngå eksponensiell kjøretid. Mer om dette siden. Litt DP 20

21 21

22 22

23 1. Karakteriser strukturen til en optimal løsning. Og egentlig 2. Definér verdien til en optimal løsning rekursivt. 4. Beregne løsningen som ga den optimale verdien. 3. Beregn den optimale verdien «bottom-up», og ta vare på del-løsninger. struktur Mer om dette siden. definisjon beregning Eksempel: Lengste stigende subsekvens med maks-sprang k. 23

24 DAG-SP igjen Strukturen til en optimal løsning: Gitt av trekantulikheten Rekursiv definisjon av optimal verdi: Rekursivt definert vha. forgjengere «Bottom-up»-beregning: Relax fra alle forgjengere, f.v. t.h. 24

25 Vi må av og til «lage» en struktur/ dekomponering og det er tilfellet for dagens algoritmer. Hoved-ideene bak algoritmene er nettopp disse dekomponeringene i «kunstige delproblemer». Vi kunne ha tenkt: 1. Finn korteste vei fra A til B, 2. fra A til C, etc. I stedet tenker vi: Finn alle korteste veier *av en begrenset type*, og så slakker vi gradvis begrensningen, til vi har et svar. Dekomponering 25

26 ! 26

27 Dekomponering Delproblem med parameter m: Finn alle korteste veier som maksimalt kan inneholde m kanter. Ved å øke m til n finner vi til slutt det endelige resultatet. Nøkkelen blir å få til dette trinn for trinn og for å få til det snur vi det etter hvert på hodet (med en rekursiv definisjon). Maks m kanter 27

28 Dekomponering Kanskje hakket mindre naturlig: Delproblem med parameter k: Finn alle korteste stier som kun har lov til å gå *via* nodene v1 vk. Ved å øke k til n finner vi det endelige svaret. Også her må vi til med en rekursiv definisjon for å kunne bygge oss opp, trinn for trinn. Kun via v1 vk 28

29 Én rekursiv dekomponering gir oss en algoritme som ligner på algoritmen for matriseprodukt. Korteste vei og matriseprodukt 29

30 [ n 2 ] ( x i 2 [ i,i+1 ] i+3 3 ) i=1

31 Dette er dekomponeringen vi brukte i DAG-SP og Dijkstra også, egentlig. p = i p k j δ(i, j) = δ(i, k) + w kj Hvis p inneholder maks m kanter, så vil p inneholde maks m 1 kanter 31

32 Optimal lengde l (m) ij fra i til j med maks m kanter. 32

33 (0) lij =! 0 33 if i = j, if i = " j.

34 Merk at vi kan ha k=j (og dermed w_kj = 0), som tilsvarer l_ij^(m) = l_ij^(m-1). (m) lij =! " (m 1) min lik + wkj 1 k n Ligner veldig på oppbygningen i DAG-SP og Dijkstra. 34

35 δ(i, j) = (n 1) lij = (n) lij 35 = (n+1) lij =

36 W = (w ij ) ( ) L (m) = l (m) ij 36

37 Extend-Shortest-Path(L, W) L (l ij) for i 1 to n for j 1 to n l ij Strukturen til algoritmen er akkurat som for den «vanlige» metoden for matrisemultiplikasjon. for k 1 to n return L l ij min(l ij, lik + wkj) 37

38 Vi trenger i praksis ikke bruke n 1 ulike matriser, selvfølgelig. Slow-All-Pairs-Shortest-Paths(W) L (1) W for m 2 to n 1 L (m) Extend-Shortest-Path(L (m 1), W) return L (n 1) Fungerer som «matrise-potens». Vi kan forbedre kjøretiden ved å bruke «dobling», og gå fra en kjøretid på n^4 til en på (n^3)*log(n). 38

39 m = Obs: Egentlig skulle vi ha brukt vektmatrisen for siste kant her. Se neste algoritme for forklaring på hvorfor dette blir riktig :-)

40 m =

41 m =

42 m =

43 m =

44 m =

45 m =

46 m =

47 m =

48 m =

49 m = «Og sådan er det bo!e"er» 49

50 I hvert steg: Finn en vei til en forgjenger vha. m 1 kanter Bruk opprinnelig vektmatrise til siste kant 50

51 Faster-All-Pairs-Shortest-Paths(W) L (1) W m 1 while m < n 1 L (2m) Extend(L (m), L (m) ) m 2m return L (m) Det skader ikke å gå «for langt» med m her. 51

52 Floyd-Warshall 52

53 k er muligens med Delproblem med parameter k: Kan kun gå via de k første nodene. En slik sti kan deles i to mindre delproblemer (med lavere parameter) : Alle mellomliggende noder i {1 k 1} 53

54 7 9 : (117#%')*+),#(')7-)*'#2)$7#%783/74/7555/7993:!"#$%&'(" )*%+$,-.'*/! w7 : #" 9 = ;, (9) " (9 3) (9 3) ;7 : = (9 3) # #" ;9: +#% ;7 :, ;79 <=(-) (;) ;7 : C(%' < (=) = w7 : >)2(?$) 2(%@' 0(-) #%')*+),#(') -)*'#2)$ " (=) # = ;7 : / $#%2) (11 -)*'#2)$ %?+>)*), =5 0*+1$." 2*..*+3$1 54

55 Kubisk kjøretid, naturligvis FGHIJKCLMN=LGG(>, =) < (;) > )*% 9 3.* = 4* )*% 7 3.* = 4* )*% : 3.* = 4* ; (9) 7: +#% ( ; (9 3) 7:, ; (9 3) 79 + ; (9 3) ) 9: %".$%/ < (=) 55 Transitiv closure: Egentlig akkurat det samme men sjekker om det *finnes* en sti, i stedet for å beregne hvor *lang* den er. (Bruker logiske i stedet for aritmetiske operasjoner.)

56 k =

57 k =

58 k =

59 k =

60 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 60

61 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding Insertion sort Kruskal Merge sort Prim Quicksort Radix sort Randomized Select Select Selection sort Sterke komponenter Topologisk sortering 61

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

Fra A til B. Syvende forelesning

Fra A til B. Syvende forelesning Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra

Detaljer

Lineær sortering. Radix sort

Lineær sortering. Radix sort Fra forrige gang 1 Lineær sortering Radix sort 2 Sorter hvert siffer for seg Bruk en stabil sortering (f.eks. CS) for å bevare arbeidet så langt Vi må begynne med minst signifikante siffer Konstant antall

Detaljer

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0

O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i. bwfs(u, i+1) if λ[u] = 0 O(V 2 ) bwfs(v, i=1) λ[v] = i for each neighbor u of v if 0 < λ[u] < i bwfs(u, i) for each neighbor u of v if λ[u] = 0 bwfs(u, i+1) Bacwards-first search; traverserer en graf med kvadratisk worst-casekjøretid.

Detaljer

Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15

Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 http://www.idi.ntnu.no/~algdat algdat@idi.ntnu.no Pensum: 3. utg av Cormen et al. Øvingstime: I morgen, 14:15 b c g a f d e h The pitch drop experiment. Foreløpig kjørt fra 1927 til nå. Åtte dråper har

Detaljer

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner.

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner. Algdat Redux Fjortende forelesning Repetisjon av utvalgte emner. 1 Nå har vi en brukbar (om enn ikke helt intuitiv) definisjon av «alt» og nå ønsker vi å lage oss en liste med de problemene som er «verst

Detaljer

for bare trær Andre forelesning

for bare trær Andre forelesning Formler eller bevis e.l. som er uklare? Si ifra, så kan jeg gå g jennom dem. Forelesningene er ment å være en hjelp til å forstå det man leser i boka ikke «spoon-feeding» av det samme som står der for

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Live life and be merry

Live life and be merry Om grådighet og først litt mer DP. Live life and be merry Ellevte forelesning for tomorrow you may catch some disgusting skin disease. [Edmund Blackadder] D&C Bellman-Ford BFS/DFS Binære søketrær LP Binærsøk

Detaljer

Rundt og rundt og. Trettende forelesning

Rundt og rundt og. Trettende forelesning Nettverksalgoritmer. Anvendelser og generaliseringer. Sirkulasjonsproblemet/ lineær programmering. (Kap. 29.1-29.2) Rundt og rundt og Trettende forelesning 1 Merk: Ikke sikkert alt dette blir gjennomgått

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

Øvingsforelesning Korteste vei: Alle til alle

Øvingsforelesning Korteste vei: Alle til alle Øvingsforelesning Korteste vei: Alle til alle TDT4120 Algoritmer og datastrukturer Ole Kristian Pedersen 02. november, 2018 IDI, NTNU Plan for dagen Løsninger teoriøving 10 Alle til alle med Dijkstra &

Detaljer

A new study has found that cockroaches are morons in the morning and geniuses in the evening in terms of their learning capacity.

A new study has found that cockroaches are morons in the morning and geniuses in the evening in terms of their learning capacity. A new study has found that cockroaches are morons in the morning and geniuses in the evening in terms of their learning capacity. Previous studies suggest that the learning capacity of both people and

Detaljer

Algdat Eksamensforelesning. Nils Barlaug

Algdat Eksamensforelesning. Nils Barlaug Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum

Detaljer

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland

Teoriøving 7 + litt om Ford-Fulkerson. Magnus Lie Hetland Teoriøving 7 + litt om Ford-Fulkerson Magnus Lie Hetland Oppgave 1 a s 7 t 3 x 4 2 2 8 2 u 6 v 3 w Bruk DIJKSTRA eller BELLMAN-FORD og finn minste avstand fra s til de andre nodene. Svar/utregning (DIJKSTRA):

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). Innsetting og søk. Rekursjon igjen. A C E G

Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). Innsetting og søk. Rekursjon igjen. A C E G TLDR RTFM Innsetting og søk. Rekursjon igjen. Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). D B F A C E G reduksjon! rekursjon dekomp. induksjon gjenbruk travers. Søk i søketre uten balansering

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning 1 Reduksjons- Eksempler 2 Clique til Independent Set 3 Partition til Bin Packing 4 Partition til Subset Sum 5 CNF-SAT til Dir. Ham. Cycle 6 Dir. Ham. Cycle til Ham.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland Algdat-ninja på 60 minutter: Et galskapsprosjekt Magnus Lie Hetland 15. november, 2002 Advarsel: Tettpakkede og overfladiske foiler forut! 1 Algtdat i 6 punkter 1. Grunnbegreper og basisverktøy 2. Rekursjon

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt. Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-)

O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) Dagens oppvarming 1 O, what a tangled Fjerde forelesning Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) O, what a tangled web we weave / When first we practice

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning Div notater finnes på http://www.idi.ntnu.no/~algdat Foiler finnes på http://www.idi.ntnu.no/~mlh/algdat/latitudinary Spørsmål? algdat@idi.ntnu.no Sjekkliste Dette

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Choices, choices. Tiende forelesning. Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før.

Choices, choices. Tiende forelesning. Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før. Choices, choices Tiende forelesning Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før. DAG- SP er erkeeksemplet (og den underliggende modellen for all DP).

Detaljer

August

August None of us truly understands the P versus NP problem, we have only begun to peel the layers around this increasingly complex question. Perhaps we will see a resolution of the P versus NP problem in the

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

Minimum Spenntrær - Kruskal & Prim

Minimum Spenntrær - Kruskal & Prim Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Øvingsforelesning 4. Topologisk sortering, Strongly Connected Components og Minimale spenntrær. Magnus Botnan

Øvingsforelesning 4. Topologisk sortering, Strongly Connected Components og Minimale spenntrær. Magnus Botnan Øvingsforelesning 4 Topologisk sortering, Strongly Connected Components og Minimale spenntrær Magnus Botnan botnan@stud.ntnu.no 09/10/09 1 I dag Topologisk Sortering Sterke Komponenter Minimale Spenntrær

Detaljer

Algdat Oppsummering, eksamen-ting. Jim Frode Hoff

Algdat Oppsummering, eksamen-ting. Jim Frode Hoff Algdat Oppsummering, eksamen-ting Jim Frode Hoff November 18, 2012 1 Definisjoner 1.1 Ordliste Problem Probleminstans Iterasjon Asymtpoisk notasjon O(x) kjøretid Ω(x) kjøretid Θ(x) kjøretid T (x) kjøretid

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN00 - Algoritmer og datastrukturer HØSTEN 08 Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer II Ingrid Chieh Yu (Ifi, UiO) IN00 8.09.08 / Dagens plan: Korteste vei en-til-alle vektet

Detaljer

Algdat - øvingsforelesning

Algdat - øvingsforelesning Algdat - øvingsforelesning Dynamisk programmering Nils Barlaug Dagens plan 1. 2. 3. 4. Praktisk og dagens plan LF øving 8 a. Teori b. Praksis Dynamisk programmering a. Introduksjon b. Rod Cutting c. Matrise-multiplikasjon

Detaljer

Grunnleggende Grafteori

Grunnleggende Grafteori Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk

Detaljer

Agenda. 1 Sortering, heap og select. 2 Binære trær. 3 Grafer, BFS og DFS. 4 Spenntrær og Korteste vei. 5 Maks flyt. 6 Dynamisk programmering

Agenda. 1 Sortering, heap og select. 2 Binære trær. 3 Grafer, BFS og DFS. 4 Spenntrær og Korteste vei. 5 Maks flyt. 6 Dynamisk programmering Agenda 1 Sortering, heap og select Oppsummering Ola Natvig IDI - NTNU 23. november 2007 2 Binære trær 3 Grafer, BFS og DFS 4 Spenntrær og Korteste vei 5 Maks flyt 6 Dynamisk programmering 7 Grådighet 8

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 11: Huffman-koding & Dynamisk programmering (Ifi, UiO) INF2220 H2015, forelesning 11 1 / 32 Dagens

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 918 51 949 Eksamensdato 4. desember, 2017

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

IN Algoritmer og datastrukturer

IN Algoritmer og datastrukturer IN010 - Algoritmer og datastrukturer HØSTEN 018 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer III Ingrid Chieh Yu (Ifi, UiO) IN010 0.10.018 1 / 0 Dagens plan: Dybde-først søk Biconnectivity

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

Grunnleggende Grafalgoritmer

Grunnleggende Grafalgoritmer Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å

Detaljer

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 5-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å gjøre.)

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Rebus. Hva er dette? Svar: Kvadratiske sorteringsalgoritmer :-> Som vanlig relativt abstrakte beskrivelser her. Ta en titt på pseudokode i boka for mer detaljert

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 9. august, 07 Eksamenstid

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding

Dagens plan. INF Algoritmer og datastrukturer. Koding av tegn. Huffman-koding Grafer Dagens plan INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Avsluttende om grådige algoritmer (kap. 10.1.2) Dynamisk programmering Floyds algoritme

Detaljer

Algdat - Øvingsforelesning. Maks flyt

Algdat - Øvingsforelesning. Maks flyt Algdat - Øvingsforelesning Maks flyt Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2 Øving 7 4b) I hvilken rekkefølge velges noder

Detaljer

Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding

Forelesningsplan. Grådighet. LF Øving 9. Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding 1 Grådighet 2 Forelesningsplan Grådighet Hva er grådighet? Aktivitetsvelger En grådig strategi Grådig eller dynamisk? Knapsack Huffmankoding LF Øving 9 Teori Praksis 3 Forelesningsplan Grådighet Hva er

Detaljer

Choices, choices. Tiende forelesning. Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før.

Choices, choices. Tiende forelesning. Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før. Choices, choices Tiende forelesning Dynamisk programmering: En serie med valg der valgmulighetene er avhengige av hva vi har valgt før. DAG- SP er erkeeksemplet (og den underliggende modellen for all DP).

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 0. desember, 08 Eksamenstid

Detaljer

Øvingsforelesning 6. Sorteringsalgoritmer. Kristian Veøy

Øvingsforelesning 6. Sorteringsalgoritmer. Kristian Veøy Øvingsforelesning 6 Sorteringsalgoritmer Kristian Veøy veoy@stud.ntnu.no 26.09.08 1 Spørsmål fra øvingsgruppene Må jeg kunne python på eksamen? (Nei) Er det lurt å gjøre alle programmeringsøvingene? (Ikke

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Live life and be merry

Live life and be merry Om grådighet og først litt mer DP. Live life and be merry Ellevte forelesning for tomorrow you may catch some disgusting skin disease. [Edmund Blackadder] 1 2 g i t k i s K o rt Grådighet All form for

Detaljer

GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6

GRAFER. Noen grafdefinisjoner. Korteste vei i en uvektet graf V 2 V 1 V 5 V 3 V 4 V 6 IN Algoritmer og datastrukturer GRAER Dagens plan: Kort repetisjon om grafer Korteste, en-til-alle, for: uektede grafer (repetisjon) ektede rettede grafer uten negatie kanter (Dijkstra, kapittel 9..) ektede

Detaljer

Vi skal se på grafalgoritmer for:

Vi skal se på grafalgoritmer for: Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?

Detaljer

n/b log b n = (lg n) a log b n = n log b a

n/b log b n = (lg n) a log b n = n log b a Masterteoremet 1 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = (lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen?

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Høgskoleni østfold EKSAMEN. 4 dobbeltsidige ark med notater Lars Magnusson

Høgskoleni østfold EKSAMEN. 4 dobbeltsidige ark med notater Lars Magnusson Høgskoleni østfold EKSAMEN Emnekode: ITF 20006 Emne: Algoritmer og Datastrukturer Dato: 22.05.2015 Eksamenstid: kl 09.00 til kl 13.00 Hjelpemidler: Faglærer: 4 dobbeltsidige ark med notater Lars Magnusson

Detaljer

Longest increasing. subsequence Betingelser. Longest. common subsequence. Knapsack Grådig vs. DP Moro: 2D-Nim Spørsmål. Forside. Repetisjon.

Longest increasing. subsequence Betingelser. Longest. common subsequence. Knapsack Grådig vs. DP Moro: 2D-Nim Spørsmål. Forside. Repetisjon. :: :: Dynamisk programmering Eksamenskurs Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dp.ppt Svært rask repetisjon Noen ganger (f.eks. ved utregning av Fibonaccitall) vil en rekursiv

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Øvingsforelesning 12 Maks flyt

Øvingsforelesning 12 Maks flyt Øvingsforelesning 12 Maks flyt Ole Kristian Pedersen 9. november 2018 ] Plan for dagen Maksimal flyt og minimale snitt Maksimal bipartitt matching Tidligere eksamensoppgaver Introduksjon øving 12 Hva er

Detaljer

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf

KORTESTE STI. Vektede Grafer. Korteste Sti. Dijkstra s Algoritme. Vektet Urettet Graf Vektet Urettet Graf KORTESTE STI Finn: fra en Enkel Kilde til Alle Noder. (Engelsk: Single Source Shortest Path - SSSP) Vektede Grafer vekter på kanter representerer f.eks. avstand, kostnad, båndbredde...

Detaljer

Løsningsforslag - Floyd-Warshall

Løsningsforslag - Floyd-Warshall Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon martme logget

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Metoden ble formalisert av Richard Bellmann (RAND Corporation) på 50-tallet. Programmering i betydningen planlegge, ta beslutninger. (Har ikke noe med kode eller å skrive kode å

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

Algdat - øvingsforelesning

Algdat - øvingsforelesning Algdat - øvingsforelesning Topologisk sortering og minimale spenntrær Nils Barlaug Dagens plan 1. 2. 3. 4. 5. Praktisk og dagens plan Topologisk sortering Minimale spenntrær a. Kruskal b. Prim Tips til

Detaljer

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1 Øvingsforelesning 6 Sorteringsalgoritmer Martin Kirkholt Melhus martme@stud.ntnu.no Basert på foiler av Kristian Veøy 30/09/14 1 Agenda l Spørsmål fra øving 4 l Sortering l Presentasjon av øving 6 30/09/14

Detaljer

Øvingsforelesning 3: Splitt og hersk. Daniel Solberg

Øvingsforelesning 3: Splitt og hersk. Daniel Solberg Øvingsforelesning 3: Splitt og hersk Daniel Solberg Plan for dagen Vi går raskt gjennom øving 2 Splitt og hersk Algoritmer: Mergesort Quicksort Binærsøk Rekurrenser, masse rekurrenser 2 Splitt og hersk

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 0. desember, 08 Eksamenstid

Detaljer